VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF PHYSICS

QUESTION BANK

I SEMESTER PH8151-ENGINEERING PHYSICS

Regulation – 2017

Academic Year 2017 – 18

Prepared by

Dr.H.Krishnan, Dr.M.Anbuchezhiyan, Dr.K.Thiruppathi, Mrs.D.Praveena, Mrs.S.Gandhimathi, Mrs.R.Nithya Balaji, Mrs.R.Sasireka, Mrs.M.P.Ramya Rajan, Dr.S.Murugavel,

VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF PHYSICS

QUESTION BANK

SUBJECT : PH8151- ENGINEERING PHYSICS

SEM / YEAR: I SEM/AY-2017-2018

UNIT I - PROPERTIES OF MATTER

Elasticity – Stress-strain diagram and its uses - factors affecting elastic modulus and tensile strength – torsional stress and deformations – twisting couple - torsion pendulum: theory and experiment - bending of beams - bending moment – cantilever: theory and experiment – uniform and non-uniform bending: theory and experiment - I-shaped girders - stress due to bending in beams.

	PART - A		
Q.No	Questions	BT Level	Competence
1.	Define elasticity and plasticity.	BTL2	Understand
2.	Define stress and strain and write down their units.	BTL2	Understand
3.	What are the different types of stress and strain?	BTL1	Remember
4.	Define elastic fatigue.	BTL2	Understand
5.	State Hooke's law.	BTL2	Understand
6.	What do you infer from stress and strain diagram?	BTL4	Analyse
7.	List the three modulii of elasticity.	BTL1	Remember
8.	What force is required to stretch a steel wire to double its length when its area of cross section is 2 cm^2 and young's modulus is $2 \times 10^{11} \text{ N/m}^2$.	BTL3	Apply
9.	What is Poison's ratio?	BTL1	Remember
10.	How do temperature and impurity affect the elasticity of materials?	BTL4	Analyse
11.	Define torque.	BTL2	Understand
12.	A wire of length 1 m and diameter 1 mm is clamped at one of its ends. Calculate the couple required to twist the other end by 90°. Given modulus of rigidity = 298 GPa.	BTL3	Apply
13.	Define torsional stress.	BTL1	Remember
14.	What is a beam?	BTL2	Understand
15.	How are the various filaments of a beam affected when the beam is loaded?	BTL4	Analyse
16.	Define cantilever.	BTL2	Understand
17.	When a wire is bent back and forth it becomes hot? Why?	BTL5	Evaluate
18.	Calculate the young's modulus of the material in the cantilever depression method. The length of cantilever beam is 1m which is suspended with a load of 150 gm. The depression is found to be 4 cm. The thickness of the beam is 5 mm and breadth is 3 cm.	BTL3	Apply
19.	An elastic wire is cut into half of its original length. How will it affect the maximum load the wire can support?	BTL5	Evaluate
20.	What are the advantages of I- shaped girders?	BTL5	Evaluate

Downloaded from EnggTree.com

	PART - B		
1.	How will you classify three types of elastic moduli? Explain with necessary diagrams. Write the relationship between three moduli of elasticity. (13)	BTL5	Evaluate
2.	Draw stress strain diagram and discuss the behaviour of ductile material under loading. (13)	BTL2	Understand
3.	Explain the factors affecting the elasticity of the material. (13)	BTL2	Understand
4.	Derive an expression for the torsional couple per unit angular twist when a cylinder is twisted. (13)	BTL5	Evaluate
5.	Derive an expression for the period of oscillation of a torsional pendulum. How can it be used to determine the torsional rigidity of awire. (13)	BTL5	Evaluate
6.	What is torsional pendulum? How it is used to determine the a) Moment of inertia of the disc. b) Rigidity modulus of the wire using moment of inertia c) moment of inertia of a irregular body. (13)	BTL1	Remember
7.	Give the theory of torsional pendulum and describe a to find the moment of inertia of an irregular body.method (13)	BTL2	Understand
8.	What is meant by bending moment of a beam? Derive the expression for the bending moment of a beam.(13)	BTL1	Remember
9.	Derive the expression for the depression at the free end of a cantilever due to load. Describe an experiment to determine the young's modulus of the cantilever using this expression. (13)	BTL1	Remember
10.	 i) Derive with relevant theory how a cantilever may be used to determine the Youngs modulus of the material of bar? (10) ii) A circular and a square cantilever are made of same material and have equal area of cross section and length. Find the ratio of their depression, for the given load. (3) 	BTL4	Analyse
11.	Explain with necessary theory the determination of young's modulus of elasticity of the material of the beam supported at its ends and loaded in the middle. Describe an experiment to determine the young's modulus of the material using this method. (13)	BTL5	Evaluate
12.	Discuss the method to determine the young's modulus of elasticity of the material of the beam supported at both the ends which are equidistant from the centre and also describe an experiment to determine the young's modulus of the material using this method. (13)	BTL5	Evaluate
13.	How will you determine the young's modulus of material of a bar by non-uniform bending method? Explain briefly the theory behind the determination of young's modulus. (13)	BTL4	Analyse
14.	i) Write a short note on I shaped girders. Give its applications and advantages.(10)ii) Explain stress due to bending in beams.(3)	BTL1	Remember

UNIT II - WAVES AND FIBER OPTICS

Oscillatory motion – forced and damped oscillations: differential equation and its solution – plane progressive waves – wave equation. Lasers : population of energy levels, Einstein's A and B coefficients derivation – resonant cavity, optical amplification (qualitative) – Semiconductor lasers: homojunction and heterojunction – Fiber optics: principle, numerical aperture and acceptance angle - types of optical fibres (material, refractive index, mode) – losses associated with optical fibres - fibre optic sensors: pressure and displacement.

	PART – A		
Q.No	Questions	BT Level	Competence
1.	Define the terms i) Time period ii) Frequency.	BTL 1	Knowledge
2.	What is meant by damped vibrations? Give examples.	BTL 1	Knowledge
3.	What do you understand by the term Dead Beat? Give Examples.	BTL 2	Understand
4.	Differentiate between free and forced vibrations.	BTL 4	Analyse
5.	A particle is executing SHM of amplitude 0.2 cm. If its velocity at the mean position is 5 m/s, then find its frequency.	BTL 4	Analyse
6.	Define plane progressive wave.	BTL 1	Knowledge
7.	State the properties of laser beam.	BTL 2	Understand
8.	Spatial and temporal coherence are major attributes of a lasing beam. Comment.	BTL 6	Creating
9.	Write the difference between spontaneous emission and stimulated emission.	BTL 4	Analyse
10.	What is meant by population inversion and metastable state?	BTL 1	Knowledge
11.	Can a two level system be used for the production of laser? Why?	BTL 2	Understand
12.	What is an optical resonator cavity? Mention its role in a laser?	BTL 3	Apply
13.	Calculate the wavelength of light emission from GaAs whose band gap is 1.44 eV.	BTL 4	Analyse
14.	List out the conditions to be satisfied for total internal reflection.	BTL 3	Apply
15.	What do you mean by the acceptance angle for an optical fibre? Show that it is related to the numerical aperture.	BTL 3	Apply
	Differentiate between single mode and multi mode fibre.	BTL 4	Analyse
17.	A silica optical fibre has a core refractive index of 1.51 and a cladding refractive index of 1.48. Determine the critical angle at the core cladding interface.	BTL 3	Apply
18.	The maximum angle of acceptance for an optical fibre is 11.54°. Find the refractive index of cladding if the core refractive index is 1.60.	BTL 3	Apply
19.	Distinguish between step- index and graded index fibres.	BTL 4	Analyse
20.	What is an active and passive fibre optic sensor?	BTL 1	Knowledge
	PART – B		
1.	Obtain the differential equation of damped harmonic oscillation and discuss the special cases of oscillatory motion. (13)	BTL2	Understand
2.	Discuss the theory of forced harmonic oscillations. How does sharpness of resonance depend on damping? (13)	BTL 4	Analyse

3.	Establish a differential equation of motion for a damped harmonic oscillator. Discuss the conditions for over damped, critical damped and under damped oscillations. (13)	BTL 1	Knowledge
4.	Derive the expression for the wave equation of a plane progressive wave. (13)	BTL 2	Understand
5.	i) Derive an expression for Einstein's coefficient of spontaneous and	BTL 2	Understand
	stimulated emissions. (10)	BTL 4	Analysa
	(ii) How laser light differ from ordinary light? (3)	DIL 4	Analyse
6.	Explain the principle, construction and working of a semiconductor diode laser. Mention its advantages and disadvantages. (13)	BTL 4	Analyse
7.	With suitable diagram, explain how the laser action is achieved in homo junction and hetero junction lasers?(13)	BTL 4	Analyse
8.	i) For a hetero junction semiconductor laser, the band gap of the	BTL 3	Apply
	semiconductor used is 1.44 eV. By doping, the band gap of the semiconductor is increased by 0.2 eV. Calculate the change in the wavelength of the laser. (6)		Analyse
<u> </u>	ii) Differentiate between homo junction and hetero junction laser. (7) Define numerical aperture and derive an expression for numeri	BTL 4	-
	aperture and angle of acceptance of fibre in terms of refractive index of the core and cladding. Mention any six advantages of optical fibre	BTL 1	Knowledge
10	for communication as a wave guide. (13)		
10.	How optical fibers are classified based on modes, material and refractive index profile? (13)	BTL 2	Understand
11.	i) Discuss the following losses in optical fibres.	BTL 2	Understand
	 a). Scattering loss b). Bending loss c). Absorption loss (10) ii) The optical power after propagating through a fibre of 1.5 km length is reduced to 25 % of its original value. Compute the fibre loss in db/km. (3) 	BTL 5	Evaluation
12.	Explain the construction and working of pressure and displacement sensors. (13)	BTL 4	Analyse
13.		BTL 2	Understand
14.	What are the different types of fibre optic sensors? Explain the working of any two sensors. (13)	BTL 1	Knowledge
	UNIT III - THERMAL PHYSICS		
Transfe	er of heat energy - thermal expansion of solids and liquids - expansion	joints - bimet	allic strips - thermal
conduc	tion convection and radiation – heat conductions in solids – thermal con-	nductivity - Fo	rhe's and Lee's disc

ransfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation – heat conductions in solids – thermal conductivity - Forbe's and Lee's disc method: theory and experiment - conduction through compound media (series and parallel) – thermal insulation – applications: heat exchangers, refrigerators, ovens and solar water heaters.

PART – A			
Q.No	Questions	BT Level	Competence
1.	What are the modes of heat transferred from one place to another?	BTL 1	Knowledge
2.	Mention the types of thermal expansion of solids.	BTL 1	Knowledge
3.	Define coefficient of linear expansion of solids.	BTL 1	Knowledge
4.	Define coefficient of superficial expansion.	BTL 1	Knowledge

5.	Define coefficient of cubical expansion.	BTL 1	Knowledge
6.	Explain the term co-efficient of apparent and real expansion of liquid.	BTL 2	Understand
7.	A circular hole of diameter 2.00 cm is made in an aluminium plate at 0 ⁰ C. What will be the diameter at 100 ⁰ C? Linear expansion for	BTL 3	Apply
	aluminium = $2.3 \times 10^{-3} / {}^{0}C$		
8.	What is thermal conduction?	BTL 1	Knowledge
9.	Define coefficient of thermal conductivity and mention its unit.	BTL 1	Knowledge
10.	How are heat conduction and electrical conduction analogous to each other?	BTL 4	Analyze
11.	Define thermal resistance.	BTL 1	Knowledge
12.	What is bimetallic strip? Give its use.	BTL 1	Knowledge
13.	What is meant by thermal insulation?	BTL 1	Knowledge
14.	The roof building is often painted white during summer. Why?	BTL 4	Analyze
15.	What are the factors to be considered in order to maintain a comfortable inside the building?	BTL 3	Apply
16.	How much heat will be conducted through a slab of area $90 \times 10^{-4} \text{ m}^2$ and thickness 1.2×10^{-3} m in one second when its opposite faces are maintained at difference in temperature of 20 K. The coefficient of thermal conductivity of that material is 0.04 Wm ⁻¹ K ⁻¹	BTL 3	Apply
17.	Mention the properties of the thermal insulating materials.	BTL 1	Knowledge
18.	What is meant by solar power?	BTL 2	Understand
19.		BTL 2	Understand
20.	Define oven.	BTL 1	Knowledge
10	PART – B		0
1.	i). Explain the different modes of transferring heat energy with example.	BTL 2	Understand
	(8)	BTL 4	Analyze
	ii). Derive the expression for thermal conductivity with unit. (5)		
2.	Define expansion of joints. What are the types of expansion joints and write in detail about it. (13)	BTL 1	Knowledge
3.	i) Write the principle and working of bimetallic strip. (6)		
	ii) Describe the application and advantages of bimetallic strips. (7)	BTL 2	Understand
4.	Describe Forbe's method to determine thermal conductivity of metals with relevant theory and experiment. (13)	BTL 2	Understand
5.	Explain the method of determining thermal conductivity of good conductors. (13)	BTL 4	Analyze
6.		BTL 2	Understand
7.	Derive an expression for the quantity of heat flow through a metal slab whose faces are kept at two different temperatures. Use this expression to determine the thermal conductivity of a bad conductor. (13)	BTL 5	Evaluate
8.	Derive the expression for effective thermal conductivity through compound media in series and parallel. Also discuss the application of it. (13)	BTL 5	Evaluate

9.	i) Write an essay about thermal insulation inside a room. (10)	BTL 2	Understand
	ii) The total area of a glass window pane is 0.8 m ² . Calculate how much		
	heat is conducted per hour through the glass window pane if thickness		
	of glass is 3 mm. The temperature of the inside surface is 25 °C and		
	outside surface is 4 °C. The thermal conductivity of glass is		
	$1.1 \text{ Wm}^{-1}\text{K}^{-1}$. (3)	BTL 3	Apply
10.	Write in detail about thermal insulation. (13)	BTL 2	Understand
11.	What is heat exchanger? Explain in detail about heat exchangers. (13)	BTL 4	Analyze
12.	Define refrigeration. Describe the principle and working of refrigeration. (13)	BTL 4	Analyze
13.	Write short note on		
	i) Solar water heater (7)		TT 1 . 1
	ii) Oven (6)	BTL 2	Understand
14.	i) How the solar power can be used in our domestic life point out the	BTL 5	Evaluate
	important methods? (5)		
	ii) A rod of 0.25 m long and 0.892×10^{-4} m ² area of cross section is		
	heated at one end through 393 K while the other end is kept at 323 K.	Y	
	The quantity of heat which will flow in 15 minutes along the rod is)	
	8.811×10^3 joule. Calculate the thermal conductivity of the rod.	BTL 3	Apply
	(4)		
	iii) Two metal bars A and B are 50 cm and 70 cm long respectively and		
	have thermal conductivities 385 $\text{Wm}^{-1}\text{K}^{-1}$ and 296 $\text{Wm}^{-1}\text{K}^{-1}$		
	respectively. They are joined together by welding. The outer end of A		
	is at 363 K and the outer end of B is at 303 K. Calculate the		
			Apply
	temperature at the welded joint assuming that their cross sections are	BTL	
	equal. (4)		1

wave p Schröd	UNIT IV - QUANTUM PHYSICS oody radiation – Planck's theory (derivation) – Compton effect: theory particle duality – electron diffraction – concept of wave function a inger's wave equation – time independent and time dependent e ional rigid box – tunnelling (qualitative) - scanning tunnelling microsco	nd its physica quations – pa	al significance -
	PART – A		
Q.No	Questions	BT Level	Competence
1.	What is meant by energy spectrum of a black body? What do you infer from it?	BTL 1	Knowledge
2.	What are the postulates of Planck's quantum theory?	BTL 1	Knowledge
3.	Define Wien's displacement law.	BTL 1	Knowledge
4.	State Rayleigh - Jeans law. What are its limitations?	BTL 1	Knowledge
5.	What is Compton wavelength? Give its value.	BTL 1	Knowledge
6.	State the expression for Compton shift. Why it is not observable in the visible region of electromagnetic spectrum?	BTL 2	Understand

Downloaded from EnggTree.com

	EnggTree.com		
7.	X -ray photon of wave length 0.3 Å is scattered through an angle 45° by a loosely bound electron. Find the wave length of the	BTL2	Understand
8.	scattered photon. Write any two physical significance of wave function.	BTL 5	Evaluate
9.	How are matter-waves different from electromagnetic waves?	BTL 4	Analyze
10.	What is wave particle duality?		
11.	Write down the expression for the wavelength of matter waves.	BTL 2	Understan
12.		BTL 2	Understan
-13.	A proton is moving with a speed of 2×10^8 m/s. Find the wavelength of the matter wave associated with it.	BTL 3	Applying
14.	A cylinder filled with helium and heated up to 27 0 C. If a beam of helium atoms emerges out of the cylinder, then calculate the de- Broglie wavelength associated with the helium atoms. Given that mass of one helium atom is 6.7 x 10 ⁻²⁷ kg and k = 1.38x10 ⁻²³ J/K.	BTL 2	Understand
15.	-	BTL 2	Understand
16.	Calculate the energy required for an electron to jump from ground state to second excited state in a potential well of width "L". What are Eigen values and Eigen function?	BTL 3	Apply
	What are Eigen values and Eigen function? What is the principle of scanning tunnelling microscope?	BTL 1	Knowledg
19.	Mention the major applications of quantum tunnelling.	DILI	itilo wiedg
20.	List out the limitations of scanning tunnelling microscope.	BTL 4	Analyze
	PART – B	BTL 5	Evaluate
1.	Write the postulates of Planck's quantum theory of radiation. Using		
	quantum theory derive an expression for the average energy emitted	BTL 3	Applying
2.	by a black body and arrive at Planck's radiation law in terms of frequency. (3 + 10) i) Derive the expression for Planck's quantum theory of radiation. (10)	BTL 4	Analyze
3.	 ii) Deduce Wien's displacement law & Rayleigh-Jeans law from Planck's quantum theory of radiation. (3) What is Compton Effect? Give the theory of Compton effect and 	BTL 2	Understand
4.	show that the Compton shift (13) (13) Derive an expression for the change in wavelength suffered by an X-ray Photon when it collides with an electron and describe the	BTL 2	Understand
5.	experimental part with necessary diagrams. (13) Explain Compton effect and its physical significance. Derive the relation giving the change of wavelength the energy of recoil	BTL 4	Analyze
6.	electron and recoil angle. (13) Derive the expression for de-Broglie wavelength for matter waves. Express the de-Broglie Wavelength in terms of energy and voltage.	BTL 3	Analyze
	(13)	BTL 2	Understand

BTL 2 Understand

7.	i) Explain the physical significance of wave function. (7)	BTL 5	Evaluate
	ii) What are matter waves? Write the properties of matter waves.(6)	DILJ	Lvaluate
8.	Derive Schrodinger's time independent wave equation. (13)	BTL 4	Evaluate
9.	Derive Schrodinger's time dependent wave equation. (13)	BTL 3	Apply
10.	Derive Schrodinger's wave equation for a particle in a one		
	dimensional box. Solve it to obtain Eigen function and show that	BTL 2	Understand
	Eigen values are discrete. (13)		
11. I	Discuss the case of particle in a box on Schrodinger wave equation.	BTL 3	Apply
	Apply this to electron in metal. (13)	DIL 5	Арргу
12.	Show that wave function for a particle confined in an infinite one		
	dimensional potential well of length 'L' is given. Hence discuss the	BTL 3	Apply
	energy levels and their discreteness. (13)		
13.	Explain the phenomenon of quantum tunnelling with schematic		
	diagram explain the construction and working of Scanning	BTL 1	Knowledge
	Tunnelling Microscope.		
14.	Discuss the construction, working and applications of Scanning		
	Tunnelling Microscope. Also mention its advantages and	BTL 2	Knowledge
	disadvantages. (13))	

UNIT V - CRYSTAL PHYSICS

Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances - coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures - crystal imperfections: point defects, line defects – Burger vectors, stacking faults – role of imperfections in plastic deformation - growth of single crystals: solution and melt growth techniques.

	PART - A		
Q.No	Questions	BT Level	Competence
1.	What are single crystalline materials?	BTL1	Knowledge
2.	Distinguish between crystalline and non-crystalline materials.	BTL4	Analysing
3.	What is meant by primitive and non-primitive cell? Give an example.	BTL1	Knowledge
4.	Define unit cell.	BTL1	Knowledge
5.	Based on the criteria find out the crystal structure for the following. (i) $a = b = c = 4.74$ Å and $\alpha = \beta = \gamma = 60^{\circ}$ (ii) $a = b = c = 4.74$ Å and $\alpha = \beta = \gamma = 90^{\circ}$	BTL4	Analysing
6.	What are Bravais lattice?	BTL1	Knowledge
7.	What are lattice parameters for a unit cell?	BTL1	Knowledge
8.	Define space lattice. How it is useful to describe a crystal structure?	BTL1	Knowledge
9.	Draw the planes for Miller Indices (100), (110) and (111).	BTL2	Understand
10.	A crystal plane cut at 3a, 4b and 2c distances along the crystallographic axes. Find the Miller Indices of the plane.	BTL4	Analyse
11.	Distinguish between inter planar spacing and inter atomic spacing.	BTL3	Apply
12.	Iron has BCC structure with atomic radius 0.123Å. Find the lattice constant.	BTL4	Analyse

13.	How carbon atoms are arranged in diamond structure?	BTL3	Apply
	Defects in crystals are not always harmful. Justify.	BTL3	Apply
15.	What is meant by crystal defect?	BTL6	Creative
16.	What are Schottky defects?	BTL1	Knowledge
17.	Define Burger vector.	BTL1	Knowledge
18.		BTL1	Knowledge
19.	Write any two applications of Czochralski and Bridgmann techniques.	BTL1	Knowledge
20.		BTL3	Applying
	PART - B		
1.	Explain Seven Crystal System with neat diagram.(13)	BTL 2	Understand
2.	Explain the No. of atoms, atomic radius, Co-ordination number and	BTL 2	Understand
	packing factor for SC, BCC and FCC structures. (13)		
3.	i) Define the following terms a). Number of atoms per unit cell	BTL 1	Knowledge
	b). Atomic Radius c). Co-ordination number d). Atomic packing		
	factor. (8)		
	ii) Calculate the volume of an ECC unit call in terms of atomic radius	BTL 3	Apply
	ii) Calculate the volume of an FCC unit cell in terms of atomic radius'r'. (3)	DIL 3	Apply
	ʻr'. (3)		
	iii) An element has HCP structure. If the radius of the atom is 1.605 Å.		
	Find the volume of the unit cell. (2)	BTL 3	Apply
4.	i) Describe BCC structure. Derive expression for the number		
	of atoms, co-ordination number, atomic radius and packing factor.		
	(10)	BTL 2	Understand
F	 ii) The density of copper is 8980 kg/m³ and unit cell dimension is 3.61 Å, atomic weight of Cu is 63.54. Determine its crystal structure. Calculate the atomic radius and inter planar spacing of (110) plane. (3) i) Describe ECC structure. Derivative details about remainer of atomic structure. 	BTL 3	Apply
-5.	 i) Describe FCC structure. Derive the details about number. of atoms, co- ordination number, atomic radius and packing factor. (8) ii) Metallic iron changes from BCC to FCC at 910 °C and 	BTL 2	Understand
			A 1
	corresponding atomic radii vary from 1.258Å to 1.292Å. Calculate the percentage volume change during this structural change. (3)	BTL 3	Apply
	the percentage volume change during this structural change. (3)		
	iii) α - iron of atomic weight 55.85 solidifies into BCC structure and		
	has a density of 7860 kg/m ³ . Calculate the radius of an atom. (2)	BTL 3	Apply
6.	Explain HCP structure. Show that for an HCP structure $c/a = \sqrt{8} / \sqrt{3}$	BTL 2	Understand
_	and hence calculate packing fraction for HCP structure. $(3 + 10)$		
7.	i) Show that atomic packing factor for FCC and HCP are same. (6)	BTL 3	Apply
	ii) What are Bravais lattices? List out the axial length and interfacial angles of seven crystal systems. (5)	BTL 1	Knowledge
	iii) Show that for a simple cubic system (3)		U U
		BTL 3	Apply
0		BTL 2	Understand
8.	i) Derive the expression for the inter planar spacing or d-spacing for (bkl) planas of a subjective (10)	BIL 2	Understand
	(hkl) planes of a cubic structure. (10)		
	ii) Determine lattice constant for FCC lead crystal of radius 1.746 Å.		

9.	What is meant by crystal defects? Explain the various types of crystal	BTL 2	Understand
	defects with neat diagram. (2+11)		
10.	Explain about point defects and line defects with neat diagram. (13)	BTL 2	Understand
11.	Explain the role of imperfections in plastic deformation. (13)	BTL 2	Understand
12.	Explain the various solution growth techniques along with its merits and demerits. (13)	BTL 2	Understand
13.	Explain diamond cubic structure and obtain its no.of atoms per unit cell, atomic radius, co-ordination number and atomic packing factor. (13)	BTL 4	Analyse
14.	Explain the two melt growth techniques. i) Czochralski's method ii) Bridgmann technique (6+7)	BTL 2	Understand
	(° ')		