Sub. Name & Code: MA3151_Matrices and Calculus

Dept. of Mathematics

Academic Year: 2021-2022

St. Joseph's Institute of Technology

Dept. of Mathematics

	(1)
	Solution: Let $X = \begin{bmatrix} 2 \end{bmatrix}$ be the eigen vector of the matrix corresponding to the eigen value λ .
	The eigen vectors are obtained from the equation $AY = AY$
	The eigen vectors are obtained from the equation $AX = \lambda X$
	$\begin{pmatrix} -2 & 2 & -3 \\ 2 & 1 & -5 \end{pmatrix} \begin{pmatrix} 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 & 2 \end{pmatrix}$
	$\begin{vmatrix} 2 & 1 & -6 \end{vmatrix} \begin{vmatrix} 2 & = \lambda \end{vmatrix} \begin{vmatrix} 2 \end{vmatrix}$
	$\begin{pmatrix} -1 & -2 & 0 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix}$
	$\begin{pmatrix} -2+4+3 \end{pmatrix}$ $\begin{pmatrix} \lambda \end{pmatrix}$
	$\begin{vmatrix} 2+2+6 \end{vmatrix} = \begin{vmatrix} 2\lambda \end{vmatrix}$
	$\begin{pmatrix} -1-4+0 \end{pmatrix} \begin{pmatrix} -\lambda \end{pmatrix}$
	(2 - 1)
7	$ \lambda = 3$. If trace and determinant of 2 × 2 is -2 and -35 respectively, then find the eigen values of matrix?
/	Solution: Let λ_1 and λ_2 are two eigen value of the given matrix A
	Trace of $A = sum of the eigen values$
	$\Rightarrow \lambda_1 + \lambda_2 = -2(1)$
	Determinant of $A =$ Product of the eigen values
	$\implies \lambda_1 \lambda_2 = -35(2)$
	Sub (1) $\Rightarrow \lambda_1 = -2 - \lambda_2$ in equation (2)
	$(-2 - \lambda_2)\lambda_2 = -35$
	$(-2 - \lambda_2)\lambda_2 + 35 = 0$
	$\lambda_{\overline{2}} + 2\lambda_{\overline{2}} - 35 = 0$
	$(\lambda_2 - 5)(\lambda_2 + 7) = 0$ Therefore $\lambda_1 = 5$ and -7
	If the $\lambda_2 = 5$ then $\lambda_1 = -2 - 5 = -7$
	If the $\lambda_2 = -7$ then $\lambda_1 = -2 + 7 = 5$
	Hence the eigen values are 5 and -7.
	$\begin{bmatrix} 2 & 1 & 0 \end{bmatrix}$
8	If $A = \begin{bmatrix} 0 & 3 & 4 \end{bmatrix}$ then find the eigen values of A^{-1} and A^2 -2I. (APR/MAY 2018)
U	
	Solution: In a triangular matrix, the main diagonal values are the eigen values of the matrix.
	\therefore 2, 3, 4 are the eigen values of A. Hence the eigen values of $A^{-1} = \frac{1}{2}, \frac{1}{3}, \frac{1}{4}$.
	The eigen values of A^2 are $(2)^2$, $(3)^2$, $(4)^2 = 4$, 9, 16.
	The eigen values of A^2 -2 <i>I</i> are 4 – 2, 9 – 2, 16 – 2 = 2, 7, 14.
9	Determine whether the given matrix $A = \begin{bmatrix} 2 & 6 & 0 \end{bmatrix}$ is Diagonalizable?
	$\begin{bmatrix} 13 & 2 & 1 \end{bmatrix}$
	Solution: The given matrix $A = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 6 & 0 \end{bmatrix}$ is triangular matrix
	$\frac{1}{2}$ the encounterproduce on $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
	\therefore the eigenvalues are $\lambda_1 = 2, \lambda_2 = 6$ and $\lambda_3 = 1$.
	:. the eigenvalues are $\lambda_1 = 2$, $\lambda_2 = 6$ and $\lambda_3 = 1$. since eigenvectors corresponding to distinct eigenvalues are linearly independent, A has three

St. Joseph's Institute of Technology

Sub	Name & Code: MA3151_Matrices and Calculus Dept. of Mathematics Academic Year: 2021-2022
10	If $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then find the eigen values of adjoint of A. (APR/MAY 2019)
	Solution: We know that, adjoint of $A = A^{-1} A $.
	$ \mathbf{A} $ = product of the eigen values = (2)(3)(1) = 6.
	Eigen values of A ⁻¹ are $\frac{1}{2}, \frac{1}{3}, 1$.
	: Eigen values of adjA are $\frac{1}{2}(6)$, $\frac{1}{3}(6)$, (1)(6) = 3, 2, 6.
11	Write down the quadratic form corresponding to the matrix $\mathbf{A} = \begin{bmatrix} 0 & 5 & -1 \\ 5 & 1 & 6 \\ -1 & 6 & 2 \end{bmatrix}$.
	Solution: The matrix of the quadratic form of A is given by
	$X^{T}AX = (x_{1} \ x_{2} \ x_{3}) \begin{bmatrix} 0 & 5 & -1 \\ 5 & 1 & 6 \\ -1 & 6 & 2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = 0x_{1}^{2} + x_{2}^{2} + 2x_{3}^{2} + 10x_{1}x_{2} + 12x_{2}x_{3} - 2x_{1}x_{3}.$
12	Determine the nature of the following quadratic form $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 - 9x_3^2$.
	Solution: The matrix of the quadratic form is $Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -9 \end{bmatrix}$
	The eigen values of the matrix are 1, 2, -9
	Therefore, the quadratic form is indefinite.
13	Discuss the nature of the quadratic form $2x^2 + 3y^2 + 2z^2 + 2xy$ without reducing it to canonical form.
	Solution: The matrix of the quadratic form is $Q = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$
	The principal sub determinants are $D_1 = 2 (+ve)$
	$D_{2} = \begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} = 5(+ve)$ $D_{3} = \begin{vmatrix} 2 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{vmatrix} = 2(6-0) - 1(2-0) + 0 = 10$
	Therefore, the quadratic form is positive definite.

St. Joseph's Institute of Technology

Sub. Name & Code: MA3151_Matrices and Calculus Dept. of Mathematics Academic Year: 2021-2022 **Solution:** The matrix of the quadratic form is $A = \begin{vmatrix} 1 & \lambda & -1 \\ 1 & -1 & \lambda \end{vmatrix}$ The principal sub determinants are $D_1 = \lambda$ $D_2 = \begin{vmatrix} \lambda & 1 \\ 1 & \lambda \end{vmatrix} = \lambda^2 - 1 = (\lambda + 1)(\lambda - 1)$ $D_{3} = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & -1 \\ 1 & -1 & \lambda \end{vmatrix} = \lambda(\lambda^{2} - 1) - 1(\lambda + 1) + 1(-1 - \lambda)$ For positive definite $D_1 > 0, D_2 > 0, D_3 > 0$ $\Rightarrow \lambda > 0, \lambda^2 - 1 > 0$, $(\lambda + 1)^2 (\lambda - 2) > 0$ $\Rightarrow \lambda > 0, (\lambda + 1)(\lambda - 1) > 0, (\lambda + 1)^2(\lambda - 2) > 0$ $\Rightarrow \lambda - 2 > 0$ $\Rightarrow \lambda > 2$ Therefore, the quadratic form is positive definite. Find the matrix whose eigen values are 1,3 and eigen vectors are $(1, -1)^T$, $(1, 1)^T$. **Solution:** Since the given eigen vectors $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ are orthogonal By orthogonal reduction $N^T A N = D$ $A = NDN^T$ The normalized model matrix $N = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ $\therefore A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ $= \begin{bmatrix} 0 & 3 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ $\therefore \mathbf{A} = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}.$ Find the nature of the conic $8x^2 - 4xy + 5y^2 = 36$ by reducing the quadratic form $8x^{2} - 4xy + 5y^{2}$ to the form $AX^{2} + BY^{2}$. The matrix of the quadratic form is $A = \begin{pmatrix} 8 & -2 \\ -2 & 5 \end{pmatrix}$ Solution: The characteristic equation of A is $|A - \lambda I| = 0$

 $\begin{vmatrix} 8 - \lambda & -2 \\ -2 & 5 - \lambda \end{vmatrix} = 0$ $(8-\lambda)(5-\lambda)-4=0$ $\lambda^3 - 13\lambda^2 + 36 = 0$ $\lambda^2 - 13\lambda + 36 = 0$ $(\lambda - 4)(\lambda - 9) = 0$

 \therefore The eigen values of A are $\lambda = 4, 9$

St. Joseph's Institute of Technology

15

16

Page No: 4

$\begin{array}{ c c c c c } \hline \begin{array}{ c c c } \hline & & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Sub	Name & Code: MA3151_Matrices and Calculus Dept. of Mathematics Academic Year: 2021-2022
$\begin{array}{ c c c } \therefore \text{ given conic becomes } 4X^2 + 9Y^2 = 36 \text{i.e. } \frac{X^2}{9} + \frac{Y^2}{4} = 1 \text{which is an ellipse.} \\ \hline \text{Write down the matrix equation of an ellipse } \frac{x^2}{16} + \frac{y^2}{9} = 1 \text{ is in standard position to the coordinate axis .} \\ \hline \text{Solution:} \\ \text{The equation of an ellipse } \frac{x^2}{16} + \frac{y^2}{9} = 1 \text{ is in quadratic form.} \\ \text{Hence } \frac{x^2}{16} + \frac{y^2}{9} = 1 \\ \implies x y \left[\frac{1}{x_0} & 0 \\ 0 & \frac{1}{2} \right] \left[\frac{x}{y} \right] = 1. \\ \hline \text{Solution: If X is the eigen value of the matrix A, then prove that \lambda^2 is the eigen value of \Lambda^2 (APR/MAY2019) \\ \hline \text{Solution: If X is the eigen value of the matrix A, corresponding to the eigen value \lambda, then AX = \lambda X. Pre multiply by A \Rightarrow \lambda^2 X = A (\lambda X) \\ = \lambda(\lambda X) \\ = \lambda(X) \\ = \lambda(\lambda X) \\ = \lambda(X) \\ = \lambda(\lambda X) \\ = \lambda^2 X \\ \text{Hence, } \lambda^2 \text{ is the eigen value of } \Lambda^2. \\ \hline \text{IProve that the matrices A and } A^T have the same Eigen values. (NOV/DEC2019) \\ \hline \text{Solution: We know that } A = A^T . \\ \therefore A \rightarrow \lambda I = (A^T - \lambda I)^T \\ = (A^T - \lambda I)^T \\ = (A^T - \lambda I) (\because I = I^T) \\ \therefore \text{ A and } A^T have same characteristic polynomial \Rightarrow A \text{ and } A^T have same characteristic equation. Hence, A^2 is the eigen values of -3A^{-1} are the same as those of A = \left(\begin{array}{c} 1 & 2 \\ 2 & 1 \end{array} \right) \\ \hline \text{Solution: The characteristic equation of } A \text{ is } \left \begin{array}{c} 1-\lambda & 2 \\ 2 & 1-\lambda \end{vmatrix} = 0 \\ \lambda^2 - 2\lambda - 3 = 0 \\ (\lambda + 1)(\lambda - 3) = 0 \\ \therefore \lambda = -1, 3 \text{ are the eigen values of } A. \\ \text{Now the eigen values of } A^{-1} \text{ are the same as those of } A = \left(\begin{array}{c} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{array} \right), \text{ Also find adj}(A) \text{ and } A^{-1}. \\ \hline \text{(APR / MAY 18)} \end{cases}$		\therefore the canonical form is of the form $4X^2 + 9Y^2$
17Write down the matrix equation of an ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is in standard position to the coordinate axis .Solution: The equation of an ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is in quadratic form. Hence $\frac{x^2}{16} + \frac{y^2}{9} = 1$ $\Rightarrow [x \ y] \begin{bmatrix} \frac{1}{16} & \frac{0}{9} \\ 0 & \frac{1}{9} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 1$.18If λ is the eigen value of the matrix A , then prove that λ^2 is the eigen value of A^2 . (APR/MAY2019)Solution: If X is the eigen value of the matrix A , then prove that λ^2 is the eigen value λ , then $AX = \lambda X$. Pre multiply by $A \Rightarrow A^2 X = A (\lambda X)$ $= \lambda(AX)$ $= \lambda(AX)$ $= \lambda(X)$ 19Prove that the matrices A and A^T have the same Eigen values. (NOV/DEC2019)Solution: We know that $ A = A^T $. $\therefore A \rightarrow AI = (A^T - \lambda I) $ $= (A^T - \lambda I)^T $ $= (A^T - \lambda I) $ ($\forall I = I^T$) $\therefore A and A^T$ have same characteristic polynomial \Rightarrow A and A^T have same characteristic equation. Hence, A and A^T have same eigen values.20Show that the eigen values of $-3A^{-1}$ are the same as those of $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ 10Solution: The characteristic polynomial \Rightarrow A and A^T have same characteristic equation. Hence, A and A^T have same eigen values.20Show that the eigen values of $-3A^{-1}$ are the same as those of $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ 1(i) Verify Caley Hamilton theorem for $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}$. Also find adj(A) and A^{-1} . $-2 & -4 & -4 \end{pmatrix}$.		: given conic becomes $4X^2 + 9Y^2 = 36$ i.e. $\frac{X^2}{9} + \frac{Y^2}{4} = 1$ which is an ellipse.
Solution: The equation of an ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is in quadratic form. Hence $\frac{x^2}{16} + \frac{y^2}{9} = 1$ $\Rightarrow [x \ y] \begin{bmatrix} \frac{1}{16} & 0\\ 0 & \frac{1}{9} \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = 1.$ 18If λ is the eigen value of the matrix A , then prove that λ^2 is the eigen value of A^2 . (APR/MAY2019) Solution: If X is the eigen value of the matrix A corresponding to the eigen value λ , then $AX = \lambda X$. Pre multiply by $A \Rightarrow A^2 X = A (\lambda X)$ $= \lambda(\lambda X)$ $= \lambda = \lambda(\lambda X)$ $= \lambda(\lambda X)$ $= \lambda = \lambda(\lambda X)$ $= \lambda = \lambda(\lambda X)$ $= \lambda(\lambda$	17	Write down the matrix equation of an ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is in standard position to the coordinate axis.
The equation of an ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is in quadratic form. Hence $\frac{x^2}{16} + \frac{y^2}{9} = 1$ $\Rightarrow [x y] \begin{bmatrix} \frac{1}{16} & 0 \\ 0 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 1$. 18 If λ is the eigen value of the matrix A, then prove that λ^2 is the eigen value of A^2 . (APR/MAY2019) Solution: If X is the eigen vector of the matrix A corresponding to the eigen value λ , then AX = λX . Pre multiply by $A \Rightarrow A^2 X = A(\lambda X)$ $= \lambda(AX)$ $= \lambda(AX)$ $= \lambda(X)$ Hence, λ^2 is the eigen value of A^2 . 19 Prove that the matrices A and A^T have the same Eigen values. (NOV/DEC2019) Solution: We know that $ A = A^T $. $\therefore A = \lambda I = (A^- \lambda I)^T $ $= (A^ \lambda I) $ ($\because I = I^T$) \therefore A and A^T have same characteristic polynomial \Rightarrow A and A^T have same characteristic equation. Hence, A and A^T have same characteristic polynomial \Rightarrow A and A^T have same characteristic equation. Hence, A and A^T have same characteristic polynomial \Rightarrow A and A^T have same characteristic equation. Hence, A and A^T have same digen values. 20 Show that the cigen values of $-3A^{-1}$ are the same as those of $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ Solution: The characteristic equation of A is $\begin{vmatrix} 1-A & 2 \\ 2 & 1-A \end{vmatrix} = 0$ $\lambda^2 - 2\lambda - 3 = 0$ $(\lambda + 1)(\lambda - 3) = 0$ $\therefore \lambda = -1,3$ are the eigen values of A . Now the eigen values of A^{-1} are $\frac{1}{-1}, \frac{1}{-3}$ and hence the eigen values of $-3A^{-1}$ are $3, -1$. PART - B 1 (i) Verify Caley Hamilton theorem for $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}$. Also find adj(A) and A^{-1} . (APR / MAY 18)		Solution:
$\begin{array}{ c c c c c c } & \operatorname{Hence} & \frac{x^{2}}{16} + \frac{y^{2}}{9} = 1 \\ & \Rightarrow \left[x \ y\right] \left[\frac{1}{16} & \frac{0}{9}\right] \left[\frac{y}{y}\right] = 1. \end{array}$ $\begin{array}{ c c c c c c } & 18 & \text{If } \lambda \text{ is the eigen value of the matrix } \lambda, \text{ then prove that } \lambda^{2} \text{ is the eigen value of } \lambda^{2} & (APR/MAY2019) \end{array}$ $\begin{array}{ c c c c c c c c c c c c c c c c c c c$		The equation of an ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is in quadratic form.
$\begin{array}{ c c c c c } & \begin{array}{c} 1 & 1 & 0 \\ \end{array} & \begin{array}{c} 1 & 1 & 0 \\ \end{array} & \begin{array}{c} 1 & 1 & 0 \\ \end{array} & \begin{array}{c} 1 & 1 \\ \end{array} & \begin{array}{c} 1 \\ \end{array} & \begin{array}{c} 1 & 1 \\ \end{array} & \begin{array}{c} 1 & 1 \\ \end{array} & \begin{array}{c} 1 & 1 \\ \end{array} & \begin{array}{c} 1 \end{array} & \begin{array}{c} 1 \\ \end{array} & \begin{array}{c} 1 \\ \end{array} & \begin{array}{c} 1 \end{array} & \begin{array}{c} 1 \\ \end{array} & \begin{array}{c} 1 \end{array} & \begin{array}{c} 1 \\ \end{array} & \begin{array}{c} 1 \end{array} & \begin{array}{c} 1 \\ \end{array} & \begin{array}{c} 1 \end{array} & \begin{array}{c} 1 \\ \end{array} & \begin{array}{c} 1 $		Hence $\frac{x^2}{4x^2} + \frac{y^2}{2x^2} = 1$
$ = x y \begin{bmatrix} 16 & 0 \\ 0 & \frac{1}{9} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 1. $ $ = 1. $		$\begin{bmatrix} 1 \\ - \end{bmatrix} = \begin{bmatrix} 1 \\ - \end{bmatrix} = \frac{1}{2}$
18If λ is the eigen value of the matrix A , then prove that λ^2 is the eigen value of A^2 . (APR/MAY2019)Solution: If X is the eigen vector of the matrix A corresponding to the eigen value λ , then $AX = \lambda X$. Pre multiply by $A \Rightarrow A^2 X = A (\lambda X)$ $= \lambda(\lambda X)$ $= \lambda(\lambda X)$ $= \lambda^2 X$ Hence, λ^2 is the eigen value of A^2 .(NOV/DEC2019)Solution: We know that, $ A = A^T $.(NOV/DEC2019)Solution: We know that, $ A = A^T $.(NOV/DEC2019)Solution: We know that, $ A = A^T $.(NOV/DEC2019)Solution: We know that, $ A = A^T $.(NOV/DEC2019)Solution: We know that, $ A = A^T $.(NOV/DEC2019)Solution: We know that, $ A = A^T $.(NOV/DEC2019)Solution: We know that, $ A = A^T $.(NOV/DEC2019)Solution: The characteristic polynomial \Rightarrow A and A^T have same characteristic equation. Hence, A and A^T have same characteristic polynomial \Rightarrow A and A^T have same characteristic equation. Hence, A and A^T have same eigen values.20Show that the eigen values of $-3A^{-1}$ are the same as those of $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ Solution: The characteristic equation of A is $\begin{vmatrix} 1-\lambda & 2 \\ 2 & 1-\lambda \end{vmatrix} = 0$ $\lambda^2 - 2\lambda - 3 = 0$ $(\lambda + 1)(\lambda - 3) = 0$ $\therefore \lambda = -1, 3$ are the eigen values of A . Now the eigen values of A^{-1} are $\frac{1}{-1}, \frac{1}{3}$ and hence the eigen values of $-3A^{-1}$ are $3, -1$.PART - B(1)(i) Verify Caley Hamilton theorem for $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}$. Also find adj(A) and A^{-1} . (APR / MAY 18)		$\Rightarrow \begin{bmatrix} x & y \end{bmatrix} \begin{vmatrix} 16 & 0 \\ 0 & \frac{1}{2} \end{vmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 1.$
Solution: If X is the eigen vector of the matrix A corresponding to the eigen value λ , then AX = λ X. Pre multiply by A \Rightarrow A ² X= A (λ X) = $\lambda(AX)$ = $\lambda(\lambda X)$ = $\lambda^2 X$ Hence, λ^2 is the eigen value of A ² . 19 Prove that the matrices A and A ^T have the same Eigen values. (NOV/DEC2019) Solution: We know that, $ A = A^T $. $\therefore A - \lambda I = (A - \lambda I)^T $ = $ (A^T - \lambda I) $ ($\because I = I^T$) \therefore A and A ^T have same characteristic polynomial \Rightarrow A and A ^T have same characteristic equation. Hence, A and A ^T have same eigen values. 20 Show that the eigen values of $-3A^{-1}$ are the same as those of $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ Solution: The characteristic equation of A is $\begin{vmatrix} 1 - \lambda & 2 \\ 2 & 1 - \lambda \end{vmatrix} = 0$ $\lambda^2 - 2\lambda - 3 = 0$ $(\lambda + 1)(\lambda - 3) = 0$ $\therefore \lambda = -1,3$ are the eigen values of A. Now the eigen values of A^{-1} are $\frac{1}{-1}, \frac{1}{3}$ and hence the eigen values of $-3A^{-1}$ are 3, -1. PART - B 1 (i) Verify Caley Hamilton theorem for $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}$. Also find adj(A) and A^{-1} . (APR / MAY 18)	18	If λ is the eigen value of the matrix A, then prove that λ^2 is the eigen value of A ² . (APR/MAY2019)
multiply by $A \Rightarrow A^{2} X = A (\lambda X)$ $= \lambda(A X)$ $= \lambda(A X)$ $= \lambda(X X)$ $= \lambda(X X)$ $= \lambda^{2} X$ Hence, λ^{2} is the eigen value of A^{2} . 19 Prove that the matrices A and A ^T have the same Eigen values. (NOV/DEC2019) Solution: We know that, $ A = A^{T} $. $\therefore A - \lambda I = (A^{-} \lambda I^{T}) $ $= (A^{T} - \lambda I) $ ($\because I = I^{T}$) \therefore A and A ^T have same characteristic polynomial \Rightarrow A and A ^T have same characteristic equation. Hence, A and A ^T have same characteristic polynomial \Rightarrow A and A ^T have same characteristic equation. Hence, A and A ^T have same characteristic polynomial \Rightarrow A and A ^T have same characteristic equation. Hence, A and A ^T have same characteristic polynomial \Rightarrow A and A ^T have same characteristic equation. Hence, A and A ^T have same characteristic polynomial \Rightarrow A and A ^T have same characteristic equation. Hence, A and A ^T have same characteristic polynomial \Rightarrow A and A ^T have same characteristic equation. Hence, A and A ^T have same eigen values. 20 Show that the eigen values of $-3A^{-1}$ are the same as those of $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ Solution: The characteristic equation of A is $\begin{vmatrix} 1-\lambda & 2 \\ 2 & 1-\lambda \end{vmatrix} = 0$ $\lambda^{2} - 2\lambda - 3 = 0$ $(\lambda + 1)(\lambda - 3) = 0$ $\therefore \lambda = -1,3$ are the eigen values of A. Now the eigen values of A^{-1} are $\frac{1}{-1}, \frac{1}{3}$ and hence the eigen values of $-3A^{-1}$ are $3, -1$. PART - B 1 (i) Verify Caley Hamilton theorem for $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}$. Also find adj(A) and A^{-1} . (APR / MAY 18)		Solution : If X is the eigen vector of the matrix A corresponding to the eigen value λ , then AX = λ X. Pre
$= \lambda(AX) = \lambda(\lambda) = \lambda(\lambda) = \lambda(\lambda) = \lambda^{2}X$ Hence, λ^{2} is the eigen value of A^{2} . (NOV/DEC2019) Solution: We know that, $ A = A^{T} $. $\therefore A - \lambda I = (A^{T} - \lambda I)^{T} = (A^{T} - \lambda I) (\because I = I^{T})$ $\therefore A \text{ and } A^{T} \text{ have same characteristic polynomial \Rightarrow A \text{ and } A^{T} \text{ have same characteristic equation.} Hence, A and A^{T} have same characteristic polynomial \Rightarrow A and A^{T} have same characteristic equation.Hence, A and A^{T} have same characteristic polynomial \Rightarrow A and A^{T} have same characteristic equation.Hence, A and A^{T} have same eigen values.20 Show that the eigen values of -3A^{-1} are the same as those of A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}A^{2} - 2\lambda - 3 = 0(\lambda + 1)(\lambda - 3) = 0\therefore \lambda = -1,3 are the eigen values of A.Now the eigen values of A^{-1} are \frac{1}{-1}, \frac{1}{3} and hence the eigen values of -3A^{-1} are 3, -1.PART - B1 (i) Verify Caley Hamilton theorem for A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}. Also find adj(A) and A^{-1}.(APR / MAY 18)$		multiply by $A \Rightarrow A^2 X = A (\lambda X)$
$= A(A, X) \\ = \lambda^{2} X$ Hence, λ^{2} is the eigen value of A^{2} . 19 Prove that the matrices A and A^T have the same Eigen values. (NOV/DEC2019) Solution: We know that, $ A = A^{T} $. $\therefore A - \lambda I = (A^{T} - \lambda I^{T}) \\ = (A^{T} - \lambda I) (\because I = I^{T})$ \therefore A and A ^T have same characteristic polynomial \Rightarrow A and A ^T have same characteristic equation. Hence, A and A ^T have same characteristic polynomial \Rightarrow A and A ^T have same characteristic equation. Hence, A and A ^T have same characteristic polynomial \Rightarrow A and A ^T have same characteristic equation. Hence, A and A ^T have same characteristic polynomial \Rightarrow A and A ^T have same characteristic equation. Hence, A and A ^T have same eigen values. 20 Show that the eigen values of $-3A^{-1}$ are the same as those of $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ 3 Solution: The characteristic equation of A is $\begin{vmatrix} 1 - \lambda & 2 \\ 2 & 1 - \lambda \end{vmatrix} = 0$ $\lambda^{2} - 2\lambda - 3 = 0$ $(\lambda + 1)(\lambda - 3) = 0$ $\therefore \lambda = -1, 3$ are the eigen values of A. Now the eigen values of A^{-1} are $\frac{1}{-1}, \frac{1}{3}$ and hence the eigen values of $-3A^{-1}$ are $3, -1$. PART - B 1 (i) Verify Caley Hamilton theorem for $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}$. Also find adj(A) and A^{-1} . (APR / MAY 18)		$=\lambda(AX)$
$ -A A $ Hence, λ^{2} is the eigen value of A^{2} . 19 Prove that the matrices A and A^{T} have the same Eigen values. (NOV/DEC2019) Solution: We know that, $ A = A^{T} $. $\therefore A - \lambda I = (A - \lambda I)^{T} $ $= (A^{T} - \lambda I) $ ($\because I = I^{T}$) \therefore A and A^{T} have same characteristic polynomial \Rightarrow A and A^{T} have same characteristic equation. Hence, A and A^{T} have same characteristic polynomial \Rightarrow A and A^{T} have same characteristic equation. Hence, A and A^{T} have same eigen values. 20 Show that the eigen values of $-3A^{-1}$ are the same as those of $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ Solution: The characteristic equation of A is $\begin{vmatrix} 1 - \lambda & 2 \\ 2 & 1 - \lambda \end{vmatrix} = 0$ $\lambda^{2} - 2\lambda - 3 = 0$ $(\lambda + 1)(\lambda - 3) = 0$ $\therefore \lambda = -1,3$ are the eigen values of A. Now the eigen values of A^{-1} are $\frac{1}{-1}, \frac{1}{3}$ and hence the eigen values of $-3A^{-1}$ are $3, -1$. PART - B 1 (i) Verify Caley Hamilton theorem for $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}$. Also find adj(A) and A^{-1} . (APR / MAY 18)		$= \lambda(\lambda X) \\ = \lambda^2 X$
19Prove that the matrices A and A ^T have the same Eigen values. (NOV/DEC2019)Solution: We know that, $ A = A^T $. $(A \cdot A I)^T $ $= (A \cdot A I)^T $ $= (A \cdot A I)^T $ $= (A^T - \lambda I^T) $ $= (A^T - \lambda I) $ ($\because I = I^T$) \therefore A and A ^T have same characteristic polynomial \Rightarrow A and A ^T have same characteristic equation.Hence, A and A ^T have same characteristic polynomial \Rightarrow A and A ^T have same characteristic equation.Hence, A and A ^T have same characteristic polynomial \Rightarrow A and A ^T have same characteristic equation.Hence, A and A ^T have same characteristic polynomial \Rightarrow A and A ^T have same characteristic equation.Hence, A and A ^T have same eigen values.20Show that the eigen values of $-3A^{-1}$ are the same as those of $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ Solution: The characteristic equation of A is $\begin{vmatrix} 1-\lambda & 2 \\ 2 & 1-\lambda \end{vmatrix} = 0$ $\lambda^2 - 2\lambda - 3 = 0$ $(\lambda + 1)(\lambda - 3) = 0$ $\therefore \lambda = -1, 3$ are the eigen values of A.Now the eigen values of A^{-1} are $\frac{1}{-1}, \frac{1}{3}$ and hence the eigen values of $-3A^{-1}$ are $3, -1$.PART - B1(i) Verify Caley Hamilton theorem for $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}$. Also find adj(A) and A^{-1} .(APR / MAY 18)		Hence, λ^2 is the eigen value of A^2 .
Solution: We know that, $ \mathbf{A} = \mathbf{A}^{T} $. $\therefore \mathbf{A} - \lambda I = (\mathbf{A} - \lambda I)^{T} $ $= (\mathbf{A}^{T} - \lambda I)^{T} $ $= \mathbf{A}^{T} - \lambda I = (\mathbf{A}^{T} - \lambda I)^{T} $ \therefore A and \mathbf{A}^{T} have same characteristic polynomial \Rightarrow A and \mathbf{A}^{T} have same characteristic equation. Hence, A and \mathbf{A}^{T} have same eigen values. 20 Show that the eigen values of $-3A^{-1}$ are the same as those of $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ Solution: The characteristic equation of A is $\begin{vmatrix} 1 - \lambda & 2 \\ 2 & 1 - \lambda \end{vmatrix} = 0$ $\lambda^{2} - 2\lambda - 3 = 0$ $(\lambda + 1)(\lambda - 3) = 0$ $\therefore \lambda = -1,3$ are the eigen values of A. Now the eigen values of A^{-1} are $\frac{1}{-1}, \frac{1}{3}$ and hence the eigen values of $-3A^{-1}$ are $3, -1$. PART - B 1 (i) Verify Caley Hamilton theorem for $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}$. Also find adj(A) and A^{-1} . (APR / MAY 18)	19	Prove that the matrices A and A ^T have the same Eigen values.(NOV/DEC2019)
$\therefore \mathbf{A} - \lambda I = (\mathbf{A} - \lambda I)^{T} $ $= (\mathbf{A}^{T} - \lambda I^{T}) $ $= A^{T} - \lambda I (\because I = I^{T})$ $\therefore \text{ A and } \mathbf{A}^{T} \text{ have same characteristic polynomial } \Rightarrow \text{ A and } \mathbf{A}^{T} \text{ have same characteristic equation.}$ Hence, A and A ^T have same eigen values. 20 Show that the eigen values of $-3A^{-1}$ are the same as those of $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ Solution: The characteristic equation of A is $\begin{vmatrix} 1 - \lambda & 2 \\ 2 & 1 - \lambda \end{vmatrix} = 0$ $\lambda^{2} - 2\lambda - 3 = 0$ $(\lambda + 1)(\lambda - 3) = 0$ $\therefore \lambda = -1, 3 \text{ are the eigen values of A.}$ Now the eigen values of A^{-1} are $\frac{1}{-1}, \frac{1}{3}$ and hence the eigen values of $-3A^{-1}$ are $3, -1$. PART - B (i) Verify Caley Hamilton theorem for $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}$. Also find adj(A) and A^{-1} .		Solution: We know that, $ \mathbf{A} = \mathbf{A}^{\mathrm{T}} $.
$= \left \left(A^{T} - \lambda I^{T} \right) \right $ $= A^{T} - \lambda I (\because I = I^{T})$ $\therefore A \text{ and } A^{T} \text{ have same characteristic polynomial } \Rightarrow A \text{ and } A^{T} \text{ have same characteristic equation.}$ Hence, A and A ^T have same eigen values. 20 Show that the eigen values of $-3A^{-1}$ are the same as those of $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ Solution: The characteristic equation of A is $\begin{vmatrix} 1-\lambda & 2 \\ 2 & 1-\lambda \end{vmatrix} = 0$ $\lambda^{2} - 2\lambda - 3 = 0$ $(\lambda + 1)(\lambda - 3) = 0$ $\therefore \lambda = -1,3$ are the eigen values of A. Now the eigen values of A^{-1} are $\frac{1}{-1}, \frac{1}{3}$ and hence the eigen values of $-3A^{-1}$ are $3, -1$. PART - B (i) Verify Caley Hamilton theorem for $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}$. Also find adj(A) and A^{-1} . (APR / MAY 18)		$\therefore \mathbf{A} - \lambda I = (\mathbf{A} - \lambda I)^{T} $
$= A^{T} - \lambda I\rangle (\because I = I^{T})$ $\therefore \text{ A and } A^{T} \text{ have same characteristic polynomial } \Rightarrow \text{ A and } A^{T} \text{ have same characteristic equation.}$ Hence, A and A ^T have same eigen values. 20 Show that the eigen values of $-3A^{-1}$ are the same as those of $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ Solution: The characteristic equation of A is $\begin{vmatrix} 1-\lambda & 2 \\ 2 & 1-\lambda \end{vmatrix} = 0$ $\lambda^{2} - 2\lambda - 3 = 0$ $(\lambda + 1)(\lambda - 3) = 0$ $\therefore \lambda = -1, 3$ are the eigen values of A. Now the eigen values of A^{-1} are $\frac{1}{-1}, \frac{1}{3}$ and hence the eigen values of $-3A^{-1}$ are $3, -1$. PART - B (i) Verify Caley Hamilton theorem for $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}$. Also find adj(A) and A^{-1} . (APR / MAY 18)		$=\left \left(\mathbf{A}^{\mathrm{T}}-oldsymbol{\lambda}I^{T} ight) ight $
$\therefore \text{ A and } A^{T} \text{ have same characteristic polynomial} \Rightarrow \text{ A and } A^{T} \text{ have same characteristic equation.} \\ \text{Hence, A and } A^{T} \text{ have same eigen values.} \\ \textbf{20} \textbf{Show that the eigen values of } -3A^{-1} \text{ are the same as those of } A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \\ \textbf{Solution: The characteristic equation of } A \text{ is } \begin{vmatrix} 1-\lambda & 2 \\ 2 & 1-\lambda \end{vmatrix} = 0 \\ \lambda^{2} - 2\lambda - 3 = 0 \\ (\lambda + 1)(\lambda - 3) = 0 \\ \therefore \lambda = -1, 3 \text{ are the eigen values of } A \text{ .} \\ \text{Now the eigen values of } A^{-1} \text{ are } \frac{1}{-1}, \frac{1}{3} \text{ and hence the eigen values of } -3A^{-1} \text{ are } 3, -1. \\ \textbf{PART - B} \\ \textbf{1} \textbf{(i) Verify Caley Hamilton theorem for } A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix} \text{ . Also find adj}(A) \text{ and } A^{-1}. \\ \textbf{(APR / MAY 18)} \\ \textbf{(APR / MAY 18)} \end{cases}$		$= A^T - \lambda I) \qquad (\because I = I^T)$
20Show that the eigen values of $-3A^{-1}$ are the same as those of $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ Solution: The characteristic equation of A is $\begin{vmatrix} 1-\lambda & 2 \\ 2 & 1-\lambda \end{vmatrix} = 0$ $\lambda^2 - 2\lambda - 3 = 0$ $(\lambda + 1)(\lambda - 3) = 0$ $\therefore \lambda = -1, 3$ are the eigen values of A.Now the eigen values of A^{-1} are $\frac{1}{-1}, \frac{1}{3}$ and hence the eigen values of $-3A^{-1}$ are $3, -1$.PART - B(i) Verify Caley Hamilton theorem for $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}$. Also find $adj(A)$ and A^{-1} .(APR / MAY 18)		\therefore A and A ^T have same characteristic polynomial \Rightarrow A and A ^T have same characteristic equation. Hence, A and A ^T have same eigen values.
Solution: The characteristic equation of A is $\begin{vmatrix} 1-\lambda & 2\\ 2 & 1-\lambda \end{vmatrix} = 0$ $\lambda^2 - 2\lambda - 3 = 0$ $(\lambda + 1)(\lambda - 3) = 0$ $\therefore \lambda = -1,3$ are the eigen values of A. Now the eigen values of A^{-1} are $\frac{1}{-1}, \frac{1}{3}$ and hence the eigen values of $-3A^{-1}$ are $3, -1$. PART - B (i) Verify Caley Hamilton theorem for $A = \begin{pmatrix} 1 & 1 & 3\\ 1 & 3 & -3\\ -2 & -4 & -4 \end{pmatrix}$. Also find adj(A) and A^{-1} . (APR / MAY 18)	20	Show that the eigen values of $-3A^{-1}$ are the same as those of $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$
$\lambda^{2} - 2\lambda - 3 = 0$ $(\lambda + 1)(\lambda - 3) = 0$ $\therefore \ \lambda = -1,3 \text{ are the eigen values of } A.$ Now the eigen values of A^{-1} are $\frac{1}{-1}, \frac{1}{3}$ and hence the eigen values of $-3A^{-1}$ are $3, -1.$ PART - B $I \qquad (i) \text{ Verify Caley Hamilton theorem for } A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}. \text{ Also find adj}(A) \text{ and } A^{-1}.$ $(APR / MAX 18)$		Solution: The characteristic equation of A is $\begin{vmatrix} 1-\lambda & 2\\ 2 & 1-\lambda \end{vmatrix} = 0$
$(\lambda+1)(\lambda-3) = 0$ $\therefore \ \lambda = -1,3 \text{ are the eigen values of } A.$ Now the eigen values of A^{-1} are $\frac{1}{-1}, \frac{1}{3}$ and hence the eigen values of $-3A^{-1}$ are $3, -1.$ PART - B $(i) \text{ Verify Caley Hamilton theorem for } A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}. \text{ Also find adj}(A) \text{ and } A^{-1}.$ $(APR / MAY 18)$		$\lambda^2 - 2\lambda - 3 = 0$
$\therefore \lambda = -1,3 \text{ are the eigen values of } A.$ Now the eigen values of A^{-1} are $\frac{1}{-1}, \frac{1}{3}$ and hence the eigen values of $-3A^{-1}$ are $3, -1$. PART - B (i) Verify Caley Hamilton theorem for $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}$. Also find $adj(A)$ and A^{-1} . (APR / MAY 18)		$(\lambda+1)(\lambda-3)=0$
Now the eigen values of A^{-1} are $\frac{1}{-1}, \frac{1}{3}$ and hence the eigen values of $-3A^{-1}$ are 3, -1. PART - B (i) Verify Caley Hamilton theorem for $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}$. Also find $adj(A)$ and A^{-1} . (APR / MAY 18)		$\therefore \lambda = -1, 3$ are the eigen values of A.
PART - B1(i) Verify Caley Hamilton theorem for $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}$. Also find $adj(A)$ and A^{-1} .(APR / MAY 18)		Now the eigen values of A^{-1} are $\frac{1}{-1}, \frac{1}{3}$ and hence the eigen values of $-3A^{-1}$ are 3, -1.
1 (i) Verify Caley Hamilton theorem for $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}$. Also find $adj(A)$ and A^{-1} . (APR / MAY 18)		PART – B
(-2 -4 -4) (APR / MAY 18)	1	(i) Verify Caley Hamilton theorem for $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ 2 & 4 & 4 \end{pmatrix}$. Also find $adj(A)$ and A^{-1} .
		(-2 -4 -4) (APR / MAV 18)

St. Joseph's Institute of Technology

	$\begin{pmatrix} 1 & 2 & 1 \end{pmatrix}$
2	(i) Use Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$ to express as a linear polynomial
	in $A^6 - 5A^5 + 8A^4 - 2A^3 - 9A^2 - 31A - 36I$.
	(ii) Using Cayley-Hamilton theorem, find the matrix represented by
	$A^{8} - 5A^{7} + 7A^{6} - 3A^{5} + A^{4} - 5A^{3} - 8A^{2} + 2A - I \text{ when } A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}.$
3	(i) Find the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$
	(ii) Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$. Determine the algebraic and geometric multiplicity.
4	(i) The Eigen vectors of a 3×3 real symmetric matrix A corresponding to the eigen values 2,3,6 are (1,0,-
	1) ^T , $(1,1,1)^{T}$ and $(1,-2,1)^{T}$ respectively. Find the matrix A.
	г 1 1 2 1
	(ii) Prove that the eigen vectors of the real symmetric matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ are orthogonal in pairs
5	(i) Diagonalize the matrix $A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$ by means of orthogonal transformation.
	(ii) Show that the matrix $A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$ is diagonalizable, hence find M such that
6	$M^{-1}AM \text{ is a diagonal matrix. Then obtain the matrix } B = A^{-1} + 5A + 3I$ (i) Compute the eigen values and eigen vectors of the following system:
	$10x_1 + 2x_2 + x_3 = \lambda x_1$
	$2x_1 + 10x_2 + x_3 = \lambda x_2$
	$2x_1 + x_2 + 10x_3 = \lambda x_3$
	(ii) Verify that the eigen vector of the real symmetric matrix $A = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix}$ are
	orthogonal to each other $10x^2 + 2y^2 + 5z^2 + 6yz = 10yz = 4yz$
7	Reduce the quadratic form $10x + 2y + 5z + 0yz - 10xz - 4xy$ to canonical form by orthogonal
	reduction. Also find its nature.

St. Joseph's Institute of Technology

Dept. of Mathematics

Sub. Name & Code: MA3151_Matrices and Calculus

	Reduce the quadratic form $2x^2 + 5y^2 + 3z^2 + 4xy$ to canonical form through orthogonal		
8	transformation. Find also its nature. (APR / MAY 18)		
9	Reduce the quadratic form $2xy + 2yz + 2xz$ to canonical form by orthogonal reduction. Also find its		
	nature.		
10	(i) An elastic membrane in the x_1x_2 -plane with boundary circle $x_1^2 + x_2^2 = 1$ is stretched so		
	that a point P: (x_1, x_2) goes over into the point Q: (y_1, y_2) given by		
	$\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} = \mathbf{A}\mathbf{x} = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \text{ in components, } \begin{aligned} \mathbf{y}_1 &= 5\mathbf{x}_1 + 3\mathbf{x}_2 \\ \mathbf{y}_2 &= 3\mathbf{x}_1 + 5\mathbf{x}_2 \end{aligned}$		
	Find the principal directions, that is, the directions of the position vector x of P for		
	which the direction of the position vector y of Q is the same or exactly opposite. What shape does the boundary circle take under this deformation?		
	shape does the boundary circle take under this deformation.		
	(ii) Find the characteristic equation of the matrix $A = \begin{vmatrix} -1 & 2 & -1 \end{vmatrix}$ and hence determine		
	$\begin{bmatrix} 1 & -1 & 2 \end{bmatrix}$ its inverse.		
	An elastic membrane in the x_1x_2 -plane with boundary $x_1^2 + x_2^2 = 1$ is stretched so that point		
11	$P(x_1, x_2)$ goes over into point $O(x_1, x_2)$ such that $y = Ax$ with $A = \frac{3}{2} \begin{bmatrix} 2 & 1 \end{bmatrix}$. Find the principal		
11	directions (Figen vector) and corresponding factors of extension or contraction of the elastic		
	deformation (eigenvalues). Sketch the shape of the deformed membrane.		
	UNIT II – DIFFERENTIAL CALCULUS		
1	PART – A		
L	Find the domain of the function $f(x) = \sqrt{3} - x - \sqrt{2} + x$. (NOV/DEC 2018)		
	Solution:		
	The given function is $f(x) = \sqrt{3-x} - \sqrt{2} + x$.		
	Since the square root of a negative number is not defined (as a real number), the domain of $f(x)$ consist		
	of all the values of x such that $3 - x \ge 0$ and $x + 2 \ge 0$. This is equivalent to $x \le 3$ and $x \ge -2$, so the		
	domain of the given function is $[-2,3]$.		
2	Find the domain and range and sketch the graph of the function $f(x) = \sqrt{4-x^2}$		
	Solution:		
	Given $y = \sqrt{4 - x^2}$		
	$\therefore y^2 = 4 - x^2$		
	$\Rightarrow x^2 + y^2 = 4$		
	which represents a circle with centre at origin $(0,0)$ and radius 2.		
	$\int \frac{1}{\sqrt{2}} = 0$ is a limit of $\int \frac{1}{\sqrt{2}} = 0$ of $\int \frac{1}{\sqrt{2}} = 0$		
	Since $y = \sqrt{4-x} \ge 0$, the desired graph is the upper half of the circle.		
	Since $y = \sqrt{4-x} \ge 0$, the desired graph is the upper half of the circle. The domain is the interval $-2 \le x \le 2$ and the range is the interval $0 \le y \le 2$.		
3	Since $y = \sqrt{4-x} \ge 0$, the desired graph is the upper half of the circle. The domain is the interval $-2 \le x \le 2$ and the range is the interval $0 \le y \le 2$. Sketch the graph of the absolute value function $f(x) = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$.		
3	Since $y = \sqrt{4-x} \ge 0$, the desired graph is the upper half of the circle. The domain is the interval $-2 \le x \le 2$ and the range is the interval $0 \le y \le 2$. Sketch the graph of the absolute value function $f(x) = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$. Solution:		

St. Joseph's Institute of Technology

Sub. Name & Code: MA3151_Matrices and Calculus

Dept. of Mathematics

Academic Year: 2021-2022

St. Joseph's Institute of Technology

Sub	Name & Code: MA3151_Matrices and Calculus Dept. of Mathematics Academic Year: 2021-2022
	$\therefore \lim_{x \to 4^{-}} f(x) = \lim_{x \to 4^{-}} (8 - 2x) = 8 - 2(4) = 0$
	$\therefore \lim_{x \to 4^+} f(x) = \lim_{x \to 4^-} f(x) = 0$
	\therefore the limit exists, and $\lim_{x\to 4} f(x) = 0$.
8	Show that the function $f(x) = 4 - \sqrt{4 - x^2}$ is continuous in the interval $[-2, 2]$.
	Solution:
	If $-2 < a < 2$, then $\lim_{x \to a} f(x) = \lim_{x \to a} \left(4 - \sqrt{4 - x^2}\right) = 4 - \sqrt{\lim_{x \to a} \left(4 - x^2\right)} = 4 - \sqrt{4 - a^2} = f(a)$
	$\therefore f(x)$ is continuous at a if $-2 < a < 2$.
	Similarly $\lim_{x \to (-2)^+} f(x) = 4 = f(-2)$ and $\lim_{x \to 2^-} f(x) = 4 = f(2)$
	$\therefore f(x)$ is continuous on [-2,2].
	$\begin{bmatrix} a+bx, x < 1 \end{bmatrix}$
9	Suppose $f(x) = \begin{cases} 4, \\ x = 1 \text{ and if } \lim f(x) = f(1) \end{bmatrix}$. What are possible values of <i>a</i> and <i>b</i> .
	b-ax, x > 1
	$\begin{pmatrix} a+bx, x < 1 \end{pmatrix}$
	Solution: The given function is $f(x) = \begin{cases} 4, \\ x = 1 \end{cases}$
	b-ax, x>1
	Now $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (a+bx) = a+b$
	and $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (b - ax) = b - a$ also $f(1) = 4$
	It is given that $\lim_{x \to 1} f(x) = f(1)$
	$\therefore \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} f(x) = f(1)$
	$\Rightarrow a+b=4 \text{ and } b-a=4$
	On solving these two equations, we obtain $a=0$, $b=4$.
10	Thus, the respective possible values of <i>a</i> and <i>b</i> are 0 and 4. (NOV (DEC 2010)
10	If $f(x) = xe$ then find the expression for $f(x)$. (NOV/DEC 2019)
	Given $f(x) = xe^x$
	$f'(x) = x(e^{x}) + e^{x}(1) \qquad [\because (uv)' = uv' + vu']$
	$f''(x) = \left[x(e^x) + e^x(1) \right] + e^x$
	$f''(x) = x(e^x) + 2e^x = e^x(x+2).$
11	If $xe^{y} = x - y$, then find $\frac{dy}{dx}$ by implicit differentiation (NOV/DEC 2020)
	Solution:
	Given $xe^y = x - y$
	Let $f(x, y) = xe^y - x + y$
	$\int \mathbf{B} y$ formula $dy - f_x$
	By formula $\frac{dx}{dx} = -\frac{1}{f_y}$

St. Joseph's Institute of Technology

Page No: 9

Sub	. Name & Code: MA3151_Matrices and Calculus Dept. of Mathematics Academic Year: 2021-2022
	$f_x = e^y - 1$ & $f_y = xe^y + 1$
	$dy (e^{y} - 1)$
	$\frac{1}{dx} = -\frac{1}{xe^y + 1}$
	$=\frac{1-e^{y}}{2}$.
	$(1+xe^{y})$
12	If $f(x) = \sqrt{x}$, then find the derivative of $f(x)$. Also state the domain of $f'(x)$.
	Solution: f(x+h) - f(x)
	$f'(x) = \lim_{h \to 0} \frac{f'(x) - f'(x)}{h}$
	$=\lim_{h\to 0}\frac{\sqrt{x+h}-\sqrt{x}}{h}\qquad \qquad \left(\because f(x)=\sqrt{x} \Longrightarrow f(x+h)=\sqrt{x+h}\right)$
	$= \lim_{h \to 0} \left(\frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}} \right)$
	$= \lim_{h \to 0} \left(\frac{(x+h) - x}{h(\sqrt{x+h} + \sqrt{x})} \right)$
	$= \lim_{h \to 0} \left(\frac{h}{h\left(\sqrt{x+h} + \sqrt{x}\right)} \right) = \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$
	We see that $f'(x)$ exists only if $x > 0$, so the domain of $f'(x)$ is $(0,\infty)$. This is slightly smaller than
	the domain of $f(x)$, which is $[0,\infty)$.
13	Find $\frac{dy}{dx}$ if $\sin(x+y) = y^2 \cos x$
	Solution: Given $\sin(x+y) = y^2 \cos x$
	Diff. w.r.to x, we get,
	$\cos(x+y)(1+y) = y^2(-\sin x) + (\cos x)(2yy)$
	$\cos(x+y) + \cos(x+y)y' = -y^2\sin x + 2yy'\cos x$
	$\cos(x+y) + y^2 \sin x = (2y \cos x - \cos(x+y))y'$
	$\therefore y' = \frac{\cos(x+y) + y^2 \sin x}{2y \cos x - \cos(x+y)}.$
14	Find $\frac{dy}{dx}$ if $x = at^2$, $y = 2at$
	Solution: dy = dy/dt
	Since $\frac{dy}{dx} = \frac{dy}{dx} / \frac{dt}{dt}$
	$x = at^2, y = 2at$
	$\frac{dx}{dt} = 2at, \frac{dy}{dt} = 2a$

St. Joseph's Institute of Technology

Page No: 10

Sub	. Name & Code: MA3151_Matrices and Calculus Dept. of Mathematics Academic Year: 2021-2022
	dy dy dt
	$\frac{dx}{dx} = \frac{dx}{dx} \frac{dt}{dt}$
	$=\frac{2a}{2}=\frac{1}{2}$
15	$\frac{2at}{2at} t$ Find the critical points of $y = 5r^3 - 6r$ (APR/MAV 2019)
15	Solution: A critical point of a function $y = f(x)$ is a point <i>c</i> in the domain of $f(x)$ such that either
	y'(c) = 0 or $y'(c)$ does not exist.
	$y' = 15x^2 - 6 = 0.$
	$15x^2 = 6$
	$x^{2} = \frac{6}{15} = \frac{2}{5} \implies x = \pm \sqrt{\frac{2}{5}}.$
16	Find an equation of the tangent line to the curve $y = \frac{e^x}{1+x^2}$ at the point $\left(1, \frac{e}{2}\right)$
	Solution: Given $y = \frac{e^x}{1+x^2}$
	$\therefore \frac{dy}{dx} = \frac{(1+x^2)\frac{d}{dx}(e^x) - e^x\frac{d}{dx}(1+x^2)}{2} = \frac{(1+x^2)e^x - e^x(2x)}{2} = \frac{e^x(1-x)^2}{2}$
	$dx \qquad (1+x^2)^2 \qquad (1+x^2)^2 \qquad (1+x^2)^2$
	The slope of the tangent line at $\left(1, \frac{e}{2}\right)$ is $\left.\frac{dy}{dx}\right _{x=1} = 0$
	This means that the tangent line at $\left(1, \frac{e}{2}\right)$ is horizontal and its equation is given by
	$y - y_1 = m(x - x_1)$
	$y - \frac{e}{2} = 0(x - 1)$
	$y - \frac{e}{2} = 0$
	$y = \frac{e}{2}.$
17	Find the points on the curve $y = x^4 - 6x^2 + 4$ where the tangent line is horizontal.
	Solution: Horizontal tangents occur where the first derivative of the function <i>v</i> is zero.
	Given $y = x^4 - 6x^2 + 4$
	$\therefore \frac{dy}{dx} = 4x^3 - 12x = 0$
	$4x(x^2-3)=0$
	$x = 0, \ x^2 - 3 = 0 \Longrightarrow x = \pm \sqrt{3}$
	Therefore the given curve has horizontal tangents when $x = 0$, $x = \sqrt{3}$, $x = -\sqrt{3}$.
	The corresponding points are $(0,4), (\sqrt{3},-5), (-\sqrt{3},-5)$.
18	Find the equation of the tangent line to the curve $y = x^4 + 2x^2 - x$ at the point (1,2)
	(NOV/DEC 2020)

St. Joseph's Institute of Technology

Sub. Name & Code: MA3151_Matrices and Calculus

Dept. of Mathematics

Academic Year: 2021-2022

	Colution
	The equation of tangent line at (x_1, y_1) is given by $(y - y_1) = m(x - x_1)$
	$Given y = x^4 + 2x^2 - x$
	$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = 4x^3 + 4x - 1$
	at (1,2), $\frac{dy}{dx} = 4(1)^3 + 4(1) - 1 = 7$
	: Equation of tangent line is $y - 2 = 7(x - 1)$
	\Rightarrow y = 7x - 5.
19	State the extreme value theorem.
	Solution:
	If $f(x)$ is continuous on a closed interval $[a,b]$, then $f(x)$ attains an absolute maximum value $f(c)$
	and an absolute minimum value $f(d)$ at some points c and d in $[a,b]$.
20	State Fermat's theorem.
	Solution:
	If $f(x)$ has a local maximum or minimum at c , and if $f'(c)$ exists, then $f'(c) = 0$.
	PART – B
1	(i) A function $f(x)$ is defined by $f(x) = \begin{cases} 1-x, & \text{if } x \le -1 \\ x^2, & \text{if } x > -1 \end{cases}$. Evaluate $f(-2), f(-1)$ and
	$f\left(0 ight)$ and sketch the graph.
	(ii) If $f(x) = \begin{cases} x^2 + 1, & \text{if } x < 1 \\ (x - 2)^2, & \text{if } x \ge 1 \end{cases}$, (i) Find $\lim_{x \to 1^-} f(x)$ and $\lim_{x \to 1^+} f(x)$, (ii) Does $\lim_{x \to 1} f(x)$
	exists.
	(iii) Show that $\lim_{x\to 0} x^3 \sin\left(\frac{1}{x}\right) = 0$.
2	(i) Find the values of a and b that make f (x) continuous on $(-\infty,\infty)$
	$\frac{x-8}{x-2}, \qquad if x < 2$
	$f(x) = \begin{cases} ax^2 - bx + 3, & \text{if } 2 \le x < 3 \end{cases}$ (NOV/DEC 2018)
	$2x - a + b, if x \ge 3$
	(ii) For what value of the constant b, is the function $f(x)$ continuous on $(-\infty,\infty)$ if
	$\int hr^2 + 2r$ $r < 2$
	$f(x) = \begin{cases} bx + 2x, & x < 2 \\ x^3 - bx, & x \ge 2 \end{cases}.$ (APR/MAY 2019)
3	(i) The equation of motion of a particle is $s = t^3 - 3t$, where s is in meters and t is in seconds. Find (a) the velocity and acceleration as functions of t, (b) the acceleration after 2s and (c) the acceleration when the velocity is zero.
	(ii) Show that the function $f(x) = x - 6 $ is not differentiable at 6. Find a formula for first
	$\int \left[x - y \right] = \left[x - y \right]$ is not uncertained at 0. Find a formula for first derivative of f(y) and elected its create
	derivative of <i>f(x)</i> and sketch its graph. (NOV/DEC 2020)

St. Joseph's Institute of Technology

Sub. Name & Code: MA3151_Matrices and Calculus

Dept. of Mathematics

Academic Year: 2021-2022

4	(i) If $f(x) = \frac{1-x}{2+x}$ then, find the equation for $f'(x)$ using the concept of deri	vatives.
		(NOV/DEC 2019)
	(ii) Find $\frac{dy}{dx}$ if $y = x^2 e^{2x} (x^2 + 1)^4$.	(APR/MAY 2019)
5	(i) Find the derivative of $f(x) = \cos^{-1}\left(\frac{b + a\cos x}{a + b\cos x}\right)$.	(NOV/DEC 2018)
	(ii) Find y' if $\tan(x-y) = \frac{y}{1+x^3}$.	(NOV/DEC 2018)
6	(i) Find the derivative of $f(x) = \tanh^{-1} \left[\tan \frac{x}{2} \right]$.	(NOV/DEC 2019)
	(ii) If $f(x) = \frac{1 - \sec x}{\tan x}$, then find the first derivative of $f(x)$.	
	(iii) Differentiate $f(x) = \log_{10}(2 + \sin x)$	
	(iv) Find $\frac{dy}{dx}$ if $y = \sqrt{x} \log x$	
7	(i) Use the intermediate value theorem to show that there is a root of the equivalent in the interval (0,1). (NOV/DE	$\sqrt[3]{x} = 1 - x$ EC 2020)
	(ii) Find the absolute maximum and absolute minimum values of $f(x)$ on the second se	he given interval
	(i) $f(x) = 3x^4 - 4x^3 - 12x^2 + 1$, [-2,3],	
	$(ii) f(x) = 2\cos x - \sin 2x, \qquad \left[0, \frac{\pi}{2}\right]$	
8	For the function $f(x) = 2x^3 + 3x^2 - 36x$ (APR/MAY 2019)	& (NOV/DEC 2019)
	(i) Find the intervals on which it is increasing and decreasing.	
	(ii) Find the local maxima and minima values of $f(x)$.	
	(iii) Find the intervals of concavity and the inflection points.	
9	For the function $f(x) = 2 + 2x^2 - x^4$, find the intervals of increase or decrea	ase, local maximum
10	and minimum values, the intervals of concavity and the inflection points.	concevity and the
10	inflection points of a function $f(x) = x^3 - 3x^2 - 12x$, Also sketch the graph of	that satisfies all the
	above conditions.	NOV/DEC2020)
	UNIT III – FUNCTIONS OF SEVERAL VARIA BLES PART – A	
_	$\partial u \partial u \partial u$	
1	If $u = xy - 2yz + z^{-}$, then find the value of $\frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z}$.	
	Solution:	
	$u = xy - 2yz + z^2$	
	$\frac{\partial u}{\partial x} = y; \frac{\partial u}{\partial y} = x - 2z; \frac{\partial u}{\partial z} = -2y + 2z;$	
	$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = y + x - 2z - 2y + 2z = x - y$	

St. Joseph's Institute of Technology

Page No: 13

Sub. Name & Code: MA3151_Matrices and Calculus

Dept. of Mathematics

Academic Year: 2021-2022

2	If $z = x^2 - 3xy^2$, find the value of $3x \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}$
	Solution: Given $z = x^2 - 3xy^2$
	$\frac{\partial z}{\partial x} = 2x - 3y^2 ; \frac{\partial z}{\partial y} = -6xy$
	$\frac{\partial^2 z}{\partial x^2} = 2; \qquad \frac{\partial^2 z}{\partial y^2} = -6x$
	$3x\frac{\partial^2 z}{\partial x^2} = 6x$
	$3x\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 6x - 6x = 0$
3	Find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ when $u(x, y) = x^y + y^x$ (NOV/DEC 2020)
	Solution: Given $u(x, y) = x^y + y^x$
	$\frac{\partial u}{\partial x} = yx^{y-1} + y^x \log(y) \qquad \qquad \left(\because \frac{d}{dx} \left(a^x \right) = a^x \log a, \text{ but } \frac{d}{dx} \left(x^a \right) = ax^{a-1} \right)$
	$\frac{\partial u}{\partial y} = x^y \log(x) + x y^{x-1}$
4	Verify the Euler's theorem for the function $u = x^2 + y^2 + 2xy$. (NOV/DEC 2019)
	Solution:
	Euler's theorem: If $u(x, y)$ is homogeneous function of degree n in x and y then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$
	$u(x, y) = x^2 + y^2 + 2xy$
	$u(x, y) = x^{2} + y^{2} + 2xy \Longrightarrow u(tx, ty) = (tx)^{2} + (ty)^{2} + 2(tx)(ty)$
	$u(tx,ty) = t^{2}x^{2} + t^{2}y^{2} + 2t^{2}xy = t^{2}(x^{2} + y^{2} + 2xy) i.e t^{2}u$
	\therefore The degree of $u(x, y) = x^2 + y^2 + 2xy$ is 2. \therefore Degree = n = 2.
	\therefore <i>u</i> is homogeneous function of 2 nd degree in <i>x</i> and <i>y</i> , by Euler's theorem we have $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2u$
	$(i.e) x \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + y \frac{\partial \mathbf{u}}{\partial \mathbf{y}} = 2\left(x^2 + y^2 + 2xy\right)$
	Now, $u = x^2 + y^2 + 2xy$
	$x\frac{\partial u}{\partial x} = x(2x+2y) = 2x^2 + 2xy , y\frac{\partial u}{\partial y} = y(2y+2x) = 2y^2 + 2xy$
	$L.H.S = x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 2x^2 + 2xy + 2y^2 + 2xy = 2x^2 + 2y^2 + 4xy = 2(x^2 + y^2 + 2xy) = R.H.S$
5	If $z = xf\left(\frac{y}{x}\right)$, then find the value of $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y}$ using Euler's theorem (NOV / DEC 2020)

St. Joseph's Institute of Technology

Dept. of Mathematics

Sub. Name & Code: MA3151_Matrices and Calculus

Academic Year: 2021-2022

	i.e., $z(x, y) = xf\left(\frac{y}{x}\right)$
	$z(tx, ty) = txf\left(\frac{ty}{tx}\right) = txf\left(\frac{y}{x}\right) = t.z(x, y)$
	$z(tx, ty) = t^{1}z(x, y)$
	\therefore z(x, y) is a homogeneous function of degree 1 in x and y. \therefore Degree = n = 1.
	Euler's theorem: If $u(x, y)$ is homogeneous function of degree n in x and y then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$.
	\therefore z is a homogeneous function of 1 st degree in x and y, by Euler's theorem , we have
	$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 1(z) = z$
6	If $u = \cos^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = -\frac{1}{2}\cot u$.
	Solution: $u = \cos^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right) \Rightarrow \cos u = \frac{x+y}{\sqrt{x}+\sqrt{y}} = f(x,y)$
	$f(x, y) = \frac{x + y}{\sqrt{x} + \sqrt{y}}$
	$f(tx,ty) = \frac{tx+ty}{\sqrt{tx}+\sqrt{ty}} = \frac{t(x+y)}{\sqrt{t}\left(\sqrt{x}+\sqrt{y}\right)} = \frac{\sqrt{t}(x+y)}{\left(\sqrt{x}+\sqrt{y}\right)} = t^{1/2}f(x,y)$
	$f = \cos u$ is a homogeneous function of degree $n = \frac{1}{2}$ in x and y.
	Therefore, by Euler's theorem we get,
	$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = nf$
	$x\frac{\partial(\cos u)}{\partial x} + y\frac{\partial(\cos u)}{\partial y} = \frac{1}{2}\cos u$
	$x(-\sin u)\frac{\partial u}{\partial x} + y(-\sin u)\frac{\partial u}{\partial y} = \frac{1}{2}\cos u$
	$-\sin u \left[x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \right] = \frac{1}{2} \cos u$
	$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = -\frac{1}{2}\frac{\cos u}{\sin u} = -\frac{1}{2}\cot u$
7	If $u = x^3 + y^3$ and $x = at^2$, $y = 2at$, then find $\frac{du}{dt}$. (APR/MAY 2019)
	Solution: Given $u = x^3 + y^3$ and $x = at^2$, $y = 2at$
	$\frac{du}{dt} = \frac{\partial u}{\partial t} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial t} \cdot \frac{dy}{dt}$
	$\begin{bmatrix} dt & \partial x & dt & \partial y & dt \\ \hline & & 3 & 3 & \\ \hline & & & 3 & 2 & \\ \hline & & & & 2 & \\ \hline & & & & & 2 & \\ \hline & & & & & & 2 & \\ \hline & & & & & & 2 & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$
	$u = x^2 + y^2 \qquad x = at^2 \qquad y = 2at$

St. Joseph's Institute of Technology

Page No: 15

Sub. Name & Code: MA3151_Matrices and Calculus Dept. of Mathematics Academic Year: 2021-2022 $\frac{\partial u}{\partial x} = 3x^2 \quad \left| \begin{array}{c} \frac{\partial u}{\partial y} = 3y^2 \\ \frac{\partial u}{\partial t} = 2at \end{array} \right| \quad \left| \begin{array}{c} \frac{dy}{dt} = 2a \\ \frac{dy}{dt} = 2a \end{array} \right|$ $\frac{du}{dt} = (3x^2)(2at) + (3y^2)(2a)$ $= (3(at^{2})^{2})(2at) + (3)(2at)^{2}(2a) \qquad (:: x = at^{2}, y = 2at)$ $= 6a^{3}t^{5} + 24a^{3}t^{2} = 6a^{3}t^{2}(t^{3} + 4)$ Find $\frac{dy}{dx}$, if $x^3 + y^3 = 6xy$. 8 Solution $x^{3} + y^{3} - 6xy = 0$ Let $f(x, y) = x^3 + y^3 - 6xy$ $f_x = \frac{\partial f}{\partial x} = 3x^2 - 6y; \quad f_y = \frac{\partial f}{\partial y} = 3y^2 - 6x$ $\frac{dy}{dx} = \frac{-f_x}{f_y} = \frac{-(3x^2 - 6y)}{3y^2 - 6x} = \frac{6y - 3x^2}{3y^2 - 6x} = \frac{2y - x^2}{y^2 - 2x}$ What is the derivative of u with respect to x, for $u = x^2 y^3$, where $2\sin x - 3y = 0$? 9 Solution: $2\sin x - 3y = 0$ $2\cos x - 3\frac{dy}{dx} = 0$ $\Rightarrow \frac{dy}{dx} = \frac{2\cos x}{3}$ $\frac{du}{dx} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dx}$ $=2xy^{3}+3x^{2}y^{2}.\frac{2\cos x}{3}$ $= 2xy^3 + 2x^2y^2\cos x$ $=2xy^{2}(y+x\cos x)$ 10 State the properties of Jacobian. (NOV/DEC 2018) Solution: (i) If *u* and *v* are functions of *r* and *s*, *r* and *s* are functions of *x* and *y* then, $\frac{\partial(u,v)}{\partial(r,s)} \frac{\partial(r,s)}{\partial(x,v)} = \frac{\partial(u,v)}{\partial(x,v)}$ (ii) If *u* and *v* are functions of *x* and *y* then, $\frac{\partial(u,v)}{\partial(x,y)}\frac{\partial(x,y)}{\partial(u,v)} = 1$ (i.e) JJ' = 1(iii) If u, v, w are functionally dependent functions of three independent variable x, y, z then $\frac{\partial(u,v,w)}{\partial(u,v,w)} = 0$ $\partial(x, y, z)$ If $x = u^2 - v^2$ and y = 2uv, find the Jacobian of x and y with respect to u and v. 11 (APR/MAY 2019) **Solution:** $x = u^2 - v^2 \Rightarrow \frac{\partial x}{\partial u} = 2u; \quad \frac{\partial x}{\partial v} = -2v \text{ and } y = 2uv \Rightarrow \frac{\partial y}{\partial u} = 2v; \quad \frac{\partial y}{\partial v} = 2u$

St. Joseph's Institute of Technology

Page No: 16

Sub	Name & Code: MA3151_Matrices and Calculus Dept. of Mathematics Academic Year: 2021-2022
	$\frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 2u & -2v \\ 2v & 2u \end{vmatrix} = 4(u^2 + v^2)$
12	If $x = uv$ and $y = \frac{u}{v}$ then find $\frac{\partial(x, y)}{\partial(u, v)}$. (JAN 2018)
	Solution: $x = uv \Rightarrow \frac{\partial x}{\partial u} = v; \frac{\partial x}{\partial v} = u \text{ and } y = \frac{u}{v} \Rightarrow \frac{\partial y}{\partial u} = \frac{1}{v}; \frac{\partial y}{\partial v} = -\frac{u}{v^2}$
	$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} v & u \\ 1 \\ v & \frac{-u}{v^2} \end{vmatrix} = v \left(\frac{-u}{v^2}\right) - u \left(\frac{1}{v}\right) = \frac{-u}{v} - \frac{u}{v} = \frac{-2u}{v}$
13	If $x = r \cos \theta$, $y = r \sin \theta$ then find $\frac{\partial(r, \theta)}{\partial(x, y)}$ (JAN 2018) & (NOV/DEC 2019)
	Solution: $x = r\cos\theta \Rightarrow \frac{\partial x}{\partial r} = \cos\theta; \frac{\partial x}{\partial \theta} = r(-\sin\theta) \text{ and } y = r\sin\theta \Rightarrow \frac{\partial y}{\partial r} = \sin\theta; \frac{\partial y}{\partial \theta} = r\cos\theta$
	$\frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} = r$
	$\therefore \frac{\partial(r,\theta)}{\partial(x,y)} = \frac{1}{\frac{\partial(x,y)}{\partial(r,\theta)}} = \frac{1}{r}$
14	Find Taylor's series expansion of x^y near the point (1,1) up to first degree terms.
	Solution: The Taylor's series expansion is given by $f(x,y) = f(x,y) + \left[f(x,y) + f(x,y) $
	$f(x, y) = f(a,b) + \lfloor (x-a)f_x(a,b) + (y-b)f_y(a,b) \rfloor + \dots$
	$f(x, y) = x^{y}$ $f(1, 1) = 1$
	$f_x(x, y) = yx^{y-1}$ $f_x(1, 1) = 1$
	$f_{y}(x, y) = x^{y} \log x$ $f_{y}(1, 1) = 0$
	f(x, y) = 1 + (x - 1)(1) + (y - 1)(0)
	=1+x-1
	$x^{y} = x$
15	Obtain Taylor's series expansion of e^{x+y} in powers of x and y up to first degree terms.
	Solution: The Taylor's series expansion is given by f(x, y) = f(a, b) + [(x-a)f(a, b) + (y-b)f(a, b)] + (y-b)f(a, b)] + (y-b)f(a, b) = (y-b)f(a, b)f(a, b) = (y-b)f(a, b)f(a, b) = (y-b)f(a, b)f(a, b) = (y-b)f(a, b)f(a, b)f(a, b) = (y-b)f(a, b)f(a, b)f(a
	$\int (x,y) - g^{x+y} = f(0,0) - 1$
	$\frac{\int (x, y) - e^{x}}{\int (x, y) - e^{x+y}} = \frac{\int (0, 0) - 1}{\int (0, 0) - 1}$
	$\int_{x} (x, y) = e^{-x} \int_{x} (0, 0) = 1$
	$\begin{bmatrix} f_{y}(x,y) = e^{-xy} & f_{y}(0,0) = 1 \\ f_{y}(x,y) = e^{-xy} & f_{y}(0,0) = 1 \end{bmatrix}$
	$f(x, y) = f(0, 0) + \lfloor (x - 0) f_x(0, 0) + (y - 0) f_y(0, 0) \rfloor$

St. Joseph's Institute of Technology

Page No: 17

Sub	Name & Code: MA3151_Matrices and Calculus Dept. of Mathematics Academic Year: 2021-2022
	=1+x(1)+y(1)
	$e^{x+y} = 1 + x + y$
16	State the conditions for maxima and minima of $f(x, y)$.
	Solution:
	If $f_x(a,b) = 0$, $f_y(a,b) = 0$ and $f_{xx}(a,b) = A$, $f_{xy}(a,b) = B$, $f_{yy}(a,b) = C$ then
	(i) $f(x, y)$ has maximum value at (a, b) if $AC - B^2 > 0$ and $A < 0$ or $C < 0$
	(ii) $f(x, y)$ has minimum value at (a, b) if $AC - B^2 > 0$ and $A > 0$ or $C > 0$
17	Find the maxima and minima of $f(x, y) = x^2 + y^2 + 6x + 4y + 12$.
	Solution: Given $f(x, y) = x^2 + y^2 + 6x + 4y + 12$
	$f_x = 2x + 6 = 0 \Longrightarrow x = -3; f_y = 2y + 4 = 0 \Longrightarrow y = -2.$
	The stationary point is (-3, -2).
	$A = f_{xx} = 2; B = f_{xy} = 0; C = f_{yy} = 2,$
	$AC - B^2 = 4 > 0$ and $A > 0$.
	$\therefore f$ is minimum at (-3, -2) and the minimum value is
	$f(-3,-2) = (-3)^{2} + (-2)^{2} + 6(-3) + 4(-2) + 12 = 25 - 26 = -1.$
18	Find the possible extreme point of $f(x, y) = x + y + - +$
	Solution: $f(x, y) = x^2 + y^2 + \frac{2}{x} + \frac{2}{y}$
	$\partial f = 2$
	$\frac{\partial}{\partial x} = 2x - \frac{1}{x^2};$
	$\frac{\partial f}{\partial x} = 0 \Longrightarrow 2x - \frac{2}{x^2} = 0; \ 2x = \frac{2}{x^2}; \ x^3 = 1 \implies x = 1$
	$\partial f = 2$
	$\frac{\partial y}{\partial y} = 2y - \frac{z}{y^2};$
	$\frac{\partial f}{\partial y} = 0 \implies 2y - \frac{2}{y^2} = 0; \ 2y = \frac{2}{y^2}; \ y^3 = 1 \implies y = 1$
	\therefore The possible extreme point is $(1,1)$.
19	A rectangular box open at the top is to have a maximum capacity whose surface area is 648 square
17	centimeters. Formulate the maximization function to find the dimensions of the box.
	Solution: Let $r v z$ be the length breadth and height of the box
	volume = $length \times breadth \times height = xyz$ (Volume to be maximized)
	$\int L_{of} f(r v z) = rvz$
	$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{n} \frac{1}$
	Since the rectangular box is of open at the top. Surface area on the top is zero

Let g(x, y, z) = xy + 2yz + 2zx - 648The optimization function to find the dimensions of the box is

 $F(x, y, z) = f(x, y, z) + \lambda g(x, y, z)$ where λ is langrange multiplier.

St. Joseph's Institute of Technology

Page No: 18

 Sub. Name & Code: MA3151_Matrices and Calculus
 Dept. of Mathematics

	Hence, $F(x, y, z) = xyz + \lambda (xy + 2yz + 2zx - 648)$
	Formulate the optimization function to find the volume of the largest rectangular solid which can be
20	inscribed in an ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
	Solution:
	Let the sides of the rectangular box be $2x$, $2y$, $2z$.
	The largest rectangular parallelepiped inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ will have its corners on
	the ellipsoid and its sides parallel to the coordinate plane. Hence its corners are $(\pm x, \pm y, \pm z)$.
	Volume $V = 2x \times 2y \times 2z$
	=8xyz
	Let $f = 8xyz$
	$g = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1$
	The optimization function to find the dimensions of the box is
	$F(x, y, z) = f(x, y, z) + \lambda g(x, y, z) (i.e.) F = f + \lambda g$
	$F(x, y, z) = (8xyz) + \lambda \left(rac{x^2}{a^2} + rac{y^2}{b^2} + rac{z^2}{c^2} - 1 ight)$
	where λ is langrange multiplier.
	PART – B
1	For the given function $z = \tan^{-1}\left(\frac{x}{y}\right) - (xy)$, verify whether the statement
1	$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$ is correct or not. (NOV/DEC 2019)
2	If $u = (x^2 + y^2 + z^2)^{-\frac{1}{2}}$, then find the value of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$. (JAN 2018)
3	If $u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$, then find $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z}$. (JAN 2019)
4	If $u = (x - y)f(\frac{y}{x})$, then find $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$
5	If $u = f(2x - 3y, 3y - 4z, 4z - 2x)$, then find $\frac{1}{2}\frac{\partial u}{\partial x} + \frac{1}{3}\frac{\partial u}{\partial y} + \frac{1}{4}\frac{\partial u}{\partial z}$. (JAN 2019)
6	Find $\frac{du}{dt}$, if $u = xy + yz + zx$ where $x = t$, $y = e^t$, $z = t^2$.
7	Find $\frac{du}{dt}$, if $u = x - y + z$ where $x = e^{2t}$, $y = e^{2t} \cos 3t$, $z = e^{2t} \sin 3t$

St. Joseph's Institute of Technology

Sub. Name & Code: MA3151_Matrices and Calculus

Dept. of Mathematics

Academic Year: 2021-2022

	If $z = f(x, y)$, where $x = u^2 - v^2$, $y = 2uv$, then prove that
8	$\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} = 4\left(u^2 + v^2\right)\left(\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}\right).$
9	If $z = f(x, y)$ where $x = e^u + e^{-v}$ and $y = e^{-u} - e^{v}$ then show that $x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} - \frac{\partial z}{\partial v}$
10	If $u = 2xy$, $v = x^2 - y^2$ and $x = \cos \theta$, $y = \sin \theta$, find $\frac{\partial(u, v)}{\partial(r, \theta)}$
	Find the Jacobian of y_1, y_2, y_3 with respect to x_1, x_2, x_3 if
11	$y_1 = \frac{x_2 x_3}{x_1}, \ y_2 = \frac{x_1 x_3}{x_2}, \ y_3 = \frac{x_1 x_2}{x_3}.$
12	If $u = x + y + z$, $uv = y + z$, $uvw = z$, find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.
13	If $u = \frac{1}{x}$, $v = \frac{x^2}{y}$, $w = x + y + zy^2$, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.
14	If $u = xy + yz + zx$, $v = x^2 + y^2 + z^2$ and $w = x + y + z$, prove that they are functionally dependent and also determine the functional relationship between u, v, w
15	Let $\mathbf{u} = 3\mathbf{x} + 2\mathbf{y} - \mathbf{z}$, $\mathbf{v} = \mathbf{x} - 2\mathbf{y} + \mathbf{z}$ and $\mathbf{w} = \mathbf{x}(\mathbf{x} + 2\mathbf{y} - \mathbf{z})$. Are u, v, w functionally related? If so find the relation? (NOV/DEC 2020)
16	Obtain the Taylor's series expansion of $e^x \sin y$ in powers of x and y up to third degree terms.
	(NOV/DEC 2019)
17	Expand $e^{-1}\log(1+y)$ in powers of x and y up to third degree using Taylor's series.
18	Find the Taylor's series expansion of $f(x, y) = x^2y^2 + 2x^2y + 3xy^2$ in powers of (x+2) and (y-1) up to
	second degree term (NOV/ DEC 2020)
19	Expand the function $\sin(xy)$ in powers of $(x-1)$ and $\left(y-\frac{\pi}{2}\right)$ as a Taylor series.
20	Find the maximum and minimum values of $f(x, y) = x^3 + y^3 - 3x - 12y + 20$
21	Find the maximum and minimum values of $f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$.
	(APR/MAY 2019)
22	constant volume 72m ^{3.} Find the least surface area of the box. (NOV/DEC 2019)
23	Find the dimension of the rectangular box open at the top of maximum capacity 432 cc.
24	Find the length of the shortest line from the point $\left(0,0,\frac{25}{9}\right)$ to the surface $z = xy$.
25	Find the shortest and longest distances from the point (1,2,-1) to the sphere
	$x^2 + y^2 + z^2 = 24.$ (APR/MAY 2019)
1	UNIT IV – INTEGRAL CALCULUS
	PART – A

St. Joseph's Institute of Technology

Sub. Name & Code: MA3151_Matrices and Calculus

Dept. of Mathematics

Academic Year: 2021-2022

1	State the properties of definite integrals.
	Solution:
	a 0 if $f(x)$ is odd
	(i) $\int_{-a} f(x) dx = \begin{cases} a \\ 2 \int_{0}^{a} f(x) dx & \text{if } f(x) \text{ is even} \end{cases}$
	$b \qquad b \qquad$
	(11) $\int_{a} f(x) dx = \int_{a} f(a+b-x) dx$
2	Set up an expression for $\int_{1}^{3} e^{x} dx$ as a limit of sums
	Solution:
	$f(x) = e^x$, $a = 1$, $b = 3$, $\Delta x = \frac{b-a}{n} = \frac{2}{n}$, $x_i = a + i\Delta x$ (By Riemann Sum method)
	$\int_{1}^{3} e^{x} dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x = \lim_{n \to \infty} \sum_{i=1}^{n} f\left(1 + \frac{2i}{n}\right) \frac{2}{n} = \lim_{n \to \infty} \frac{2}{n} \sum_{i=1}^{n} e^{\left(1 + \frac{2i}{n}\right)}$
3	Evaluate the following integrals using fundamental theorem of calculus $\int_{1}^{8} \sqrt[3]{x} dx$
	Solution:
	Given: $f(x) = x^{1/3}, a = 1, b = 8$
	Antiderivative: $F(x) = \frac{x^{4/3}}{x^{4/3}}$
	$\frac{4/3}{4}$
	$\frac{8}{3}$
	$\int_{1} \sqrt{x} dx = F(b) - F(a) = F(8) - F(1)$
	$=\frac{8^{4/3}}{4/3}-\frac{1}{4/3}=\frac{3}{4}\left(8^{1/3}\right)^4-\frac{3}{4}=\frac{3}{4}2^4-\frac{3}{4}=\frac{3}{4}\left[16-1\right]=\frac{45}{4}$
4	Evaluate $\int (10x^4 - 2\sec^2 x) dx$
	Solution:
	$\int (10x^4 - 2\sec^2 x) dx = 10 \int x^4 dx - 2 \int \sec^2 x dx$
	$=10\frac{x^5}{2}-2\tan x+c$
	5 - 5 r^5 - 2 top r L a
	$\frac{2}{5}\left(-\frac{1}{2},\frac{1}{2}\right)$
5	Evaluate $\int_{1} \left(-3x^{1/2} + \frac{1}{x^2} \right) dx$.
	Solution:
	$\int_{1}^{2} \left(-3x^{1/2} + \frac{1}{x^{2}} \right) dx = -3\int_{1}^{2} x^{1/2} dx + \int_{1}^{2} \frac{1}{x^{2}} dx$
	$= -3\left[\frac{x^{3/2}}{3/2}\right]_{1}^{2} + \left[-\frac{1}{x}\right]_{1}^{2}$
	$= \left[-2x^{3/2} - \frac{1}{x}\right]_{1}^{2}$

St. Joseph's Institute of Technology

Sub	. Name & Code: MA3151_Matrices and Calculus Dept. of Mathematics Academic Year: 2021-2022
	$= \left[\left(-2\left(2^{3/2}\right) - \frac{1}{2}\right) - \left(-2\left(1^{3/2}\right) - 1\right) \right]$
	$= \left[-2\left(2\sqrt{2}\right) - \frac{1}{2} + 3 \right] = -4\sqrt{2} + \frac{5}{2}$
6	Evaluate by substitution method $\int (2x\sqrt{1+x^2}) dx$
	Solution: Let $\mu = 1 + r^2 d\mu = 2rdr$
	u = 1 + x, uu = 2xux
	$\int \left(2x\sqrt{1+x^2}\right) dx = \int \sqrt{u} du = \frac{u}{3/2} + c$
	$=\frac{2}{3}u^{3/2}+c$
	$=\frac{2}{3}\left(1+x^2\right)^{3/2}+c$
7	Find $\int \left(\frac{\cos\theta}{\sqrt{\sin\theta}}\right) d\theta$ by substitution method.
	Solution:
	Let $I = \int \left(\frac{\cos\theta}{\sqrt{\sin\theta}}\right) d\theta$
	Put $u = \sin \theta$ then $du = \cos \theta d\theta$
	$\therefore I = \int \frac{du}{\sqrt{u}} = \int (u)^{-1/2} du = \frac{u^{(-1/2)+1}}{\left(\frac{-1}{2}\right) + 1} = 2\sqrt{u} + c = 2\sqrt{\sin\theta} + c$
8	If f is continuous and $\int_{0}^{4} f(x) dx = 10$, then find $\int_{0}^{2} f(2x) dx$. (NOV/DEC 2018)
	Solution:
	Given <i>f</i> is continuous, let $2x = t$, differentiating $2dx = dt$ or $dx = \frac{dt}{2}$.
	when $x = 2$, then $t = 4$,
	when $x = 0$, then $t = 0$.
	$\therefore \int_{0}^{\pi} f(2x) dx = \int_{0}^{\pi} f(t) \frac{dt}{2} = \frac{1}{2} \int_{0}^{\pi} f(t) dt = \frac{10}{2} = 5$
9	Evaluate $\int \tan^{-1} x dx$.
	Solution: $(-f + f + f + f)$
	$u = \tan^{-1} x \qquad av = ax \qquad (\because \ \rfloor u dv = uv - \rfloor v du)$
	$du = \frac{dx}{1+x^2} v = \int dv = \int dx = x$
	$\int \tan^{-1} x dx = uv - \int v du$
	$= x \tan^{-1} x - \int x \frac{dx}{1+x^2}$

St. Joseph's Institute of Technology

Sub. Name & Code: MA3151_Matrices and Calculus Dept. of Mathematics Academic Year: 2021-2022 $= x \tan^{-1} x - \frac{1}{2} \int \frac{2x}{2} dx \qquad \left(\because \int \frac{f'(x)}{2x} dx = \log f(x) \right)$

	$= x \tan \left(x - \frac{1}{2} \int \frac{1}{1 + x^2} dx \right) \qquad \left(x \int \frac{1}{f(x)} dx = \log f(x)\right)$
	$= x \tan^{-1} x - \frac{1}{2} \log(1 + x^2) + c$
10	Find the Integral of x sin x using integration by parts.
	Solution:
	$u = x \qquad dv = \sin x dx \qquad (\because \int u dv = uv - \int v du)$
	$du = dx v = \int dv = \int \sin x dx = -\cos x$
	$\int x \sin x dx = x (-\cos x) - \int (-\cos x) dx$
	$=-x\cos x+\sin x+c$
	$=\sin x - x\cos x + c$
11	Evaluate $\int_{0}^{\pi/2} \sin^{6} x \cos^{5} x dx$.
	Solution:
	$\int_{0}^{\pi/2} \sin^{m} x \cos^{n} x dx = n-1 n-3 n-5 1$
	$\int_{0}^{1} \sin x \cos x dx = \frac{1}{m+n} \frac{1}{m+n-2} \frac{1}{m+n-4} \cdots \frac{1}{m+1},$
	when <i>m</i> is an even and <i>n</i> is an odd integer, here $m=6, n=5$
	$-\frac{11}{11} \frac{9}{9} \frac{7}{7} - \frac{693}{693}$
12	Use the hyperbolic substitution to show that $\int \frac{dx}{\sqrt{x^2 + a^2}} = \sinh^{-1}\left(\frac{x}{a}\right) + c$
	Solution:
	Let $I = \int \frac{dx}{dx}$
	$\int \sqrt{x^2 + a^2}$
	Put $x = a \sinh t$ then $dx = a \cosh t dt$
	We know that $\cosh^2 t - \sinh^2 t = 1 \Longrightarrow \cosh^2 t = 1 + \sinh^2 t$
	$I = \int \frac{a \cosh t dt}{\sqrt{a^2 \sinh^2 t + a^2}} = \int \frac{a \cosh t dt}{a \sqrt{\sinh^2 t + 1}} = \int \frac{a \cosh t dt}{a \sqrt{\cosh^2 t}} = \int \frac{a \cosh t dt}{a \cosh t} = \int dt = t + c$
	$x = a \sinh t \Rightarrow \sinh t = \frac{x}{a}, t = \sinh^{-1}\left(\frac{x}{a}\right)$
	$\int \frac{dx}{\sqrt{x^2 + a^2}} = \sinh^{-1}\left(\frac{x}{a}\right) + c$
	$\frac{\sqrt{x}+u}{r-9}$
13	Evaluate $\int \frac{x}{(x+5)(x-2)} dx$
	Solution:
	Let $I = \int \frac{x-9}{(x+5)(x-2)} dx$
	x-9 A B
	$\overline{(x+5)(x-2)} = \overline{x+5} + \overline{x-2}$
	x - 9 = A(x - 2) + B(x + 5)
	When $x = 2 \Rightarrow -7 = B(7) \Rightarrow B = -1$

St. Joseph's Institute of Technology

Page No: 23

Dept. of Mathematics

Sub. Name & Code: MA3151_Matrices and Calculus

Academic Year: 2021-2022

	When $x = -5 \Rightarrow -14 = A(-7) \Rightarrow A = 2$
	$I = \int \frac{2}{x+5} dx + \int \frac{1}{x-2} dx$
	$= 2\int \frac{1}{x+5} dx + \int \frac{1}{x-2} dx$
	$= 2\ln x+5 + \ln x-2 + c$
14	Evaluate $\int \left(\frac{x}{x-6}\right) dx$
	Solution:
	Let $I = \int \left(\frac{x}{x-6}\right) dx = \int \left(\frac{x-6+6}{x-6}\right) dx = \int \left(\frac{x-6}{x-6}\right) dx + \int \left(\frac{6}{x-6}\right) dx$
	$= \int dx + 6 \int \left(\frac{1}{x-6}\right) dx$
	$= x + 6\ln\left(x - 6\right) + c$
	Determine whether integral $\int_{1}^{\infty} \frac{\ln x}{dx} dx$ is convergent or divergent. Evaluate it, if it is convergent.
15	$\int_{1}^{1} x$
	Solution:
	$^{\infty}\ln(r)$ $^{t}\ln(r)$
	$\int_{1} \frac{\mathrm{Im}(x)}{x} dx = \lim_{t \to \infty} \int_{1} \frac{\mathrm{Im}(x)}{x} dx$
	$= \lim_{t \to \infty} \int_{1}^{t} \ln x d(\log x) = \lim_{t \to \infty} \left(\frac{(\log x)^{2}}{2} \right)_{1}^{t} = \frac{1}{2} \lim_{t \to \infty} \left((\log t)^{2} - (\log 1)^{2} \right) = \frac{1}{2} \lim_{t \to \infty} \left((\log t)^{2} \right) = \infty$
	Hence it is divergent
16	Evaluate $\int_{3}^{\infty} \frac{dx}{(x-2)^{3/2}}$ and determine whether it is convergent or divergent.
	Solution:
	Let $I = \int_{3}^{\infty} \frac{dx}{(x-2)^{3/2}} = \lim_{b \to \infty} \int_{3}^{b} \frac{dx}{(x-2)^{3/2}} = \lim_{b \to \infty} \int_{3}^{b} (x-2)^{-3/2} dx$
	$= \lim_{b \to \infty} \left(\frac{(x-2)^{-3/2+1}}{\frac{-3}{2}+1} \right)_{3}^{b} = \lim_{b \to \infty} \left(\frac{(x-2)^{-1/2}}{\frac{-1}{2}} \right)_{3}^{b} = \lim_{b \to \infty} \left(\frac{-2}{\sqrt{x-2}} \right)_{3}^{b}$
	$= \lim_{b \to \infty} \left(\frac{-2}{\sqrt{b-2}} - \frac{-2}{\sqrt{3-2}} \right) = 2$
	Hence the given integral is convergent.
17	An aquarium 5 m long, 10 m wide and 3 m deep is filled with seawater of density 1030 kg/m ³ to a depth of 2.5 m, then find the hydrostatic pressure and force at the bottom of the pool.
	Solution: The hydrostatic pressure at the better of the need is:
	The hydrostatic pressure at the bottom of the pool IS: Pressure – density x gravity x denth
	$= 1030 \times 98 \times 25 = 25235$
	The hydrostatic force at the bottom of the pool is:
	Force = pressure × area

St. Joseph's Institute of Technology

Sub. Name & Code: MA3151_Matrices and Calculus

Dept. of Mathematics

Academic Year: 2021-2022

	$= 1030 \times 9.8 \times 2.5 \times 5 \times 10 = 1,261,750$
18	A rod has a length of 40 cm. The rod's density changes linearly along its length from 20 g/cm to
	60 g/cm. Find the center of mass of the rod.
	The equation of straight line massing through the points $z(0) = 20$, $z(40) = 60$ is given by
	The equation of straight line passing through the points $\rho(0) = 20$, $\rho(40) = 60$ is given by
	$\rho - \rho(0) = x - 0 \Rightarrow \rho - 20 = x \Rightarrow \rho = r + 20$ where ρ is measured in g/cm and r is
	$\frac{1}{\rho(40)-\rho(0)} = \frac{1}{40-0} = \frac{1}{60-20} = \frac{1}{40} = \frac{1}{20} = \frac{1}{40} = \frac{1}{20} = \frac{1}{40} = \frac{1}{20} = \frac{1}{40} = \frac{1}{20} = \frac{1}{20$
	measured in cm.
	Calculate the mass m and the first moment M_0 of the rod.
	$\neg 40$
	$m = \int_{a}^{b} \rho(x) dx = \int_{0}^{40} (x+20) dx = \left[\frac{x^2}{2} + 20x \right]_{0}^{10} = 800 + 800 = 1600$
	$M_{0} = \int_{a}^{b} x \rho(x) dx = \int_{0}^{40} x(x+20) dx = \int_{0}^{40} (x^{2}+20x) dx = \left[\frac{x^{3}}{3}+10x^{2}\right]_{0}^{40} = \frac{64000}{3}+16000 \approx 37333 g / cm$
	Hence, the center of mass $G(x)$ is located at the point
	$\overline{x} = \frac{M_0}{m} = \frac{37333}{1600} \approx 23.3 cm$
19	Find the center of mass of a semicircular plate of radius <i>r</i> .
	Solution:
	Let $f(x) = \sqrt{r^2 - r^2}$ and $a = -r$, $b = r$
	Here there is no need to use the formula to calculate $\overline{\mathbf{x}}$ because by
	the symmetry principle the center of mass lie on the y-axis so $\overline{x} = 0$
	$(0, \frac{4r}{3\pi})$
	The area of the semicircle is $A = -\pi r^2$, so
	$\overline{y} = \frac{1}{A} \int_{-r}^{r} \frac{1}{2} \left[f(x) \right]^{2} dx = \frac{1}{\frac{1}{2}\pi r^{2}} \int_{-r}^{r} \frac{1}{2} \left[\sqrt{r^{2} - x^{2}} \right]^{2} dx$
	$=\frac{1}{\pi r^{2}}\int_{-r}^{r} (r^{2}-x^{2})dx$
	$=\frac{2}{\pi r^{2}}\int_{0}^{r} (r^{2}-x^{2})dx$
	$=\frac{2}{\pi r^2}\left(xr^2-\frac{x^3}{3}\right)_0^r=\frac{2}{\pi r^2}\left(r^3-\frac{r^3}{3}\right)=\frac{2}{\pi r^2}\left(\frac{2r^3}{3}\right)=\frac{4r}{3\pi}$
	The center of mass is located at the point $\left(0, \frac{4r}{3\pi}\right)$
20	Find the moments and center of mass of the system of objects that have masses 3, 4, and 8 at the
	points (-1,1), (2,-1) and (3,2) respectively.
	Moment of the system about the y-axis is $M_y = \sum_{i=1}^n m_i x_i = 3(-1) + 4(2) + 8(3) = 29$
	Moment of the system about the x-axis is $M_x = \sum_{i=1}^n m_i y_i = 3(1) + 4(-1) + 8(2) = 15$
	The coordinates $(\overline{x}, \overline{y})$ of the center of mass are given in terms of the moments

St. Joseph's Institute of Technology

Dept. of Mathematics

Sub. Name & Code: MA3151_Matrices and Calculus

Academic Year: 2021-2022

	$\overline{x} = \frac{M_y}{m}$ and $\overline{y} = \frac{M_x}{m}$ where $m = \sum m_i = 3 + 4 + 8 = 15$	
	$\overline{x} = \frac{29}{15}$ and $\overline{y} = \frac{15}{15} = 1$	
	The center of mass is $\left(\frac{29}{15}, 1\right)$	
	PART – B	
1	Evaluate $\int_{0}^{3} (x^{3} - 6x) dx$ by using Riemann sum with n sub intervals.	(NOV/DEC 2019)
	Evaluate the following integrals by using Riemann sum by taking right e	end points as sample
2	points. Hence verify it by using fundamental theorem of calculus $\int_{1}^{4} (x^2 + 2x)$	-5) dx .
3	Evaluate $\int e^x \sin x dx$ by using integration by parts.	(NOV/DEC 2019)
4	Evaluate $\int \frac{xe^{2x}}{(1+2x)^2} dx$ by using integration by parts.	
5	Prove the reduction formula $\int_{0}^{\pi/2} \sin^{n} x dx = \frac{n-1}{n} \int_{0}^{\pi/2} \sin^{n-2} x dx.$ Hence be	y using it evaluate
	$\int_{0}^{\pi/2} \sin^7 x dx \ .$	
6	Prove that $\int_{-\pi}^{\pi} \sin mx \sin nx dx = \begin{cases} 0 & m \neq n \\ \pi & m = n \end{cases}$ where <i>m</i> and <i>n</i> are positive integration.	grals.
		(NOV/DEC 2020)
7	Evaluate $\int_{0}^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx$	(APR/MAY 2019)
8	Evaluate $\int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$	
9	Evaluate $\int_{\sqrt{2}/3}^{2/3} \frac{dx}{x^5 \sqrt{9x^2 - 1}}$.	(NOV/DEC 2018)
10	Evaluate the integral 1) $\int \left(x^3 \sqrt{x^2 + 1}\right) dx$ and 2) $\int_{0}^{1} \frac{1}{\left(1 + \sqrt{x}\right)^4} dx$	(NOV/DEC 2020)
11	Evaluate the integral $\int \frac{x^2 - 2x - 1}{(x - 1)^2 (x^2 + 1)} dx$	(NOV/DEC 2020)
12	Evaluate $\int \frac{2x+1}{x^3+2x^2-x-2} dx$ by partial fraction method.	
13	Evaluate $\int \frac{2x+5}{\sqrt{x^2-2x+10}} dx$	(APR/MAY 2019)
14	Evaluate $\int \sqrt{a^2 - x^2} dx$ by using substitution rule.	(NOV/DEC 2019)

St. Joseph's Institute of Technology

Page No: 26

Sub. Name & Code: MA3151_Matrices and Calculus

Dept. of Mathematics

15	Find the value of p for which the integral $\int_{1}^{1} x^{p} \ln(x) dx$ converges and evaluate the integral for
	those value of <i>p</i> . (NOV/DEC 2020)
16	Evaluate $\int_{-\infty}^{\infty} x^3 e^{-x^4} dx$ and hence discuss their convergence.
17	Find the hydrostatic force on a circular plate of radius 2 that is submerged 6 meters in the water
18	Determine the hydrostatic force on the following triangular plate that is submerged in water as
	waters surface
19	Determine the center of mass for the region bounded by $y = x^3$ and $y = \sqrt{x}$.
	Determine the center of mass for the region bounded by $y = 2\sin(2x)$, $y = 0$ on the interval
20	$\left[0,\frac{\pi}{2}\right]$.
	UNIT V – MULTIPLE INTEGRALS
	PARI- A 2 1
1	Evaluate $\int_{0}^{1} \int_{0}^{1} y dy dx$
	Solution:
	$I = \int_{0}^{2} \left[\frac{y^{2}}{2} \right]_{0}^{1} dx = \frac{1}{2} \int_{0}^{2} (1^{2} - 0) dx = \frac{1}{2} \int_{0}^{2} dx = \frac{1}{2} \left[x \right]_{0}^{2} = \frac{1}{2} (2 - 0) = 1$
2	Evaluate $\int_0^{\pi} \int_0^{\cos\theta} r dr d\theta$. (APR/MAY 2017)
	Solution:
	$I = \int_0^{\pi} \left[\frac{r^2}{2} \right]_0^{\cos\theta} d\theta = \frac{1}{2} \int_0^{\pi} \cos^2\theta d\theta$
	$=\frac{1}{2}\int_{0}^{\pi}\frac{1+\cos 2\theta}{2}d\theta \qquad \qquad$
	$=\frac{1}{4}\int_{0}^{\pi} (1+\cos 2\theta) d\theta$
	$=\frac{1}{4}\left[\theta + \frac{\sin 2\theta}{2}\right]_0^{\pi} = \frac{1}{4}(\pi) = \frac{\pi}{4}$
3	Evaluate $\int_{1}^{2} \int_{0}^{x^2} x dy dx $ (NOV/DEC 2019)
	Solution:

St. Joseph's Institute of Technology

St. Joseph's Institute of Technology

Page No: 28

Sub. Name & Code: MA3151_Matrices and Calculus

Dept. of Mathematics

Academic Year: 2021-2022

St. Joseph's Institute of Technology

Page No: 29

Dept. of Mathematics

Sub. Name & Code: MA3151_Matrices and Calculus

Academic Year: 2021-2022

	$=\frac{1}{2}\int_{0}^{4} \left(x^{2} + \frac{x^{2}}{2}\right) dx$
	$=\frac{3}{4}\int_0^4 x^2 dx$
	$=\frac{3}{4}\left[\frac{x^3}{3}\right]_0^4=16$
12	Express the region $x \ge 0, y \ge 0, z \ge 0, x^2 + y^2 + z^2 \le 1$ by triple integration. (NOV/DEC 2019)
	Solution: Given region is the positive octant of the sphere. <i>x</i> varies from 0 to 1
	y varies from 0 to $\sqrt{1-x^2}$
	z varies from 0 to $\sqrt{1-x^2-y^2}$
	$\therefore I = \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} dz dy dx$
13	Consider a triangular lamina R with vertices (0,0),(0,3),(3,0) and with density $\rho(x, y) = xy kg / m^2$. Find the moments M_x and M_y
	Solution:
	The moments are $f^{x=3}f^{y=3-x}$ 2 , $g^{x=3}$ (0, 3)
	$M_{x} = \iint_{R} y\rho(x, y)dA = \int_{x=0} \int_{y=0} xy^{2} dy dx = \frac{1}{20}$
	$M_{y} = \iint_{R} x\rho(x, y)dA = \int_{x=0}^{x=3} \int_{y=0}^{y=3-x} x^{2} y dy dx = \frac{81}{20}$ (0, 0) (3, 0) (3, 0)
14	Find the mass of the lamina of density $\rho(x, y) = x + y$ occupying the region <i>R</i> under the curve
14	$y = x^2$ in the interval $0 \le x \le 2$
	Solution: We compute the mass m
	$m = \iint_{R} dm = \iint_{R} \rho(x, y) dA = \int_{x=0}^{x=2} \int_{y=0}^{y=x^{2}} (x+y) dy dx$ ^(2.4)
	$= \int_{x=0}^{x=2} \left[xy + \frac{y^2}{2} \right]_{y=0}^{y=x^2} dx = \int_{x=0}^{x=2} \left[x^3 + \frac{x^4}{2} \right] dx$ $y = x^2$ $x = 2$
	$= \left[\frac{x^4}{4} + \frac{x^5}{10}\right]_{x=0}^{x=2} = \frac{36}{5}$
15	Find the moment of inertia of a lamina covering the inside of the unit circle, with density function $\rho(x, y) = 1 - x^2 - y^2$
	Solution: The moment of inertia of the entire lamina is $I = \iint_{x} (x^2 + y^2) \rho(x, y) dA$
	By polar co-ordinates, $r^2 = x^2 + y^2$

St. Joseph's Institute of Technology

St. Joseph's Institute of Technology

Sub	b. Name & Code: MA3151_Matrices and Calculus Dept. of Mathematics Academi	c Year: 2021-2022
	Given, $I = \int_{y=0}^{y=1} \int_{x=y}^{x=2-y} xy dx dy$	
	x limits: y to $2 - y$; y limits: 0 to 1	
	<i>i.e.</i> , $x = y$ and $x = 2 - y \Longrightarrow x + y = 2$	
	After changing order of integration	
	$I = \int_0^1 \int_0^x xy dy dx + \int_1^2 \int_0^{2-x} xy dy dx$	
20	Compute the entire area bounded by $r^2 = a^2 \cos 2\theta$.	
	Solution:	
	Given $r^2 = a^2 \cos 2\theta \Rightarrow r = a \sqrt{\cos 2\theta}$	
	Area = $4 \times$ Area in first quadrant	
	$A = \iint_{R} r dr d\theta = 4 \int_{\theta=0}^{\pi/4} \int_{r=0}^{a\sqrt{\cos 2\theta}} r dr d\theta$	$=a_{1}\cos 2\theta$
	$r^{2} \int r^{2} \int a \sqrt{\cos 2\theta}$	
	$=4\int_{\theta=0}^{\pi/4} \left\lfloor \frac{r}{2} \right\rfloor_{0} \qquad d\theta$	
	$\left[\frac{1}{2} \cos 2\theta \right] = \frac{4}{2} \frac{2}{\pi} \frac{\pi}{4}$	
	$=4\int_{\theta=0}^{\theta=1} \left[\frac{a^{2}}{2}\right] d\theta = \frac{1}{2}a^{2}\int_{\theta=0}^{\theta=1} \cos 2\theta d\theta$	
	$= 2a^{2} \left[\frac{\sin 2\theta}{2} \right]_{0}^{\pi/4} = 2a^{2} \left[\frac{\sin 2(\pi/4)}{2} - 0 \right]$	
	$=a^2\sin\frac{\pi}{2}=a^2$	
PART- B		
1	Evaluate $\iint xydxdy$ over the positive quadrant of the circle $x^2 + y^2 = a^2$.	(NOV/DEC 2019)
2	Evaluate $\iint xydxdy$ over the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	
3	Evaluate $\iint_{P} x^2 dx dy$ where R is the region in the first quadrant boun	ded by the lines
	x = y, y = 0, x = 8 and the curve $xy = 16$.	
4	Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \sqrt{a^{2}-x^{2}-y^{2}} dx dy$.	(NOV/DEC 2016)
5	Find the area bounded by $y^2 = 4x$ and $x^2 = 4y$ by using double integrals.	(NOV/DEC 2019)
6	Find the area bounded by the parabolas $y^2 = 4 - x$ and $y^2 = x$	(NOV/DEC 2018)
7	Find the area of the cardioid $r = a(1 + \cos \theta)$.	
8	Find the area included between the curve $r = a(\sec\theta + \cos\theta)$ and its asymptot	te
9	Change the order of integration in $\int_{0}^{1} \int_{y}^{2-y} xy dx dy$ and evaluate it.	(NOV/DEC 2020)
10	Change the order of integration in $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$ and hence evaluate it.	(APR/MAY 2019)

St. Joseph's Institute of Technology

Sub. Name & Code: MA3151_Matrices and Calculus

Dept. of Mathematics

11	Transform the integral into polar co-ordinates and hence evaluate $\int_0^{\infty} \int_0^{\infty} e^{-(x^2+y^2)} dx dy$ and hence	
	find the value of $\int_0^\infty e^{-x^2} dx$.	
12	Evaluate $\iint_{D} xy \sqrt{1-x-y} dx dy$ where D is the region bounded by $x = 0, y = 0, x + y = 1$ using the	
	transformation $x + y = u, y = uv$ (NOV/DEC 2020)	
13	Evaluate by changing into polar coordinates $\int_0^a \int_y^a \frac{x^2 dx dy}{\sqrt{x^2 + y^2}}$. (APR/MAY 2019)	
14	Evaluate $\iint_{R} r^2 \sin\theta dr d\theta$ where <i>R</i> is the semi circle $r = 2a \cos\theta$ above the initial line	
15	Evaluate $\iint_{V} \int xyz dx dy dz$ where V is the volume of the positive octant of the sphere $x^2 + y^2 + z^2 = 1$	
	by transforming into spherical polar coordinates (NOV/DEC 2020)	
16	Find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	
17	Evaluate $\int_{0}^{2a} \int_{0}^{x} \int_{y}^{x} (xyz) dz dy dx.$ (NOV/DEC 2019)	
18	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} xyz dx dy dz$	
10	Find the volume of the cylinder bounded by $x^2 + y^2 = 4$ and then planes $y + z = 4$ and $z = 0$ using	
17	triple integral (NOV/DEC 2020)	
20	Evaluate $\iiint dx dy dz$ where V is the finite region of space (tetrahedron) bounded by the planes	
	x = 0, y = 0, z = 0 & 2x + 3y + 4z = 12. (NOV/DEC 2018)	
21	Find the mass and center of mass of a triangular Lamina with vertices (0.0), (1.0) and (0.2) if the	
	density function is $\rho(x, y) = 1 + 3x + y$	
22	Find the mass and center of mass of a lamina with density function $\rho(x, y) = 6x$ covering the triangle	
	D bounded by the x-axis, the line $y = x$ and the line $y = 2 - x$	
23	Find the moments of inertia I_x , I_y , and I_0 of a homogeneous disk D with density $\rho(x, y) = \rho$, center	
	the origin, and radius a.	
24	Find the moment of inertia of the area bounded by the curve $r^2 = a^2 \cos 2\theta$ about its axis	