EnggTree.com

Reg. No.:				- 4		
1008.1.0						

Question Paper Code: 25131

B.E./B.Tech. DEGREE EXAMINATION, DECEMBER/JANUARY 2019.

First Semester

Marine Engineering

MA 8101 - MATHEMATICS FOR MARINE ENGINEERING - I

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Find the equation of the sphere whose centre is (1, 2, -2) and which passes through the point (3, 1, -3).
- 2. Define a right circular cone.
- 3. Find $\frac{dy}{dx}$ if $x = a(\cos t + t \sin t)$, $y = \alpha(\sin t t \cos t)$.
- 4. State Maclaurin's series.
- 5. Express the total differential of u in terms of those of x and y if $u = \sin(xy^2)$.
- 6. Obtain the stationary point of $f(x, y) = x^2 + y^2 + 6x + 12$.
- 7. Write the formula for the volume of revolution about the x axis.
- 8. Calculate the root mean square of $f(x) = \sin x$ in $0 \le x \le 2\pi$.
- 9. Change the order of integration in $\int_0^1 \int_{x^2}^{2-x} xy \ dy dx$.
- 10. State the theorem of perpendicular axis.

EnggTree.com

PART B — $(5 \times 16 = 80 \text{ marks})$

- Find the equation of the sphere having (a) $x^{2} + y^{2} + z^{2} + 10y - 4z - 8 = 0, x + y + z = 3$ as a great scale.
 - Obtain the equation of the cone with vertex as the origin and which (ii) passes through the curve $x^2 + y^2 + z^2 = 16$, x + y + z = 1.

Or

- and radius of circle centre (b) (i) $x^2 + y^2 + z^2 - 2x - 4y - 6z - 2 = 0$ and x + 2y + 2z - 20 = 0. (8)
 - Find the equation of the right circular cylinder of radius 3 and axis is the line $\frac{x-1}{2} = \frac{y-3}{2} = \frac{z-5}{-1}$. (8)
- If $y = (\sin^{-1} x)^2$, then show that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} n^2y_n = 0$. (i) (8)
 - Evaluate $\lim_{x\to\pi/2} (\sin x)^{\tan x}$. (8)

- (i) Obtain the Taylor series expansion for $\log_e x$ in powers of (x-1). (8)
 - (ii) Trace the curve $xy^2 = 4a^2(a-x)$ (8)
- 13. (a) (i) If $u = \cos^{-1} \left(\frac{x^5 2y^5 + 6z^5}{\sqrt{ax^3 + by^3 + cz^3}} \right)$, then show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = -\frac{7}{2}\cot u$. (8)
 - Show that the rectangular solid of maximum value that can be inscribed in a sphere $x^2 + y^2 + z^2 = r^2$ is a cube. (8)

- (i) If $y^{x^y} = \sin x$, then find $\frac{dy}{dx}$. (8)
 - Find the percentage error in the area of an ellipse when an error of 1.5% is made in measuring its major and minor axes. (8)

2

EnggTree.com

- Find the volume formed by the revolution of the semicircle 14. (a) $x^2 + y^2 = a^2$ about the x axis. (8)
 - (ii) Evaluate $\int \frac{(\sin^{-1} x)^2}{\sqrt{1-x^2}} dx.$ (8)

Or

- Find the formula for the first moment of area of a circular area (b) (i) about an axis touching its edge in terms its diameter *D*.
 - Find the area enclosed between the curve $x^2 = 4y$ and the line (ii) x = 4y - 2.(8)
- Derive the standard formula for the second moment of area and 15. (a) (i) radius of gyration for a rectangle of length L and breadth B about an axis through its centroid and parallel to the long edge.
 - Change the order of integration in $\int_0^b \int_0^{\frac{a}{b}(b-y)} xy \, dx \, dy$ and hence (ii) evaluate it. (8)

(b) Find the mass of the tetrahedron bounded by the co-ordinates (i)

planes and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, the variable density $\rho = \mu xyz$. (8) spherical polar coordinates.

3