

			1					
Reg. No.:	000000000000000000000000000000000000000		distribution of the control of the c		>			
		1						

Question Paper Code: 40056

B.E. DEGREE EXAMINATION, APRIL/MAY 2018 Second Semester Marine Engineering MA8201 – MATHEMATICS FOR MARINE ENGINEERING – II

(Regulations 2017)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART – A

 $(10\times2=20 \text{ Marks})$

- 1. Obtain the differential equation of the coaxial circles of the system $x^2 + y^2 + 2ax + c^2 = 0$ where c is a constant and a is a variable.
- 2. Solve $(1 + 2xy\cos x^2 2xy) dx + (\sin x^2 x^2) dy = 0$.
- 3. Find the particular integral of $(D^2 + 6D + 9)y = e^{-2x} x^3$.
- 4. Solve $[(2x + 3)^2 D^2 2(2x + 3)D 12]y = 0$.
- 5. If $\nabla \phi = yz\vec{i} + xz\vec{j} + xy\vec{k}$, then find ϕ .
- 6. Find the constants space a, b, c, so that the vector $\vec{F} = (x+2y+az)\vec{i} + (bx-3y-z)\vec{j} + (4x+cy+2z)\vec{k} \text{ is irrotational.}$
- 7. State any two properties of an analytic function.
- 8. Find the invariant points of the bilinear transformation $w = \frac{2zi + 5}{z 4i}$.
- 9. Find L [t cos 3t].
- 10. Prove that Laplace transform of unit step function is $\frac{e^{-as}}{s}$.

40056

-2-

$$PART - B$$
 (5×16=80 Marks)

- 11. a) i) Solve $\frac{dy}{dx} = \sin(x+y) + \cos(x+y)$. (8)
 - ii) Find the orthogonal trajectory of the cardioids $r = a (1 \cos\theta)$. (8)
 - b) i) Solve $(1 + y^2) dx = (\tan^{-1} y x) dy$. (8)
 - ii) Solve $\left[x \tan\left(\frac{y}{x}\right) y \sec^2\left(\frac{y}{x}\right)\right] dx x \sec^2\left(\frac{y}{x}\right) dy = 0.$ (8)
- 12. a) i) Solve by the method of undetermined coefficients, $(D^2 + 2D + 4)y = 2x^2 + 3e^{-x}$. (8)
 - ii) Solve $Dx (D 2)y = \cos 2t$ and $(D 2)x + Dy = \sin 2t$. (8)
 - b) i) Solve by the method of variation of parameters, $(D^2 2D + 1)y = e^x \log x$. (8)
 - ii) Solve $(x^2D^2 xD + 4)y = x^2 \sin(\log x)$. (8)
- 13. a) i) Find the constants a and b, so that the surfaces $5x^2 2yz 9x = 0$ and $ax^2y + bz^3 = 4$ may cut orthogonally at the point (1, -1, 2). (8)
 - ii) Evaluate $\iint\limits_{S}\!\vec{F}.\hat{n}\,dS$, where $\vec{F}=4x\,\vec{i}-2y^2\,\vec{j}+z^2\,\vec{k}$ and S is the surface bounded
 - by the region $x^2 + y^2 = 4$, z = 0 and z = 3 by using Gauss divergence theorem. (8)

 (OR)
 - b) Verify Stoke's theorem for $\vec{F} = y^2z\vec{i} + z^2x\vec{j} + x^2y\vec{k}$ where S is the open surface of the cube formed by planes $x = \pm a$, $y = \pm a$ and $z = \pm a$, in which the plane z = -a is cut. (16)
- 14. a) i) Prove that $v = \log [(x-1)^2 + (y-2)^2]$ is harmonic in every region which does not include the point (1, 2). Find the corresponding analytic function w = u + iv and also u.
 - ii) Find the bilinear transformation that maps the points 1 + i, -i, 2 i of the z-plane into the points 0, 1, i of the w-plane. (8)

(OR)

- b) i) If f(z) = u + iv is an analytic function of z, then prove that $\nabla^2 \lceil \log |f(z)| \rceil = 0$. (8)
 - ii) Find the image of $1 \le x \le 2$ under the transformation $w = \frac{1}{7}$. (8)

EnggTree.com

40056

- 15. a) i) Find the Laplace transform of $L\left[\frac{\sin^2 t}{t}\right]$. (8)
 - ii) Solve the differential equation, using Laplace transform y'' 3y' + 2y = 4t given that y(0) = 1 and y'(0) = -1. (8)
 - b) i) Find the Laplace transform of the function $f(t) = \begin{cases} t, & 0 < t < \pi/2 \\ \pi t, & \pi/2 < t < \pi \end{cases}$ and $f(\pi + t) = f(t).$ (8)
 - ii) Using convolution theorem, find $L^{-1}\left[\frac{4}{(s^2+2s+5)^2}\right]$. (8)