VALLIAMMAI ENGEINEERING COLLEGE

(S.R.M.NAGAR, KATTANKULATHUR-603 203)

DEPARTMENT OF MATHEMATICS

QUESTION BANK

I SEMESTER

MA8151-ENGINEERING MATHEMATICS -1

Regulation – 2017

Academic Year 2017-2018

Prepared by

Dr.S.Chitra , Assistant Professor / Mathematics Dr.T.Isaiyarasi, Assistant Professor / Mathematics Ms.A.Karpagam, Assistant Professor/ Mathematics Ms.C.V.Dhanya, Assistant Professor/ Mathematics Ms.N.Prabhavathy, Assistant Professor/ Mathematics

Downloaded from EnggTree.com

VALLIAMMAI ENGINEERING COLLEGE

S.R.M.NAGAR, KATTANKULAR

DEPARTMENT OF MATHEMATICS

SUBJECT CODE / NAME: MA8151- ENGINEERING MATHEMATICS -- I

SEMESTER / YEAR: I SEMESTER / I YEAR (COMMON TO ALL BRANCHES)

UNIT I DIFFERENTIAL CALCULUS

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules - Maxima and Minima of functions of one variable.

Q.No.	Question	Bloom's Taxonomy Level	Domain
	PART – A		
1.		BTL -1	Remembering
2.	Prove that Imm → cos = .	BTL -1	Remembering
3.	Evaluate $\lim \to \pi^{+c} - x^{x}$	BTL -5	Evaluating
4 .	Find •x-x	BTL -2	Understanding
	Use the squeeze theorem to show that $\lim_{n\to\infty}$ + _ =0	BTL -3	
6.	Find $\lim_{t \to \infty} \frac{1}{\sqrt{x}}$	BTL -2	Understanding
7.	Calculate $\circ_{\lim \rightarrow -}$ +	BTL -3	Applying
	Evaluate the limit for *+	BTL -5	
9.	Find the limits if it exists for $\implies \rightarrow _+\\$	BTL -2	Understanding
10.	Point out —	BTL -3 BTL -4	Applying Analyzing
11.	Predict the values of a and b		
12.	so that the function f given	BTL -2	Understanding

	by = { + < <		
	is continuous at x=3 and x=5. \neq	-	-
	= { = what is the value of c?		
14	Where the function is $= $ is differentiable?	RTI 2	Understanding
14.	Estimate	BTL -2 BTL -2	Understanding
10.		DIL-2	Onderstanding
<u> </u>	Calculate $(-)$		Applying
	ENGINCERI	_	
17.	Compute ()	BTL -3	Applying
	and the second s		
18.	Evaluate + =	BTL -5	Evaluating Understanding
19	Estimate	BTL -2	Understanding
	Find the critical numbers of the function		
20.	< 200	BTL -3	Applying
		11	
	PART – B		1
1.(a)	Point out the domain where the function f is continuous Also find the number at which the function f is discontinuous when	BTL -4	Analyzing
1. (b)	= +, /	BTL -3	Applying
	function		
	Show that the function is continuous an the interval [-1,1]. $= -\sqrt{-1}$	BTL -1	Remembering
2.(b)	Estimate the absolute maximum and minimum of the function	BTL -2	Understanding
	Where is the function +a - continuous?	BTL -4	Analyzing
3.(b)	Calculate the absolute maximum and minimum of the function	BTL -3	Applying

4. (a)	Prove that the equation has at most one real root		
	- + =		
	in the interval [-2,2].	BTL -1	Remembering
4.(b)	f(x) = -	BIL-3	Applying
5. (a)	Show that - there ^{tan} is aroot ^{lof} the ¹ equation		
	between 1 and 2 $- + - =$	RTL -1	Remembering
5.(b)	Calculate the local maximum and local minimum of	BTL -3	Applying
	(1,2).		
o. (a)	Show that the function nas a root in the interval	рті 1	Domomhoring
	Point out the local maximum and minimum of	DIL -1	Remembering
6.(b)	by first derivative test.	BTL -4	Analyzing
7. (a)	Find the domain at which the function continuous and	BTL -3	Applying
7 (b)			
/.(0)	Predict the local maximum and minimum of the function	BTL -2	Understanding
			0
	3 SPM		
	SI SIKIM		
8. (a)	point (1,1).	BTL -1	Remembering
8.(b)	Find where the function is increasing and where it is decreasing. Also find the local maximum	BTL -3	Applying
	and local minimum of $f(x)$ +		
9. (a)	Find an equation of the tangent line to the hyperbola $-$ at (3.1)	BTL -3	Applying
	This an equation of the targent line to the hyperbola $-at(3,1)$		Domomhoring
9 (b)	Show that there is a root of the interval (1,2)	RTL -1	Kemembering
10.(a)	Find the equation of tangent to the curve at the point		
	(2,-4) = -	BTL -3	Applying
10.(b)	Use second derivative test to examine the relative maxima for	BTL -3	Applying
11 (-)	Find an equation of the tangent to the curve at the	рті 2	Applying
11.(a)	point (2,3).	DIL-J	Applying
	Point out the local maximum and minimum of using		Analyzing
11.(b)	second derivative test.	BTL -4	Analyzing
12.(a)	Find the equation of tangent to the curve $at(1,1)$	BTL -3	Applying
12.(b)	Examine the local extreme of	BTL -2	Understanding
	Also dicuss the concavity and find the inflection points.		Applying
13.(a)	Find the equation of tangent to the curve $+$ at (1,1)	BTL -3	⁷ ypprynig
13.(b)	Discuss the curve with respect to cancavity, points of	DTI 2	A. 1
	inflection and local maxima and minima	BIL-3	Applying

	Find the equation of the tangent to the curve	<u> </u>		
14.(a)	(ii) (4,1/2) Evaluate local maximum and minimum value	$= \frac{1}{\sqrt{2}}$	BTL -3	Applying

UNIT II FUNCTIONS OF SEVERAL VARIABLES

Partial differentiation – Homogeneous functions and Euler's theorem – Total derivative – Change of variables – Jacobians – Partial differentiation of implicit functions – Taylor's series for functions of two variables – Maxima and minima of functions of two variables – Lagrange's method of undetermined multipliers

Q.No.	Question	Bloom's Taxonomy Level	Domain
	PART - A		
1.	$ \begin{array}{rcl} & \text{If} & & \partial \\ & u &= & \underline{y} + \underline{z} + \underline{x}, \text{ then find } x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial x} + z \frac{u}{\partial} \\ & z & xy & \partial x & \partial y & z \end{array} $	BTL -1	Remembering
2.	If $u = f (x - y, y - z, z - x)$, then $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial z}$. $\frac{\partial x}{\partial y} + \frac{\partial u}{\partial z}$.	BTL -1	Remembering
4. 3.	If dy , then find dy .	BTL -1	Remembering
	Statement of Euler s Theorem.		
5.	Find the value of $\frac{du}{dt}$, given $u = x^2 + y^2$, $x = at^2$, $y = 2at$.	BTL -1	Remembering
6.	If $u = x^3 y^2 + x^2 y^3$ where $x = at^2$ and $y = 2at$, then \underline{du} find dt.	BTL -3	Applying
7.	Find $\frac{du}{dt} = \sin\left[\frac{x}{y^{+}}\right]$, where $x = e^{t}$, $y = t^{2}$.	BTL -3	Applying
8.	Find $\frac{du}{dt} = \frac{x}{y}$, where $x = e^{t}$, $y = \frac{du}{dt} = \frac{du}{y}$, $\log t$.	BTL -2	Understanding
9.	Find the Jacobian $\frac{\partial (r, \theta)}{\partial (x, y)}$, if $x = r \cos \theta \& y = r \sin \theta$.	BTL -3	Applying
10.	Find the Jacobian y) $\frac{\partial(u, x)}{\partial(r, \theta)}$, if $x = r \cos\theta \& y = r \sin\theta$, $u = 2xy$, $v = x^2 - y^2$, without $\frac{\partial(r, \theta)}{\partial(r, \theta)}$ actual substitution.	BTL -4	Analyzing
11.	If $u = \frac{y^2}{2x}$ $v = \frac{x^2 + y}{2x}$, find $\frac{\partial(u, v)}{\partial(x)}$. Downtoaded from EnggTree.com	BTL -3	Applying

	$E_{n} = \frac{E_{n} g}{\partial x}$		
12.	$\begin{array}{c} \text{If } x = u (1 + v), y = v (1 + v), y (1 + v), y = v (1 + v), y (1$	BTL -1	Remembering
13.	If show that $\frac{\partial^2 u}{\partial y \partial} = \frac{\partial^2 u}{\partial y \partial}$ $\frac{\partial x \partial y}{\partial x} = \frac{\partial^2 u}{\partial y \partial x}$	BTL -2	Understanding
14.	If $u = \frac{x + y}{1 - xy} = \frac{1}{x + \tan^{-1} y}$, find $\frac{\partial(u, v)}{\partial(x, y)}$	BTL -3	Applying
			5

	Find the Taylor series expansion of near the point up to		
15.	first term ''	BTL -2	Understanding
16.	Expand $xy + 2x - 3y + 2in$ powers of $(x - 1) \& (y + 2)$, using	BTL -3	Applying
	Taylor's theorem up to first degree form		
17.	$f(x, y) = x^{3} + 3xy^{2} - 15x^{2} - 15y^{2} + 72x.$	BTL -4	Analyzing
18.	Find the Stationary points of $x^2 - xy + y^2 - 2x + y$.	BTL -4	Analyzing
	State the Sufficient condition for $f(x, y)$ to be extremum at a		
19.	point	BTL -4	Analyzing
	$x^{2} + y^{2} +$		
20.	Find the minimum point of $6x + 12$.	BTL -4	Analyzing
	, = PART - B		
1.(a)	$\int_{2}^{2} \frac{2}{2} + \frac{1}{2} \int_{-1}^{1} \frac{y}{y} \int_{-1}^{1} \frac{y}{y} = \frac{1}{2} \int_{-1}^{1} \frac{y}{y} \int_{-1}^{1} \frac{y}$	BTL-1	Remembering
	ζ , δ (<i>u</i> , <i>v</i> ,		
1.(b)	$\begin{bmatrix} \text{If} & ,^{z} \text{ and} \\ u = \underline{v} & \underline{x} & w = \underline{x} \\ x & y & z \end{bmatrix}, \text{ find } \frac{w}{\partial(x, y, z)}.$	BTL -3	Applying
	If , Prove that		
2. (a)	_		
3.(a)	- (ii)	BTL -2 BTL -4	Understanding
2.(b)	Find the Jacobian of \vec{r} of the transformation	BTL -2	Understanding
	If z is a function of and		
3.(b)	$\begin{bmatrix} n & x + y + z \\ z = u \\ \partial(u, v, w) \end{bmatrix}, y^{+z} = \begin{bmatrix} uv, z \\ z \end{bmatrix} = \begin{bmatrix} uvw \\ uvw \\ vvw \end{bmatrix}, \text{ prove that } \frac{\partial(x, y, z)}{\partial(u, v, w)} = u^2 v$	BTL -2	Understanding
	If $u = f(x, y)$ where $x = r \cos \theta$, $y = r$		
	$\sin \theta$		
4. (a)	prove that $\begin{vmatrix} \partial u \\ \partial u \end{vmatrix}^2 \begin{pmatrix} \partial u \\ \partial u \end{vmatrix}^2 \begin{pmatrix} \partial u \\ \partial u \end{pmatrix}^2$ $\begin{vmatrix} \partial u \\ \partial u \end{vmatrix}^2 \begin{pmatrix} \partial u \\ \partial u \end{pmatrix}^2 \begin{pmatrix} \partial u \\ \partial u \end{pmatrix}^2$	BTL -4	Analyzing
	$\int (\partial y) (\partial r) r (\partial \theta)$		
4.(b)	Verify Euler's theorem	BTL -3	Applying
	$\int_{2}^{2} If z = f(x, y) \text{ where } x = u^{2} - y =$		11 7 0
5. (a)	$\begin{bmatrix} \mathbf{v}^{-} & 2\mathbf{u}\mathbf{v} \\ prove that & \frac{\partial^{2} \mathbf{z}}{\partial u^{2}} + \frac{\partial^{2} \mathbf{z}}{\partial v^{2}} = 4(u^{2} + v^{2}) \begin{bmatrix} \frac{\partial^{2} \mathbf{z}}{\partial x^{2}} & \frac{\partial^{2} \mathbf{z}}{\partial v^{2}} \end{bmatrix}$	BTL -4	Analyzing
5.(b)	If thenfind	BTL -3	Applying
	$\frac{XY Z}{z}$		
	Downloaded from EnggTree.com		

	$= \log + + -$		
*100	If $= ++$ show that $ -$	BTL -3	Applying
	If, Prove that		
7. (b)	=	BTL -2	Understanding
	Expand $e^{x} \log 1 + y$ in powers		
	of up to terms of third		
8. (a)	degree terms using Taylor's series &	BTL -1	Remembering
8.(b)	Discuss the maxima and minima of	BTL -5	Evaluating
	-1 y in the neighborhood of (1, 1)		
9. (a)	X	BTL -3	Applying
9.(b)	Find the Maximum value of $x^m y^n z^p$ when $x + y + z = a$.	BTL -3	Applying
	Find the Taylors series expansion of $at the point (-1, -\pi)$		
10 (a)	up to the third degree terms	BTI 1	Analyzing
10.(a)	Find the extreme value of $X^2 + V^2$ + Z^2 subject to the	DIL -4	Anaryzing
	condition		
10.(b)	x + y + z = 3a.	BTL -2	Understanding
	Expand in powers of and upto third degree		Analyzing
11.(a)	terms by Taylor's series -	BTL -4	TT 1 1'
11.(b)	Find the minimum value of $x yz$ $3z = a$.	BTL -2	Understanding
	Expand Taylor s series of $x_3 y^3 xy^2$ in powers of	100	
12.(a)	and ' + + –	BTL -5	Evaluating
	Find the volume of the greatest rectangular parallelepiped that can	61	
12.(b)	$- \frac{x^2}{y_2} \frac{y_2}{z^2}$	BTL -3	Applying
	be inscribed in the ellipsoid $a^2 + b^2 + c^2 = 1$.		
	Find the extreme values of $f(x, y) = x^3 + y^3 - 3x - 12y + y^3$		
13.(a)	20.	BTL -3	Applying
	Find the shortest and longest distances from the point (1,2,-1) to		11 7 0
	the sphere $x^2 + y^2 +$		
13.(b)	$z^2 = 24$	BTL -4	Analyzing
	A rectangular box open at the top is to have volume of 32 cm.	DTI A	
14.(a)	Find the dimension of the box requiring least material for its	вть -3	Applying
	Find the maximum and minimum distances of the point (3,4,12)		
	from the sphere $x^2 + y^2 + z$		
14.(b)	2 = 1.	BTL -4	Analyzing
UNIT III	INTEGRAL CALCULUS		

UNIT III INTEGRAL CALCULUS

Definite and Indefinite integrals - Substitution rule - Techniques of Integration - Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.

Q.No.	Question	Bloom's Taxonomy Level	Domain
		-	7

PART - A				
	Prove that the following integral by interpreting each in terms of	DTI 1		
1.	areas —	BIL-I	Remembering	
		DTI 4		
2.	Show that	BIL-I	Remembering	
3.	Evaluate – method areas.	BIL-2	Evaluating	
4.	Evaluate $\sqrt{-}$ interval of areas.	BTL -5	Evaluating	
5.	Evaluate the	DIL-5	Lvatuating	
6	Calculate ⁺⁺ dx	BTL -3	Applying	
0.		212 •	1 199-19-18	
7	Calculate /	BTL -3	Applying	
8	Find	BTL -3	Applying	
0	Find	 	Applying	
7.		DIL-J	Apprying	
10.	Evaluate $-1 X$	BTL-5	Evaluating	
11.	Calculate	BTL -3	Applying	
12.	Calculate	BTL -3	Applying	
13.	Evaluate _ ^{log}	BTL -2	Understanding	
14.	Evaluate	BTL -5	Evaluating	
		10		
15.	Evaluate $$	BTL -5	Evaluating	
16	Evaluate -	BTL -5	Evaluating	
17	Estimate	BTL -5	Evaluating	
17.	improper integral	DIL 5	Lvuluuting	
10.	, if possible	BTL -5	Evaluating	
19.	Find — "	BTL -3	Applying	
20	Prove that - dx is divergent.	BTL -1	Remembering	
	PART -B			
1 (a)	Evaluate the integral using Riemann sum method and verify the	RTI 5	Evaluating	
1.(a)	answer by fundamental theorem of calculus		Livaluating	
1.0	Calculate by using trigonometric	рті 2	A nulvin ~	
1. (D)	use it to		Applying	
	Evaluata - The using Diamong care by taking the			
2. (a)	right and points as sample points. Hence verify it by using	BTL -5	Evaluating	
	fundamental theorem of calculus			
2.42		DTI 2	Arralia	
2.(D)	Find , – by trigonometric substitution	DIL-J	Applying	
	Evaluate by using Riemann sum by taking the			
3. (a)	right and points as sample points. Hence verify it by using	BTL -5	Evaluating	
. /	fundamental theorem of calculus			
Downloaded from Engg Free.com				

3.(b)	Using trigonometric substitution evaluate	BTL -3	Applying
4. (a)	Evaluate	BTL -5	Evaluating
4.(b)	Obtain ————dx using trigonometric substitution	BTL -3	Applying
5. (a)	+ - / Evaluate the following integrals by interpreting interms of areas	BTL -5	Evaluating
5.(b)	Calculate using partial fraction	BTL -3	Applying
6. (a)	Evaluate by interpreting interms of areas.	BTL -5	Evaluating
6.(b)	$\begin{bmatrix} -1 \\ Find \end{bmatrix}$	BTL -3	Annlying
7. (b)		DILU	rippiying
7. (a)	Evaluate + by interpreting interms of areas.	BTL -5	Evaluating
	Use the substitution $t = tan_$, totransform the integral as a rational function of t and then evaluate /	BTL -3	Applying
	_		
8. (a)	Evaluate $-$ by interpreting interms of areas.	BTL -5	Evaluating
8.(b)	Calculate by partial fraction - + + dx.	BTL -3	Applying
9 (a)	Evaluate+	BTL -5	Evaluating
9.(b)	Compute ⁺ partial faction.	BTL -3	Applying
10 (a)	Evaluate		11 5 6
10 . (<i>a</i>)		BTL -5	Evaluating
10.(b)	Estimate _ by using an appropriate substitution. +++	BTL -2	Understanding
11.(a)	Evaluate /	BTL -5	Evaluating
11.(b)	Determine evaluate if the integral is convergent	BTL -6	Creating
12.(a)	Prove the reduction formula / - / Hence by using it	BTL -1	Remembering
12.(b)	evaluate and values of p is the integral convergent?	BTL -6	Creating
13.(a)	 Prove the reduction formula Downloaded from EnggTree.com 	BTL -1	Remembering

	evaluate / , /	and		
13.(b)	Determine whether the integral $\{\infty}^{\infty}$	is convergent or	BTL -6	Creating
14.(a)	Prove that	. – (n≠1)	BTL -1	Remembering
14.(b)	Evaluate the integral (i) (ii) Show-	that is	BTL -5	Fyaluating
UNIT IV	MULTIPLE INTEGRALS			Linutuing

Double integrals – Change of order of integration – Double integrals in polar coordinates – Area enclosed by plane curves – Triple integrals – Volume of solids – Change of variables in double and triple integrals

Q.No.	Question	Bloom's Taxonomy Level	Domain		
PART - A					
1.	Evaluate —	BTL -5	Evaluating		
2.	Estimate	BTL -2	Understanding		
3.	Compute the area bounded by the lines	BTL -3	Understanding		
4.	Calculate = , = =	BTL -2	Understanding		
5.	Compute	BTL -3	Applying		
6.	Estimate $\sqrt{-}$	BTL -2	Understanding		
7.	Compute	BTL -3	Applying		
8.	Evaluate	BTL -5	Evaluating		
9.	Evaluate	BTL -5	Evaluating		
10.	Evaluate over the region bounded by $=$, $=$,	BTL -5	Evaluating		
11.	Change the order of integration	BTL -3	Applying		
12.	Change the order of integration ,	BTL -3	Applying		
13.	Change the order of integration $\infty \infty$,	BTL -3	Applying		
14.	Evaluate + + over the' region bounded by	BTL -5	Evaluating		
	Write down the double integralto find the area of the circles		<u>C</u>		
15.	<u> </u>	BTL -1	Remembering		
16.	Evaluate	BTL -5	Evaluating		
17.	Evaluate +	BTL -5	Evaluating		
18.	Evaluate +	BTL -5	Evaluating		

19 . 20.	Find + +	BTL -1 BTL -3	Remembering		
++					
1.(a)	Find over the positive quadrant of the circle	BTL -1	Remembering		
1. (b)	Change the order of integration $\sqrt{-}$ and hence evaluate it	BTL -3	Applying		
2. (a)	Evaluate	BTL -5	Evaluating		
2.(b)	By change the order of integration and evaluate –	BTL -3	Applying		
3. (a)	$\frac{x^2}{b^2} + \frac{y^2}{b^2} = \frac{1}{b^2}$	BTL -4	Analyzing		
3.(b)	Change the order of integration d and hence evaluate it	BTL -3	Applying		
4. (a)	By changing in to polar Co – ordinates , evaluate $\infty \infty - +$. Hence find the value of $\infty -$	BTL -3	Applying		
4.(b)	Change the order of integration and hence and hence	BTL -3	Applying		
5. (a)	Evaluate $\sqrt{2}$ + by changing into polar co – ordinates	BTL -5	Evaluating		
5.(b)	Change the order of integrationand henceevaluate it $\sqrt{-}$ +Using the transformation,	BTL -3	Applying		
6. (a)	Prove that $+ = , - $ taken over the area of triangle	BTL -4	Analyzing		
6.(b)	Find the area of the cardioids x+	BTL -1	Remembering		
7. (a)	polar coordinates ——— taken throughout the sphere	BTL -5	Evaluating		
7. (b)	Find the volume of the tetrahedron bounded by the coordinateplanes and $ -$ Evaluate the integralwhere R is the trapezoidal	BTL -1	Remembering		
8. (a)	region with vertices (1,0) (2,0) (0,-2) (0,-1).	BTL -5	Evaluating		
8.(b) 9. (a)	Calculate — where V is the region bounded by	BTL -3 BTL -3	Applying Applying		
	= , = , = + + = = and				

9.(b)	Evaluate	BTL -5	Evaluating
10.(a)	Change the integral into polar coordinatesandhence evaluate it $\sqrt{-+}$	BTL -3	Applying
10.(b)	Find the volume of the ellipsoid	BTL -1	Remembering
11.(a)	Find the area which is inside the circle and outside the cardioids	BTL -1	Remembering
11.(b)	Evaluate $\sqrt{-}$ <th>BTL -5</th> <th>Evaluating</th>	BTL -5	Evaluating
12.(a)	outside the circle by double integral = +	BTL -1	Remembering
12.(b)	Find the value of e through the positive spherical .	BTL -1	Remembering
13.(a)	Evaluate *by converting into polar coordinates where R is the first quadrant part of the region bounded by two circles	BTL -5	Evaluating
	Formulate the volume bounded by the cylinder		
13.(b)	+ - + -	BTL -6	Creating
14.(a)	Evaluate · ·	BTL -5	Evaluating
14.(b)	Find the area enclosed by the curves and and	BTL -1	Remembering

UNIT V DIFFERENTIAL EQUATIONS

Higher order linear differential equations with constant coefficients - Method of variation of parameters – Homogenous equation of Euler's and Legendre's type – System of simultaneous linear differential equations with constant coefficients - Method of undetermined coefficients.

Q.No.	Question	Bloom's Taxonomy Level	Domain			
	PART – A					
	Find the P.I of $(D -1)^2 y = \sinh \theta$					
1.	2 x .	BTL-1	Remembering			
	Find the P.I of $(D^2 + 1)y = \cos y$					
2.	2 x .	BTL-1	Remembering			
3.	Find the P.I of	BTL-1	Remembering			
	Find the particular Integral for $D_2 D y x$	BTL-1	Remembering			
3.	Find the P.I of D^2 , $y x^2$	BTL-1	Remembering			
	Find the P.I of $(D^2 + 4D + 5)y =$					
6.	e ^{-2 x}	BTL-1	Remembering			
7.	Estimate the P.I of .	BTL-2	Understanding			
8.	Estimate the P.I of $+$ $+$ = .	BTL-2	Understanding			
9.	Estimate the P.I of	BTL-2	Understanding			
10.	Find the complementary function of Downloaded from EnggTree.com	BTL-2	Understanding			

	Solve (EnggTree.com		
11.	D	$-1\mathbf{y} = 0.$	+ =	BTL-3	Applying
12.	Solve	; •		BTL-3	Applying
					12

13.	Find the : $Dx + y^2 = 0$, of	BTL-3	Applying
14.	complementary function " '	BTL-4	Analyzing
15.	Solve (D +a)y=0 + =	BTL-3	Applying
16.	Convert in to differential equations with constant coefficients	BTL-6	Creating
17.	Test whether the equation " is linear equation with constant coefficients if not convert. =	BTL-5	Evaluating
18.	Solve	BTL-5	Evaluating
19.	the equation into Rewrite	BTL-6	Creating
20.	Rewrite the equation with constant coefficients + =	BTL-6	Creating
	PART-B	I	ŀ
1.(a)	Identify the solution of	BTL-1	Remembering
1. (b)	Using the method of variation of parameter to Evaluate	BTL-2	Understanding
2. (a)	Identify the solution of ² ^{2x} ²	BTL-1	Remembering
2.(b)	Using the method of variation of parameter to Evaluate $(D^2 + 25) y = \sec 5x.$	BTL-2	Understanding
	$(D^3 - 7D - 6)y = (1 + x)e$		
3. (a)	Identify the solution of $2x$	BTL-1	Remembering
3.(b)	Solve $y''-2y'+y = e$ x log x, Using the method of variation of parameters.	BTL-3	Applying
4. (a)	Give the complimentary function and particular integral of $-3D + 2y = x \cos \left(D^2 x \right)$	BTL-2	Understanding
4.(b)	of	BTL-4	Analyzing
5. (a)	Solve $\begin{cases} x^2 D^2 - xD + y = x \sin \log \frac{1}{x} \\ x + \frac{1}{x} \end{cases}$.	BTL-3	Applying
5.(b)	Evaluate the simultaneous equations $\frac{dx}{5t} + 2x - 3y = \frac{dy}{2t} - 3x + 2y = 2e$ x(0) = 0, given that $y(0) = -1.$	BTL-5	Evaluating
6. (a)	Give the general solution of $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = \sin \left(\log x \right)$	BTL-1	Remembering
6.(b)	Solve: $\frac{dx}{dt} + 2y = \frac{\sin dy}{2t} - 2x = \cos 2t$.	BTL-3	Applying
7. (a)	Find the solution of $(2 \times + 3)^2 \frac{d^2 y}{3} (2 \times + \frac{d y}{3})^{-12 y} = 0$	BTL-1	Remembering

8. (a)	Solve by method of variation of parameters	BTL-3	Applying
8.(b)	Identify the solution of $Dx-5x + 3y = \sin t$, $D^2y+5y-3x = t$	BTL-1	Remembering
9. (a)	Solve the differential equationby method ofvariation of parameters'+	BTL-3	Applying
10.(a) 9.(b)	Evaluate the general solution of y =	BTL-5	Evaluating
	Solve the differential equation '- '+ = by method of variation of parameters	BTL-3	Applying
10.(b) 11.(a)	Formulate the ODE and hence solve + '- + Solve the equation	BTL-6 BTL-3	Creating Applying
11.(b) 12.(a)	Using method of undetermined coefficients solve + + = Solve - , -	BTL-1 BTL-3	Remembering Applying
12.(b) 13.(a)	Using method of undetermined coefficients solve +	BTL-3 BTL-3	Applying Applying
13.(b)	Solve (+3)	BTL-3	Applying
14.(a)	Solve $-+x=$, $-+y=t$	BTL-3	Applying
14.(b)	Using method of undetermined coefficients	BTL-3	Applying