
EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

111

Mapping EER to ODB schema –Object identifier –reference types –row types –UDTs
–Subtypes and super types –user-defined routines –Collection types –Object Query
Language; No-SQL: CAP theorem –Document-based: MongoDB data model and CRUD
operations; Column-based: Hbase data model and CRUD operations.

5.1 Mapping EER to ODB schema

It is relatively straightforward to design the type declarations of object classes for an
ODBMS from an EER schema that contains neither categories nor n-ary relation-

Declare an extent for each class, and specify any key attributes as keys of the extent.
(This is possible only if an extent facility and key constraint declarations are available in
the ODBMS.)

Step 2. Add relationship properties or reference attributes for each binary relationship
into the ODL classes that participate in the relationship. These may be created in one or
both directions.

Depending on the cardinality ratio of the binary relationship, the relationship properties
or reference attributes may be single-valued or collection types. They will be single-
valued for binary relationships in the 1:1 or N:1 direction; they are collection types (set-
valued or list-valued) for relationships in the 1: N or M: N direction. An alternative way to
map binary M: N relationships is discussed in step 7.

If relationship attributes exist, a tuple constructor (struct) can be used to create a
structure of the form < reference, relationship attributes >, which may be included
instead of the reference attribute. However, this does not allow the use of the inverse

Step 1. Create an ODL class for each EER entity type or subclass. The type of the ODL
class should include all the attributes of the EER class. Multivalued attributes are
typically declared by using the set, bag, or list constructors.

If the values of the multivalued attribute for an object should be ordered, the list
constructor is chosen; if duplicates are allowed, the bag constructor should be chosen;
otherwise, the set constructor is chosen. Composite attributes are mapped into a tuple
constructor (by using a struct declaration in ODL).

If a binary relationship is represented by references in both directions, declare the
references to be relationship properties that are inverses of one another, if such a
facility exists. If a binary relationship is represented by a reference in only one direction,
declare the reference to be an attribute in the referencing class whose type is the
referenced class name.

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

112

constraint. Additionally, if this choice is represented in both directions, the attribute
values will be represented twice, creating redundancy.

This implicitly uses a tuple constructor at the top level of the type declaration, but in
general, the tuple constructor is not explicitly shown in the ODL class declarations.
Further analysis of the application domain is needed to decide which constructor to use
because this information is not available from the EER schema.

The ODL standard provides for the explicit definition of inverse relationships. Some
ODBMS products may not provide this support; in such cases, programmers must
maintain every relationship explicitly by coding the methods that update the objects
appropriately. The decision whether to use set or list is not available from the EER
schema and must be determined

Object and Object-Relational Databases

Step 3. Include appropriate operations for each class. These are not available from the
EER schema and must be added to the database design by referring to the origi- nal
requirements.

A constructor method should include program code that checks any constraints that
must hold when a new object is created. A destructor method should check any
constraints that may be violated when an object is deleted. Other methods should
include any further constraint checks that are relevant.

Step 4. An ODL class that corresponds to a subclass in the EER schema inherits (via
extends) the type and methods of its superclass in the ODL schema. Its specific
(noninherited) attributes, relationship references, and operations are specified, as
discussed in steps 1, 2, and 3.

Step 5. Weak entity types can be mapped in the same way as regular entity types.

An alternative mapping is possible for weak entity types that do not participate in any
relationships except their identifying relationship; these can be mapped as though they
were composite multivalued attributes of the owner entity type, by using the set < struct
< ... >> or list < struct < ... >> constructors. The attributes of the weak entity are included
in the struct < ... > construct, which corresponds to a tuple constructor. Attributes are
mapped as discussed in steps 1 and 2.

Step 6. Categories (union types) in an EER schema are difficult to map to ODL. It is
possible to create a mapping similar to the EER-to-relational mapping by declaring a
class to represent the category and defining 1:1 relationship between the category and
each of its superclasses. Another option is to use a union type, if it is available.

Step 7. An n-ary relationship with degree n > 2 can be mapped into a separate class,
with appropriate references to each participating class.

These references are based on mapping a 1: N relationship from each class that

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

113

represents a participating entity type to the class that represents the n-ary relationship.
An M: N binary relationship, especially if it contains relationship attributes, may also use
this mapping option, if desired.

5.2 Object identifier

An object identifier (OID) is an unambiguous, long-term name for any type of object or
entity.

The OID mechanism finds application in diverse scenarios, particularly in security, and is
endorsed by the International Telecommunication Union (ITU), the Internet Engineering
Task Force (IETF), and ISO.

What is an OID?

An object identifier (OID) is an extensively used identification mechanism jointly
developed by ITU-T and ISO/IEC for naming any type of object, concept or "thing" with a
globally unambiguous name which requires a persistent name (long life-time). It is not
intended to be used for transient naming. OIDs, once allocated, should not be re-used
for a different object/thing.

It is based on a hierarchical name structure based on the "OID tree". This naming
structure uses a sequence of names, of which the first name identifies a top-level
"node" in the OID tree, and the next provides further identification of arcs leading to sub-
nodes beneath the top-level, and so on to any depth.

A critical feature of this identification mechanism is that it makes OIDs available to a
great many organizations and specifications for their own use (including countries, ITU-
T Recommendations, ISO and IEC International Standards, specifications from national,
regional or international organizations, etc.).

How are OIDs allocated and what is a registration authority?

At each node, including the root, there is a requirement for some organization or
standard to be responsible for allocating arcs to sub-nodes and recording that
allocation (together with the organization the subordinate node has been allocated to),
not necessarily publicly. This activity is called a Registration Authority (RA).

In the OID tree, RAs are generally responsible only for allocation of sub-arcs to other
RAs that then control their own sub-nodes. In general, the RA for a sub-node operates
independently in allocating further sub-arcs to other organizations, but can be

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

114

constrained by rules imposed by its superior, should the superior so wish.

The registration tree is indeed managed in a completely decentralized way (a node gives
full power to its children).

The registration tree is defined and managed following the ITU-T X.660 & X.670
Recommendation series (or the ISO/IEC 9834 series of International Standards)

What is an OID repository?

Initially, it was left for each Registration Authority (RA)in the hierarchy to maintain its
own record of allocation beneath that RA, and to keep those allocations private if it so
chose. There was never any policing of this. An RA in the hierarchy was its own master
and operated autonomously.

In the early 1990s Orange developed software for their internal use which was generic
enough to provide a publicly available repository of OID allocations.

Information on OIDs is often buried inside the databases (perhaps sometimes paper)
maintained by an immense number of RAs. The information can be hard to access and
is sometimes private. Today this OID repository is regarded as the easiest way to
access a large amount of the publicly available information on OIDs: Many OIDs are
recorded but it does not contain all existing OIDs.

This OID repository is not an official Registration Authority, so any OID described on this
web site has to be officially allocated by the RA of its parent OID. The accuracy and
completeness of this OID repository rely on crowdsourcing, i.e., each user is welcome to
contribute data.

5.3 reference type

In SQL, a <reference type> is a pointer; a scalar constructed SQL <data type>. It points to
a row of a Base table that has the with REF value property – that is, a <reference type>
points to a UDT value.

Reference <data type>s

A <reference type> is defined by a descriptor that contains three pieces of information:

1. The <data type>’s name: REF.

2. The name of the UDT that the <reference type> is based on. (The UDT is known
as the referenced type.)

3. The scope of the <reference type>: a (possibly empty) list of the names of the
Base tables that make up the <reference type>’s scope.

REF

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

115

The required syntax for a <reference type> specification is as follows.

<reference type>:: =

REF (<UDT name>)

[SCOPE <Table name> [reference scope check]]

<reference scope check> ::=

REFERENCES ARE [NOT] CHECKED

[ON DELETE

{CASCADE | SET NULL | SET DEFAULT | RESTRICT | NO ACTION}]

A <reference type> specification defines a pointer: its value is a value that references
some site. (A site either does or does not have a REF value.) For example, this REF
specification defines a <reference type> based on a UDT (the “referenced type”) called
my_udt:

REF(my_udt)

As already mentioned, a REF is a pointer. The value in a REF coloumn “refers” to a row in

a Base table that has the with REF value property (this is a known as a typed table). The
row that the REF value points to contains a value of the UDT that the REF Column is
based on.

If you’re putting a REF specification in an SQL-Schema statement, the <AuthorizationID>
that owns the containing Schema must have the USAGE Privilege on “<UDT name>”.

If you’re putting a REF specification in any other SQL statement, then your current
<AuthorizationID> must have the USAGE Privilege on “<UDT name>”.

For each site that has a REF value and is defined to hold a value of the referenced UDT,
there is exactly one REF value – at any time, it is distinct from the REF value of any other

site in your SQL-environment. The <data type> of the REF value is REF (UDT).

[NON-PORTABLE] The data type and size of a REF value in an application program must

be some number of octets but is non-standard because the SQL Standard requires
implementors to define the octet-length of a REF value.

A REF value might have a scope: it determines the effect of a dereference operator on
that value. A REF value’s scope is a list of Base table names and consists of every row
in every one of those Base tables.

The optional SCOPE clause of a <reference type> specification identifies REF’s scope.
Each Table named in the SCOPE clause must be a referenceable Base table with a
structured type that is the same as the structured type of the UDT that REF is based on.
Here is an examples:

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

116

CREATE TABLE Table_1 (

column_1 SMALLINT,

column_2 REF(my_udt) SCOPE Table_2);

If you omit the SCOPE clause, the scope defaults to the Table that owns the Column
you’re defining.

If your REF specification with a SCOPE clause is part of a <Field definition>, it must
include this <reference scope checks>: REFERENCES ARE [NOT] CHECKED ON DELETE
NO ACTION.

If a REF specification with a SCOPE clause is part of a <Column definition>, it must
include a <reference scope checks> with or without the optional ON DELETE sub-clause.

The <reference scope check> clause may not be used under any other circumstances.

A <reference type> is a subtype of a <data type> if (a) both are <reference type>s and (b)
the UDT referenced by the first <reference type> is a subtype of the UDT referenced by
the second <reference type>.

If you want to restrict your code to Core SQL, don’t use the REF <data type>.

Reference Operations

A <reference type> is compatible with, and comparable to, all other <reference type>s of
the same referenced type – that is, <reference type>s are mutually comparable and
mutually assignable if they are based on the same UDT.

CAST

In SQL, CAST is a scalar operator that converts a given scalar value to a given scalar
<data type>. CAST, howver, can´t be used with <reference type>s. To cast REF values,
you´ll have to use a user-defined cast.

It isn’t, of course, possible to convert the values of every <data type> into the values of
every other <data type>. You can cast a <reference type> source to a UDT target and to
any SQL predefined <data type> target (except for <collection type>s and <row type>s)
provided that a user-defined cast exist for this purpose and your current
<AuthorizationID> has the EXECUTE Privilege on that user-defined cast. When you cast
a <reference type> to any legal target, your DBMS incokes the user-defined cast. When
you cast a <reference type> to any legal target, your DBMS invokes the user-defined
cast routine´s argument. The cast result in the value returned by the user-defined cast.

Assignment

In SQL, when a <reference type> is assigned to a <reference type> target, the
assignment is straightforward – however, assignment is possible only if your source’s
UDT is a subtype of the UDT of your target.

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

117

[Obscure Rule] Since only SQL accepts null values, if your source is NULL, then your
target’s value is not changed. Instead, your DBMS will set its indicator parameter to -1,
to indicate that an assignment of the null value was attempted. If your target doesn’t
have an indicator parameter, the assignment will fail: your DBMS will return the
SQLSTATE error 22002 "data exception-null value, no indicator parameter". Going the
other way, there are two ways to assign a null value to an SQL-data target. Within SQL,
you can use the <keyword> NULL in an INSERT or an UPDATE statement to indicate that
the target should be set to NULL; that is, if your source is NULL, your DBMS will set your
target to vNULL``. Outside of SQL, if your source has an indicator parameter that is set
to -1, your DBMS will set your target to NULL (regardless of the value of the source). (An
indicator parameter with a value less than -1 will cause an error: your DBMS will return
the SQLSTATE error 22010 "data exception-invalid indicator parameter value".) We’ll talk
more about indicator parameters in our chapters on SQL binding styles.

Comparison

SQL provides only two scalar comparison operators – = and <> – to perform operations
on <reference type>s. Both will be familiar; there are equivalent operators in other
computer languages. Two REF values are comparable if they’re both based on the same
UDT. If either of the comparands are NULL, the result of the operation is UNKNOWN.

Other Operations

With SQL, you have several other operations that you can perform on <reference type>s.

Scalar functions

SQL provides two scalar functions that operate on or return a <reference type>: the
<dereference operation> and the <reference resolution>.

<dereference operation>

The required syntax for a <dereference operation> is as follows.

<dereference operation>:: = reference_argument -> <Attribute name>

The <dereference operation> operates on two operands — the first must evaluate to a
<reference type> that has a non-empty scope and the second must be the name of an
Attribute of the <reference type>’s UDT.

The <dereference operation> allows you to access a Column of the row identified by a
REF value; it returns a result whose <data type> is the <data type> of <Attribute name>
and whose value is the value of the system-generated Column of the Table in the
<reference type>’s scope (where the system-generated Column is equal to
reference_argument). That is, given a REF value, the <dereference operation> returns
the value at the site referenced by that REF value. If the REF value doesn’t identify a site
(perhaps because the site it once identified has been destroyed), the <dereference
operation> returns NULL.

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

118

If you want to restrict your code to Core SQL, don’t use the <dereference operation>.

<reference resolutions>

The required syntax for a <dereference operation> is as follows.

<dereference operation>:: = reference_argument -> <Attribute name>

DEREF operates on any expression that evaluates to a <reference type> that has a non-
empty scope. It returns the value referenced by a REF value. Your current
<AuthorizationID> must have the SELECT WITH HIERARCHY Privilege on
reference_argument's scope Table.

If you want to restrict your code to Core SQL, don’t use DEREF.

Set Functions

SQL provides three set functions that operate on a <reference type>: COUNT and
GROUPING. Since none of these operate exclusively with REF arguments, we won’t
discuss them here; look for them in our chapter on set functions.

Predicates

In addition to the comparison operators, SQL provides eight other predicates that
operate on <reference type>s: the <between predicate>, the <in predicate>, the <null
predicate>, the <exists predicate>, the <unique predicate>, the <match predicate>, the
<quantified predicate> and the <distinct predicate>. Each will return a boolean value:
either TRUE, FALSE or UNKNOWN. Since none of them operates strictly on <reference
type>s, we won’t discuss them here. Look for them in our chapters on search conditions.

5.4 ROWTYPE Attribute

Row <data type>s

A <row type> is defined by a descriptor that contains three pieces of information:

The <data type>’s name: ROW.

The <data type>’s degree: the number of Fields that belong to the row.

A descriptor for every Field that belongs to the row. The Field descriptor contains the
name of the Field, the Field’s ordinal position in the <row type>, the Field’s <data type>
and nullability attribute (or, if the Field is based on a Domain, the name of that Domain),
the Field’s Character set and default Collation (for character string <data type>s) and
the Field’s <reference scope check> (for <reference type>s).

ROW

Example:

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

119

The required syntax for a <row type> specification is as follows.

<row type> ::= ROW (<Field definition> [{,<Field definition>}...])

<Field definition> ::= <Field name> {<data type> | <Domain name>}

[Obscure Rule] If the <data type> of a Field is CHAR, VARCHAR or CLOB, the Character
set that the Field’s values must belong to is determined as follows:

 If the <Field definition> contains a <data type> specification that includes a

 If the <Field definition> does not include a <data type> specification, but the Field
is based on a Domain whose definition includes a CHARACTER SET clause, the
Field’s Character set is the Character set named.

 If the <Field definition> does not include any CHARACTER SET clause at all –
either through a <data type> specification or through a Domain definition – the
Field’s Character set is the Character set named in the DEFAULT CHARACTER
SET clause of the CREATE SCHEMA statement that defines the Schema that the
Field belongs to.

CHARACTER SET clause, the Field’s Character set is the Character set named.
Your current <AuthorizationID> must have the USAGE Privilege on that Character
set.

[<reference scope check>]

[COLLATE <Collation name>]

A <row type> specification defines a row of data: it consists of a sequence of one or
more parenthesized {<Field name>,<data type>} pairs, known as Fields. The degree of a
row is the number of Fields it contains. A value of a row consists of one value for each
of its Fields, while a value of a Field is a value of the Field’s <data type>. Each Field in a
row must have a unique name.

Example of a <row type> specification:

ROW (field_1 INT, field_2 DATE, field_3 INTERVAL (4) YEAR)

A <Field name> identifies a Field and is either a <regular identifier> or a <delimited
identifier> that is unique (for all Fields and Columns) within the Table it belongs to. You
can define a Field’s <data type> either by putting a <data type> specification after <Field
name> or by putting a <Domain name> after the <Field name>. The <data type> of a
Field can be any type other than a <reference type> – in particular, it can itself be a <row
type>.

Example, of a <row type> specification;

It defines a row with one Field (called field_1) whose defined <data type> is DATE:

ROW (field_1 DATE)

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

120

For example, the effect of these two SQL statements:

CREATE SCHEMA bob AUTHORIZATION bob

DEFAULT CHARACTER SET INFORMATION_SCHEMA.LATIN1;

CREATE TABLE Table_1 (

column_1 ROW(

field_1 CHAR(10),

field_2 INT));

is to create a Table in Schema bob. The Table has a Column with a ROW <data type>,
containing two Fields.

The character string Field’s set of valid values are fixed length character strings, exactly
10 characters long, all of whose characters must be found in the
INFORMATION_SCHEMA.LATIN1 Character set – the Schema’s default Character set.
The effect of these two SQL statements:

CREATE SCHEMA bob AUTHORIZATION bob

DEFAULT CHARACTER SET INFORMATION_SCHEMA.LATIN1;

CREATE TABLE Table_1 (

column_1 ROW(

field_1 CHAR(10) CHARACTER SET INFORMATION_SCHEMA.SQL_CHARACTER,

field_2 INT));

is to create the same Table with one difference: this time, the character string Field’s
values must consist only of characters found in the
INFORMATION_SCHEMA.SQL_CHARACTER Character set – the explicit Character set
specification in CREATE TABLE constrains the Field’s set of values. The Schema’s
default Character set does not.

[Obscure Rule] If the <data type> of a Field is CHAR, VARCHAR, CLOB, NCHAR, NCHAR
VARYING or NCLOB, and your <Field definition> does not include a COLLATE clause, the
Field has a coercibility attribute of COERCIBLE – but if your <Field definition> includes a
COLLATE clause, the Field has a coercibility attribute of IMPLICIT. In either case, the
Field’s default Collation is determined as follows:

 If the <Field definition> includes a COLLATE clause, the Field’s default Collation is
the Collation named. Your current <Authorization ID> must have the USAGE
Privilege on that Collation.

 If the <Field definition> does not include a COLLATE clause, but does contain a

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

121

<data type> specification that includes a COLLATE clause, the Field’s default
Collation is the Collation named. Your current <Authorization ID> must have the
USAGE Privilege on that Collation.

 If the <Field definition> does not include a COLLATE clause, but the Field is based
on a Domain whose definition includes a COLLATE clause, the Field’s default
Collation is the Collation named.

 If the <Field definition> does not include any COLLATE clause at all – either
explicitly, through a <data type> specification or through a Domain definition –
the Field’s default Collation is the default Collation of the Field’s Character set.

[Obscure Rule] If the <data type> of a Field is REF(UDT), your current <AuthorizationID>
must have the USAGE Privilege on that UDT. If the <data type> of a Field includes REF
with a <scope clause>, your <Field definition> must also include this <reference scope
check> clause: REFERENCES ARE [NOT] CHECKED ON DELETE NO ACTION – to
indicate whether references are to be checked or not. Do not add a <reference scope
check> clause under any other circumstances.

 If a Field is defined with REFERENCES ARE CHECKED, and a <scope clause> is
included in the <Field definition>, then there is an implied DEFERRABLE INITIALLY
IMMEDIATE Constraint on the Field. This Constraint checks that the Field´s
values are also found in the corresponding Field of the system-generated Column
of the Table named in the <scope clause>.

 If the <data type> of a Field in a row is a UDT, then the current <AuthorizationID>
must have the USAGE Privilege on that UDT.

 A <row type> is a subtype of a <data type> if (a) both are <row type>s with the

<row reference>

A <row reference> returns a row. The required syntax for a <row reference> is as follows.

<row reference> ::= ROW {<Table name> | <query name> | <Correlation name>}

A row of data values belonging to a Table (or a query result, which is also a Table) is
also considered to be a <row type>.

In a Table, each Column of a data row corresponds to a Field of the <row type>: the
Column and Field have the same ordinal positions in the Table and <row type>,
respectively.

A <row reference> allows you to access a specific row of a Table or a query result. Here
is an example of a <row reference> that would return a row of a Table named TABLE_1:

same degree and (b) for every pair of corresponding <Field definition>s, the
<Field name>s are the same and the <data type> of the Field in the first <row

type> is a supertype of the <data type> of the Field in the second <row type>.

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

122

ROW(Table_1)

<Field reference>

A <Field reference> returns a Field of a row. The required syntax for a <Field reference>
is as follows.

<Field reference> ::= row_argument.<Field name>

A <Field reference> allows you to access a specific Field of a row. It operates on two
arguments: the first must evaluate to a <row type> and the second must be the name of
a Field belonging to that row.

If the value of row_argument is NULL, then the specified Field is also NULL.

(or whose value is the value of the subquery) you specify. If your element_expression is

If row_argument has a non-null value, the value of the Field reference is the value of the
specified Field in row_argument. Here is an example of a <Field reference> that would
return the value of a Field named FIELD_1 that belongs to a row of TABLE_1:

ROW(Table_1).field_1

<row value constructor>

An <row value constructor> is used to construct a row of data. The required syntax for a
<row value constructor> is as follows.

<row value constructor> ::= element_expression |

[ROW] (element_expression [{,element_expression}...]) |

(<query expression>)

element_expression ::=

element_expression |

NULL |

ARRAY[] |

ARRAY??(??) |

DEFAULT

A <row value constructor> allows you to assign values to the Fields of a row, using
either a list of element_expressions of the result of a subquery. An element_expression

may be any expression that evaluates to a scalar value with a <data type> that is
assignable to the corresponding Field’s <data type>. A subquery – (<query expression>)
– is discussed in our chapter on complex queries.

The result is a row whose n-th Field value is the value of the n-th element_expression

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

123

NULL, the corresponding Field is assigned the null value. If your element_expression is
ARRAY [] or ARRAY??(??), the corresponding Field is assigned an empty array. If your
element_expression is DEFAULT, the corresponding Field is assigned its default value.
Here is an example of a <row value constructor>:

ROW ('hello',567, DATE '1994-07-15’, NULL, DEFAULT, ARRAY [])

This example constructs a row with six Fields. The first Field has a character string
value of 'hello', the second has a numeric value of 567, the third has a date value of
'1994-07-15', the fourth has a null value, the fifth has a value that is the fifth Field’s
default value and the sixth has a value that is an empty array. This <row value
constructor> would be valid for this <row type> specification:

ROW (field_1 CHAR (5),

If you construct a row with a subquery, the row takes on the <data type> of the
subquery’s result. An empty subquery result constructs a one-Field row whose value is
NULL. A non-empty subquery result constructs a one-Field row whose value is the
subquery result.

If you want to restrict your code to Core SQL, (a) don’t use the ROW <data type> or <row
reference>s and <Field reference>s and, when using a <row value constructor>, (b) don’t
use ARRAY[] or ARRAY??(??) as an element_expression,(c) don’t construct a row with
more than one Field,(d) don’t use the ROW <keyword> in front of your
element_expression, and (e) don’t use a subquery to construct your row.

Row Operations

field_2 SMALLINT,

field_3 DATE,

field_4 BIT (4),

field_5 domains_1,

field_6 INT ARRAY [4])

A <row value constructor> serves the same purpose for a row as a <literal> does for a

predefined <data type>. It has the same format as the <row type>’s ROW () – but
instead of a series of <Field definition>s inside the size delimiters, it contains comma-
delimited values of the correct <data type> for each Field. For example, if your <row
type> specification is:

ROW (field_1 INT, field_2 CHAR (5), field_3 BIT (4))

a valid <row value constructor> would be:

ROW (20,'hello’, B'1011')

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

124

A row is compatible with, and comparable to, any row with compatible Fields – that is,
rows are mutually comparable and mutually assignable only if they have the same
number of Fields and each corresponding pair of Fields are mutually comparable and
mutually assignable. Rows may not be directly compared with, or directly assigned to,
any other <data type> class, though implicit type conversions of their Fields can occur in
expressions, SELECTs, INSERTs, DELETEs and UPDATEs. Explicit row type conversions
are not possible.

Assignment

In SQL, when a <row type> is assigned to a <row type> target, the assignment is done
one Field at a time – that is, the source’s first Field value is assigned to the target’s first
Field, the source’s second Field value is assigned to the target’s second Field, and so on.
Assignment of a <row type> to another <row type> is possible only if (a) both <row
type>s have the same number of Fields and (b) each corresponding pair of Fields have
<data type>s that are mutually assignable.

[Obscure Rule] Since only SQL accepts null values, if your source is NULL, then your
target’s value is not changed. Instead, your DBMS will set its indicator parameter to -1,
to indicate that an assignment of the null value was attempted.

If your target doesn’t have an indicator parameter, the assignment will fail: your DBMS
will return the SQLSTATE error 22002 "data exception-null value, no indicator parameter".
Going the other way, there are two ways to assign a null value to an SQL-data target.
Within SQL, you can use the <keyword> NULL in an INSERT or an UPDATE statement to
indicate that the target should be set to NULL; that is, if your source is NULL, your DBMS
will set your target to NULL.

Outside of SQL, if your source has an indicator parameter that is set to -1, your DBMS
will set your target to NULL (regardless of the value of the source). (An indicator
parameter with a value less than -1 will cause an error: your DBMS will return the
SQLSTATE error 22010 "data exception-invalid indicator parameter value".) We’ll talk
more about indicator parameters in our chapters on SQL binding styles.

Comparison

SQL provides the usual scalar comparison operators – = and <> and < and <= and > and
>= – to perform operations on rows. All of them will be familiar; there are equivalent

operators in other computer languages. Two rows are comparable if (a) both have the
same number of Fields and (b) each corresponding pair of Fields have <data type>s that
are mutually comparable.

Comparison is between pairs of Fields in corresponding ordinal positions – that is, the
first Field of the first row is compared to the first Field of the second row, the second
Field of the first row is compared to the second Field of the second row, an so on. If
either comparand is NULL the result of the operation is UNKNOWN.

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

125

The result of a <row type> comparison depends on two things: (a) the comparison
operator and (b) whether any Field is NULL. The order of comparison is:

If the comparison operator is = or <>: First the Field pairs which don´t include NULLs,
then the pairs which do.

If the comparison operator is anything other than = or <>: Field pairs from left to right.
Comparison stops when the result is unequal or UNKNOWN, or when there are no more
Fields. The result of the row comparison is the result of the last Field pair comparison.

Here are the possibilities.

If the comparison operator is =. The row comparison is (a) TRUE if the comparison is
TRUE for every pair of Fields, (b) FALSE if any non-null pair is not equal, and (c)
UNKNOWN if at least one Field is NULL and all non-null pairs are equal. For example:

ROW (1,1,1) = ROW (1,1,1) -- returns TRUE

ROW (1,1,1) = ROW (1,2,1) -- returns FALSE

ROW (1, NULL,1) = ROW (2,2,1) -- returns FALSE

ROW (1, NULL,1) = ROW (1,2,1) -- returns UNKNOWN

Comparison operator is <>. The row comparison is (a) TRUE if any non-null pair is not
equal, (b) FALSE if the comparison is FALSE for every pair of Fields, and (c) UNKNOWN
if at least one Field is NULL and all non-null pairs are equal. For example:

ROW (1,1,1) <> ROW (1,2,1) -- returns TRUE

ROW (1, NULL,2) <> ROW (2,2,1) -- returns TRUE

ROW (2,2,1) <> ROW (2,2,1) -- returns FALSE

ROW (1, NULL,1) <> ROW (1,2,1) -- returns UNKNOWN

Comparison operator is anything other than = or <>.

The row comparison is

(a) TRUE if the comparison is TRUE for at least one pair of Field and every pair before
the TRUE result is equal,

(b) FALSE uf the comparison is FALSE for at least one pair of Fields and every pair
before the FALSE result is equal, and

(c) UNKNOWN if the comparison is UNKNWON for at least one pair of Fields and every
pair before the UNKNOWN result is equal. Comparison stops as soon as any of these
results (TRUE, FALSE, or UNKNOWN) is established. For example:

ROW (1,1,1) < ROW (1,2,1) -- returns TRUE

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

126

ROW (1, NULL,1) < ROW (2, NULL,0) -- returns TRUE

ROW (1,1,1) < ROW (1,1,1) -- returns FALSE

ROW (3, NULL,1) < ROW (2, NULL,0) -- returns FALSE

ROW (2, NULL,1) < ROW (1,2,0) -- returns UNKNOWN

ROW (NULL,1,1) < ROW (2,1,0) -- returns UNKNOWN

SQL also provides three quantifiers – ALL, SOME, ANY – which you can use along with a
comparison operator to compare a row value with the collection of values returned by a
<table subquery>. Place the quantifier after the comparison operator, immediately
before the <table subquery>. For example:

SELECT row_column

FROM Table_1

WHERE row_column < ALL (

SELECT row_column

FROM Table_2);

ALL returns TRUE either (a) if the collection is an empty set (i.e.: if it contains zero rows)
or (b) if the comparison operator returns TRUE for every value in the collection. ALL
returns FALSE if the comparison operator returns FALSE for at least one value in the
collection.

SOME and ANY are synonyms. They return TRUE if the comparison operator returns
TRUE for at least one value in the collection. They return FALSE either (a) if the
collection is an empty set or (b) if the comparison operator returns FALSE for every
value in the collection. The search condition = ANY (collection) is equivalent to “IN
(collection)``

5.5 UDTs

A UDT is defined by a descriptor that contains twelve pieces of information:

1. The <UDT name>, qualified by the <Schema name> of the Schema it belongs to.

2. Whether the UDT is ordered.

3. The UDT’s ordering form: either EQUALS, FULL or NONE.

4. The UDT’s ordering category: either RELATIVE, HASH or STATE.

5. The <specific routine designator> that identifies the UDT’s ordering function.

6. If the UDT is a direct subtype of one or more other UDTs, then the names of

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

127

those UDTs.

7. If the UDT is a distinct type, then the descriptor of the <data type> it’s based on;
otherwise an Attribute descriptor for each of the UDT’s Attributes.

8. The UDT’s degree: the number of its Attributes.

9. Whether the UDT is instantiable or not instantiable.

10. Whether the UDT is final or not final.

11. The UDT’s Transform descriptor.

CREATE TYPE book_udt AS -- the UDT name will be book_udt

title CHAR (40), -- title is the first attribute

buying_price DECIMAL (9,2), -- buying_price is the second attribute

selling_price DECIMAL (9,2) -- selling_price is the third attribute

qualifier is the name of the Schema you’re creating.

the default qualifier is the name of the Schema identified in the SCHEMA clause
or AUTHORIZATION clause of the MODULE statement that defines that Module

UDT Example

Here’s an example of a UDT definition:

 If a <UDT name> in a CREATE SCHEMA statement isn’t qualified, the default

 If the unqualified <UDT name> is found in any other SQL statement in a Module,

12. If the UDT’s definition includes a method signature list, a descriptor for each
method signature named.

To create a UDT, use the CREATE TYPE statement (either as a stand-alone SQL
statement or within a CREATE SCHEMA statement). CREATE TYPE specifies the
enclosing Schema, names the UDT and identifies the UDT’s set of valid values.

To destroy a UDT, use the DROP TYPE statement. None of SQL3’s UDT syntax is Core

SQL, so if you want to restrict your code to Core SQL, don’t use UDTs.

UDT Names

A <UDT name> identifies a UDT. The required syntax for a <UDT name> is:

<UDT name> ::= [<Schema name>.] unqualified name

A <UDT name> is a <regular identifier> or a <delimited identifier> that is unique (for all

Domains and UDTs) within the Schema it belongs to. The <Schema name> which
qualifies a <UDT name> names the Schema that the UDT belongs to and can either be

explicitly stated, or a default will be supplied by your DBMS as follows:

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

128

NOT FINAL -- this is a mandatory Finality Clause

METHOD profit () RETURNS DECIMAL (9,2); -- profit is a method, defined later

This CREATE TYPE statement results in a UDT named BOOK_UDT. The components of
the UDT are three attributes (named TITLE, BUYING_PRICE and SELLING_PRICE) and
one method (named PROFIT).

The three name-and-data-type pairs title CHAR (40) and buying_price DECIMAL (9,2)
and selling_price DECIMAL (9,2) are the UDT’s Attribute definitions.

The words NOT FINAL matter only for subtyping, which we’ll get to later. Briefly,
though, if a UDT definition doesn’t include an UNDER clause, the finality clause must
specify NOT FINAL.

The clause METHOD profit () RETURNS DECIMAL (9,2) is a teaser. Like an Attribute, a
“method” is a component of a UDT. However, this method – PROFIT – is actually a
declaration that a function named PROFIT exists.

This function isn’t defined further in the UDT definition – there is a separate SQL
statement for defining functions: CREATE METHOD. All we can see at this stage is that
PROFIT has a name and a (predefined) data type>, just as regular Attributes do. Some
people would call PROFIT a “derived Attribute”.

5.6 Super type and Sub type

Purpose of the Supertypes and Subtypes

Supertypes and subtypes occur frequently in the real world:

 food order types (eat in, to go)

 grocery bag types (paper, plastic)

 payment types (check, cash, credit)

You can typically associate ‘choices’ of something with supertypes and subtypes.

For example, what will be the method of payment – cash, check or credit card?

Understanding real world examples helps us understand how and when to model
them.

Evaluating Entities

Often some instances of an entity have attributes and/or relationships that other
instances do not have.

Imagine a business which needs to track payments from customers.

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

129

Customers can pay by cash, by check, or by credit card.

All payments have some common attributes: payment date, payment amount, and so
on.

But only credit cards would have a “card number” attribute.

And for credit card and check payments, we may need to know which CUSTOMER
made the payment, while this is not needed for cash payments

Should we create a single PAYMENT entity or three separate entities CASH, CHECK,
and CREDIT CARD?

And what happens if in the future we introduce a fourth method of payment?

Subdivide an Entity

Sometimes it makes sense to subdivide an entity into subtypes.

This may be the case when a group of instances has special properties, such as
attributes or relationships that exist only for that group.

In this case, the entity is called a “supertype” and each group is called a “subtype”.

Subtype Characteristics

A subtype:

Inherits all attributes of the supertype

Inherits all relationships of the supertype

Usually has its own attributes or relationships

Is drawn within the supertype

Never exists alone

May have subtypes of its own

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

130

Supertype Example

EXAM is a supertype of QUIZ, MIDTERM, and FINAL.

The subtypes have several attributes in common.

These common attributes are listed at the supertype level.

The same applies to relationships.

Subtypes inherit all attributes and relationships of the supertype entity.

Read the diagram as: Every QUIZ, MIDTERM, or FINAL is an EXAM (and thus has
attributes such as description, weight, date, and grade).

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

131

Conversely: Every EXAM is either a QUIZ, a MIDTERM, or a FINAL.

Always More Than One Subtype

When an ER model is complete, subtypes never stand alone. In other words, if an
entity has a subtype, a second subtype must also exist. This makes sense.

A single subtype is exactly the same as the supertype.

This idea leads to the two subtype rules:

Exhaustive: Every instance of the supertype is also an instance of one of the
subtypes. All subtypes are listed without omission.

Mutually Exclusive: Each instance of a supertype is an instance of only one
possible subtype.

At the conceptual modeling stage, it is good practice to include an OTHER subtype to
make sure that your subtypes are exhaustive — that you are handling every instance of
the supertype.

Subtypes Always Exist

Any entity can be subtyped by making up a rule that subdivides the instances into
groups.

But being able to subtype is not the issue—having a reason to subtype is the issue.

When a need exists within the business to show similarities and differences between
instances, then subtype.

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

132

Correctly Identifying Subtypes

When modeling supertypes and subtypes, you can use three questions to see if the
subtype is correctly identified:

Is this subtype a kind of supertype?

Have I covered all possible cases? (exhaustive)

Does each instance fit into one and only one subtype? (mutually exclusive)

Nested Subtypes

You can nest subtypes.

For ease of reading — “readability” — you would usually show subtypes with only two
levels, but there is no rule that would stop you from going beyond two levels.

5.7 User-Defined routines (UDR)

User-defined routines (UDR) are functions that perform specific actions that you can
define in your SIL™ programs for a later use. These can considerably improve the

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

133

readability and maintainability of your code.

Syntax

function <name>(<type> param1, <type> param2, ...) {

Instruction1;

...

InstructionN;

return <value>;

}

Example

function zero () {

return 0;

}

number a = zero ();

Parameters

The list of parameters in the definition of a UDR can be of any length (including 0) and
their respective types can be any valid SIL™ type.

Eample:

function zero () {

return 0;

}

function doSomething(string s, number n1, number [] n2, boolean flag, string []
oneMore){

....

}

Constant Parameters

Parameters of user-defined routines can be made read-only in the scope of the routine
by adding the keyword "const" before the parameter definition in the signature of the
routine.

function f (const string s) {

...

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

134

}

Variable visibility

There are three categories of variables that can be used in a UDR:

Local variables

These are the variables you define in the body of the UDR. These can be used
throughout the body of the UDR. On exit, the values of these variables are lost.

function example () {

print(key);

number a = 3;

number b = a + 10;

// use here variables a and b

}

Parameter variables

These are the values passed to the UDR in the list of parameters. Because SIL™ uses a
"pass-by-value" policy, even though you modify the value of these variables in the body
of the function, on exit, their original values will be restored.

function increment (number a) {

a = a + 1; // the value of a is only modified locally

return a;

}

number b = 0;

number c = increment(b); // the value of b does not change

print(b); // this prints 0

print(c); // this prints 1

Global variables

These are the variables that are already defined and can be used right away (issue fields,
customfields and any variables defined before the routine).

You can use issue fields and custom fields anywhere in your code (including in the UDR
body) without having to declare them.

function print Key () {

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

135

}

Return value

Return values can be used to communicate with the context that called the UDR or to
halt its execution.

Examples

function isEven(number a){

return (a % 2 == 0);

}

function increment (number a) {

return a + 1;

}

number b = increment (2);

Notice that there is no need to declare the type of the return value; this will be evaluated
at runtime.

Therefore, even though the check on the following program will be ok, at runtime the
value of d will NOT be modified because of the incompatibility between date (on the
right-hand-side) and number (on the left-hand-side).

function increment (number a) {

return a + 1;

}

date d = increment (2);

You can return simply from a routine without specifying a value. However, you should
always remember that by design routines return a value, even if it is undefined. The
following code is therefore valid:

function f (number a) {

if (a > 0) {

print("positive");

return;

}

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

136

if (a == 0) {print("ZERO");}

}

//[...................]

string s =f (4); //s is still undefined, no value was returned

if(isNull(s)) {

? print ("S IS NULL!"); //this will be printed

} else {

? print ("S IS NOT NULL!");

}

Of course, the above code will print the text 'S IS NULL' in the log.

5.8 Collection types

A collection is an ordered group of elements having the same data type. Each element
is identified by a unique subscript that represents its position in the collection.

PL/SQL provides three collection types −

 Index-by tables or Associative array

 Nested table

 Variable-size array or Varray

Oracle documentation provides the following characteristics for each type of collections
–

Collection
Type

Number of
Elements

Subscript
Type

Dense or
Sparse

Where
Created

Can Be
Object Type
Attribute

Associative
array (or
index-by
table)

Unbounded String or
integer

Either Only in
PL/SQL
block

No

Nested
table

Unbounded Integer Starts
dense, can
become
sparse

Either in
PL/SQL
block or at
schema
level

Yes

Variablesize
array

Bounded Integer Always
dense

Either in
PL/SQL

Yes

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

137

(Varray) block or at
schema
level

Both types of PL/SQL tables, i.e., the index-by tables and the nested tables have the
same structure and their rows are accessed using the subscript notation.

However, these two types of tables differ in one aspect; the nested tables can be stored
in a database column and the index-by tables cannot.

Index-By Table

An index-by table (also called an associative array) is a set of key-value pairs. Each key

-- adding elements to the table

salary_list('Rajnish') := 62000;

salary_list('Minakshi') := 75000;

salary_list('Martin') := 100000;

salary_list('James') := 78000;

-- printing the table

name := salary_list.FIRST;

WHILE name IS NOT null LOOP

is unique and is used to locate the corresponding value. The key can be either an integer
or a string.

An index-by table is created using the following syntax. Here, we are creating an index-
by table named table_name, the keys of which will be of the subscript_type and
associated values will be of the element_type

TYPE type_name IS TABLE OF element_type [NOT NULL] INDEX BY subscript_type;

table_name type_name;

Example

Following example shows how to create a table to store integer values along with
names and later it prints the same list of names.

DECLARE

TYPE salary IS TABLE OF NUMBER INDEX BY VARCHAR2(20);

salary_list salary;

name VARCHAR2(20);

BEGIN

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

138

dbms_output.put_line

('Salary of ' || name || ' is ' || TO_CHAR(salary_list(name)));

name := salary_list.NEXT(name);

END LOOP;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Salary of James is 78000

Salary of Martin is 100000

Salary of Minakshi is 75000

Salary of Rajnish is 62000

PL/SQL procedure successfully completed.

Example

Elements of an index-by table could also be a %ROWTYPE of any database table or
%TYPE of any database table field. The following example illustrates the concept. We

| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
+----+----------+-----+-----------+----------+
DECLARE

CURSOR c_customers is

select name from customers;

TYPE c_list IS TABLE of customers.Name%type INDEX BY binary_integer;

name_list c_list;

counter integer:=0;

will use the CUSTOMERS table stored in our database as −

Select * from customers;

+----+----------+-----+-----------+----------+

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

139

BEGIN

FOR n IN c_customers LOOP

counter:= counter +1;

name_list(counter):= n.name;

dbms_output.put_line('Customer('||counter||'):'||name_lis t(counter));

An array has a declared number of elements, but a nested table does not. The size of
a nested table can increase dynamically.

END LOOP;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Customer (1): Ramesh

Customer (2): Khilan

Customer (3): kaushik

Customer (4): Chaitali

Customer (5): Hardik

Customer (6): Komal

PL/SQL procedure successfully completed

Nested Tables

A nested table is like a one-dimensional array with an arbitrary number of elements.
However, a nested table differs from an array in the following aspects −

An array is always dense, i.e., it always has consecutive subscripts. A nested array is
dense initially, but it can become sparse when elements are deleted from it.

A nested table is created using the following syntax −

TYPE type_name IS TABLE OF element_type [NOT NULL];

table_name type_name;

This declaration is similar to the declaration of an index-by table, but there is no INDEX
BY clause.

A nested table can be stored in a database column. It can further be used for simplifying

SQL operations where you join a single-column table with a larger table. An associative

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

140

array cannot be stored in the database.

Example

The following examples illustrate the use of nested table −

DECLARE

TYPE names_table IS TABLE OF VARCHAR2(10);

TYPE grades IS TABLE OF INTEGER;

names names_table;

marks grades;

total integer;

BEGIN

names := names_table('Kavita', 'Pritam', 'Ayan', 'Rishav', 'Aziz');

marks:= grades(98, 97, 78, 87, 92);

total := names.count;

dbms_output.put_line('Total '|| total || ' Students');

FOR i IN 1 .. total LOOP

dbms_output.put_line('Student:'||names(i)||', Marks:' || marks(i));

end loop;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Total 5 Students

Student:Kavita, Marks:98

Student:Pritam, Marks:97

Student:Ayan, Marks:78

Student:Rishav, Marks:87

Student:Aziz, Marks:92

PL/SQL procedure successfully completed.

Example

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

141

Elements of a nested table can also be a %ROWTYPE of any database table or %TYPE
of any database table field. The following example illustrates the concept. We will use
the CUSTOMERS table stored in our database as −

Select * from customers;

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
+----+----------+-----+-----------+----------+
DECLARE

CURSOR c_customers is

SELECT name FROM customers;

TYPE c_list IS TABLE of customerS.No.ame%type;

name_list c_list := c_list();

counter integer :=0;

BEGIN

FOR n IN c_customers LOOP

counter := counter +1;

name_list.extend;

name_list(counter) := n.name;

dbms_output.put_line('Customer('||counter||'):'||name_list(counter));

END LOOP;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Customer(1): Ramesh

Customer(2): Khilan

Customer(3): kaushik

Customer(4): Chaitali

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

142

Customer(5): Hardik

Customer(6): Komal

PL/SQL procedure successfully completed.

Variable size array(Varray) type

The PL/SQL programming language provides a data structure called the VARRAY, which
can store a fixed-size sequential collection of elements of the same type. A varray is
used to store an ordered collection of data, however it is often better to think of an array
as a collection of variables of the same type.

All varrays consist of contiguous memory locations. The lowest address corresponds to
the first element and the highest address to the last element.

Varrays in PL/SQL

An array is a part of collection type data and it stands for variable-size arrays. We will
study other collection types in a later chapter 'PL/SQL Collections'.

Each element in a varray has an index associated with it. It also has a maximum size
that can be changed dynamically.

Creating a Varray Type

A varray type is created with the CREATE TYPE statement. You must specify the
maximum size and the type of elements stored in the varray.

The basic syntax for creating a VARRAY type at the schema level is −

CREATE OR REPLACE TYPE varray_type_name IS VARRAY(n) of <element_type>

Where,

varray_type_name is a valid attribute name,

n is the number of elements (maximum) in the varray,

element_type is the data type of the elements of the array.

Maximum size of a varray can be changed using the ALTER TYPE statement.

For example,

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

143

CREATE Or REPLACE TYPE namearray AS VARRAY (3) OF VARCHAR2(10);

/

Type created.

The basic syntax for creating a VARRAY type within a PL/SQL block is −

TYPE varray_type_name IS VARRAY(n) of <element_type>

For example –

TYPE namearray IS VARRAY(5) OF VARCHAR2(10);

Type grades IS VARRAY(5) OF INTEGER;

Let us now work out on a few examples to understand the concept

Example 1

The following program illustrates the use of varrays

DECLARE

type namesarray IS VARRAY(5) OF VARCHAR2(10);

type grades IS VARRAY(5) OF INTEGER;

names namesarray;

marks grades;

total integer;

BEGIN

names := namesarray('Kavita', 'Pritam', 'Ayan', 'Rishav', 'Aziz');

marks:= grades(98, 97, 78, 87, 92);

total := names.count;

dbms_output.put_line('Total '|| total || ' Students');

FOR i in 1 .. total LOOP

dbms_output.put_line('Student: ' || names(i) || '

Marks: ' || marks(i));

END LOOP;

END;

/

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

144

When the above code is executed at the SQL prompt, it produces the following result

Total 5 Students

Student: Kavita Marks: 98

Student: Pritam Marks: 97

Student: Ayan Marks: 78

Student: Rishav Marks: 87

Student: Aziz Marks: 92

PL/SQL procedure successfully completed.

5.9 Object Query Language; No-SQL: CAP theorem

CAP theorem

The CAP theorem is about how distributed database systems behave in the face of
network instability.

When working with distributed systems over unreliable networks we need to consider
the properties of consistency and availability in order to make the best decision about
what to do when systems fail. The CAP theorem introduced by Eric Brewer in 2000
states that any distributed database system can have at most two of the following three
desirable properties

Consistency: Consistency is about having a single, up-to-date, readable version of our
data available to all clients. Our data should be consistent - no matter how many clients
reading the same items from replicated and distributed partitions we should get
consistent results. All writes are atomic and all subsequent requests retrieve the new
value.

High availability: This property states that the distributed database will always allow
database clients to make operations like select or update on items without delay.
Internal communication failures between replicated data shouldn’t prevent operations
on it. The database will always return a value as long as a single server is running.

Partition tolerance: This is the ability of the system to keep responding to client
requests even if there’s a communication failure between database partitions. The
system will still function even if network communication between partitions is
temporarily lost.

Note that the CAP theorem only applies in cases when there’s a connection failure
between partitions in our cluster. The more reliable our network, the lower the
probability we will need to think about this theorem. The CAP theorem helps us

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

145

understand that once we partition our data, we must determine which options best
match our business requirements: consistency or availability. Remember: at most two
of the aforementioned three desirable properties can be fulfilled, so we have to select
either consistency or availability.

5.10 MongoDB CRUD Operations

Data Model Design

Effective data models support your application needs. The key consideration for the
structure of your documents is the decision to embed or to use references.

Embedded Data Models

Embedded data models allow applications to store related pieces of information in the
same database record. As a result, applications may need to issue fewer queries and
updates to complete common operations.

In general, use embedded data models when:

 you have "contains" relationships between entities. See Model One-to-One
Relationships with Embedded Documents.

 you have one-to-many relationships between entities. In these relationships the
"many" or child documents always appear with or are viewed in the context of the
"one" or parent documents. See Model One-to-Many Relationships with
Embedded Documents.

With MongoDB, you may embed related data in a single structure or document. These

schema are generally known as "denormalized" models, and take advantage of
MongoDB's rich documents. Consider the following diagram:

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

146

In general, embedding provides better performance for read operations, as well as the
ability to request and retrieve related data in a single database operation. Embedded
data models make it possible to update related data in a single atomic write operation.

To access data within embedded documents, use dot notation to "reach into" the
embedded documents. See query for data in arrays and query data in embedded
documents for more examples on accessing data in arrays and embedded documents.

Embedded Data Model and Document Size Limit

Documents in MongoDB must be smaller than the maximum BSON document size.

For bulk binary data, consider GridFS.

Normalized Data Models

Normalized data models describe relationships using references between documents.

In general, use normalized data models:

when embedding would result in duplication of data but would not provide sufficient
read performance advantages to outweigh the implications of the duplication.

to represent more complex many-to-many relationships.

to model large hierarchical data sets.

CRUD operations

CRUD operations create, read, update, and delete documents.

Create Operations: Create or insert operations add new documents to a collection. If
the collection does not currently exist, insert operations will create the collection.

MongoDB provides the following methods to insert documents into a collection:

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

147

db.collection.insertOne()

db.collection.insertMany()

In MongoDB, insert operations target a single collection. All write operations in
MongoDB are atomic on the level of a single document.

Read Operations: Read operations retrieve documents from a collection; i.e. query a
collection for documents. MongoDB provides the following methods to read documents
from a collection:

db.collection.find()

You can specify query filters or criteria that identify the documents to return.

Update Operations: Update operations modify existing documents in a collection.
MongoDB provides the following methods to update documents of a collection:

db.collection.updateOne() New in version 3.2

db.collection.updateMany() New in version 3.2

db.collection.replaceOne() New in version 3.2

In MongoDB, update operations target a single collection. All write operations in
MongoDB are atomic on the level of a single document.

You can specify criteria, or filters, that identify the documents to update. These filters
use the same syntax as read operations.

Delete Operations: Delete operations remove documents from a collection. MongoDB

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

148

provides the following methods to delete documents of a collection:

db.collection.deleteOne() New in version 3.2

db.collection.deleteMany() New in version 3.2

In MongoDB, delete operations target a single collection. All write operations in
MongoDB are atomic on the level of a single document.

You can specify criteria, or filters, that identify the documents to remove. These filters
use the same syntax as read operations.

5.11 HBase Data Model and CRUD Operations

The HBase Data Model is designed to handle semi-structured data that may differ in
field size, which is a form of data and columns. The data model’s layout partitions the
data into simpler components and spread them across the cluster. HBase's Data Model
consists of various logical components, such as a table, line, column, family, column,
column, cell, and edition.

Table:

An HBase table is made up of several columns. The tables in HBase defines upfront
during the time of the schema specification.

Row:

An HBase row consists of a row key and one or more associated value columns. Row

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

149

keys are the bytes that are not interpreted. Rows are ordered lexicographically, with the
first row appearing in a table in the lowest order. The layout of the row key is very
critical for this purpose.

Column:

A column in HBase consists of a family of columns and a qualifier of columns, which is
identified by a character: (colon).

Column Family:

Apache HBase columns are separated into the families of columns. The column
families physically position a group of columns and their values to increase its
performance.

Every row in a table has a similar family of columns, but there may not be anything in a
given family of columns.

The same prefix is granted to all column members of a column family.

For example, Column courses: history and courses: math, are both members of the
column family of courses.

The character of the colon (:) distinguishes the family of columns from the qualifier of
the family of columns. The prefix of the column family must be made up of printable
characters.

During schema definition time, column families must be declared upfront while columns

are not specified during schema time.

They can be conjured on the fly when the table is up and running. Physically, all
members of the column family are stored on the file system together.

Column Qualifier

The column qualifier is added to a column family. A column standard could be content
(html and pdf), which provides the content of a column unit. Although column families
are set up at table formation, column qualifiers are mutable and can vary significantly
from row to row.

Cell:

A Cell store data and is quite a unique combination of row key, Column Family, and the
Column. The data stored in a cell call its value and data types, which is every time
treated as a byte [].

Timestamp:

In addition to each value, the timestamp is written and is the identifier for a given
version of a number.

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

150

The timestamp reflects the time when the data is written on the Region Server. But
when we put data into the cell, we can assign a different timestamp value.

CRUD Operations

1. Create a data-Hbase

Inserting Data using HBase Shell- to create data in an HBase table. To create data in an
HBase table, the following commands and methods are used:

put command,

add () method of Put class, and

put () method of HTable class.

As an example, we are going to create the following table in HBase.

z

Using put command, you can insert rows into a table. Its syntax is as follows:

put’<table name>’,’row1’,’<colfamily:colname>’,’<value>’

Inserting the First Row

Let us insert the first-row values into the emp table as shown below.

hbase(main): 005:0> put 'emp','1','personal data:name','raju'

0 row(s) in 0.6600 seconds

hbase(main): 006:0> put 'emp','1','personal data:city','hyderabad'

0 row(s) in 0.0410 seconds

hbase(main): 007:0> put 'emp','1','professional

data:designation','manager'

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

151

0 row(s) in 0.0240 seconds

hbase(main): 007:0> put 'emp','1','professional data: salary','50000'

0 row(s) in 0.0240 seconds

Insert the remaining rows using the put command in the same way. If you insert the
whole table, you will get the following output.

hbase(main): 022:0> scan 'emp'

ROW COLUMN+CELL

Inserting Data Using Java API

You can insert data into Hbase using the add () method of the Put class. You can save it
using the put () method of the HTable class. These classes belong to the
org.apache.hadoop.hbase.client package. Below given are the steps to create data in a
Table of HBase.

Step 1: Instantiate the Configuration Class

The Configuration class adds HBase configuration files to its object. You can create a

1 column=personal data:city, timestamp=1417524216501, value=hyderabad

1 column=personal data:name, timestamp=1417524185058, value=ramu

1 column=professional data:designation, timestamp=1417524232601,

value=manager

1 column=professional data:salary, timestamp=1417524244109, value=50000

 2 column=personal data:city, timestamp=1417524574905, value=chennai

2 column=personal data:name, timestamp=1417524556125, value=ravi

2 column=professional data:designation, timestamp=1417524592204,

value=sr:engg

2 column=professional data:salary, timestamp=1417524604221, value=30000

 3 column=personal data:city, timestamp=1417524681780, value=delhi

3 column=personal data:name, timestamp=1417524672067, value=rajesh

3 column=professional data:designation, timestamp=1417524693187,

value=jr:engg

3 column=professional data:salary, timestamp=1417524702514,

value=25000

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

152

configuration object using the create () method of the HbaseConfiguration class as
shown below.

Configuration conf = HbaseConfiguration.create();

Step 2: Instantiate the HTable Class

You have a class called HTable, an implementation of Table in HBase. This class is
used to communicate with a single HBase table. While instantiating this class, it
accepts configuration object and table name as parameters. You can instantiate HTable

class as shown below.

HTable hTable = new HTable(conf, tableName);

Step 3: Instantiate the PutClass

To insert data into an HBase table, the add () method and its variants are used. This
method belongs to Put, therefore instantiate the put class. This class requires the row
name you want to insert the data into, in string format. You can instantiate the Put class

as shown below.

Put p = new Put (Bytes.toBytes("row1"));

Step 4: Insert Data

The add () method of Put class is used to insert data. It requires 3-byte arrays
representing column family, column qualifier (column name), and the value to be
inserted, respectively. Insert data into the HBase table using the add () method as
shown below.

p.add(Bytes.toBytes("coloumn family "), Bytes.toBytes("column

name"), Bytes.toBytes("value"));

Step 5: Save the Data in Table

After inserting the required rows, save the changes by adding the put instance to the put ()
method of HTable class as shown below.

hTable.put(p);

Step 6: Close the HTable Instance

After creating data in the HBase Table, close the HTable instance using the close ()
method as shown below.

hTable.close();

Given below is the complete program to create data in HBase Table.

import java.io.IOException;

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

153

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.client.HTable;

import org.apache.hadoop.hbase.client.Put;

import org.apache.hadoop.hbase.util.Bytes;

public class InsertData{

public static void main (String [] args) throws IOException {

// Instantiating Configuration class

Configuration config = HBaseConfiguration.create();

// Instantiating HTable class

HTable hTable = new HTable(config, "emp");

// Instantiating Put class

// accepts a row name.

Put p = new Put (Bytes.toBytes("row1"));

// adding values using add () method

// accepts column family name, qualifier/row name, value

p.add(Bytes.toBytes("personal"),

Bytes.toBytes("name"), Bytes.toBytes("raju"));

p.add(Bytes.toBytes("personal"),

Bytes.toBytes("city"), Bytes.toBytes("hyderabad"));

p.add (Bytes.toBytes("professional"), Bytes.toBytes("designation"),

Bytes.toBytes("manager"));

p.add(Bytes.toBytes("professional"),Bytes.toBytes("salary"),

Bytes.toBytes("50000"));

// Saving the put Instance to the HTable.

hTable.put(p);

System.out.println("data inserted");

// closing HTable

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

154

hTable.close();

}

}

Compile and execute the above program as shown below.

$javac InsertData.java

$java InsertData

The following should be the output:

data inserted

2. Updating Data using HBase Shell

You can update an existing cell value using the put command. To do so, just follow the
same syntax and mention your new value as shown below.

put ‘table name’,’row’,'Column family:column name',’new value’

The newly given value replaces the existing value, updating the row.

Example

Suppose there is a table in HBase called emp with the following data.

hbase(main): 003:0> scan 'emp'

ROW COLUMN + CELL

row1 column = personal:name, timestamp = 1418051555, value = raju

row1 column = personal:city, timestamp = 1418275907, value = Hyderabad

row1 column = professional:designation, timestamp = 14180555,value = manager

row1 column = professional:salary, timestamp = 1418035791555,value = 50000

1 row(s) in 0.0100 seconds

The following command will update the city value of the employee named ‘Raju’ to Delhi.

hbase(main): 002:0> put 'emp','row1','personal: city','Delhi'

0 row(s) in 0.0400 seconds

The updated table looks as follows where you can observe the city of Raju has been
changed to ‘Delhi’.

hbase(main): 003:0> scan 'emp'

ROW COLUMN + CELL

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

155

row1 column = personal:name, timestamp = 1418035791555, value = raju

row1 column = personal:city, timestamp = 1418274645907, value = Delhi

row1 column = professional:designation, timestamp = 141857555,value = manager

row1 column = professional:salary, timestamp = 1418039555, value = 50000

1 row(s) in 0.0100 seconds

Updating Data Using Java API

You can update the data in a particular cell using the put () method. Follow the steps
given below to update an existing cell value of a table.

Step 1: Instantiate the Configuration Class

Configuration class adds HBase configuration files to its object. You can create a
configuration object using the create () method of the HbaseConfiguration class as
shown below.

Configuration conf = HbaseConfiguration.create();

Step 2: Instantiate the HTable Class

You have a class called HTable, an implementation of Table in HBase. This class is
used to communicate with a single HBase table. While instantiating this class, it
accepts the onfiguration object and the table name as parameters. You can instantiate
the HTable class as shown below.

HTable hTable = new HTable(conf, tableName);

Step 3: Instantiate the Put Class

To insert data into HBase Table, the add () method and its variants are used. This
method belongs to Put, therefore instantiate the put class. This class requires the row
name you want to insert the data into, in string format. You can instantiate the Put class
as shown below.

Put p = new Put (Bytes.toBytes("row1"));

Step 4: Update an Existing Cell

The add () method of Put class is used to insert data. It requires 3-byte arrays
representing column family, column qualifier (column name), and the value to be
inserted, respectively. Insert data into HBase table using the add () method as shown
below.

p.add(Bytes.toBytes("coloumn family "), Bytes.toBytes("column

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

156

// Instantiating Configuration class

Configuration config = HBaseConfiguration.create();

// Instantiating HTable class

HTable hTable = new HTable(config, "emp");

// Instantiating Put class

//accepts a row name

Put p = new Put (Bytes.toBytes("row1"));

// Updating a cell value

p.add(Bytes.toBytes("personal"),

public static void main (String [] args) throws IOException {

name"),Bytes.toBytes("value"));

p.add(Bytes.toBytes("personal"),

Bytes.toBytes("city"),Bytes.toBytes("Delih"));

Step 5: Save the Data in Table

After inserting the required rows, save the changes by adding the put instance to the put

() method of the HTable class as shown below.

hTable.put(p);

Step 6: Close HTable Instance

After creating data in HBase Table, close the HTable instance using the close () method

as shown below.

hTable.close();

Given below is the complete program to update data in a particular table.

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.client.HTable;

import org.apache.hadoop.hbase.client.Put;

import org.apache.hadoop.hbase.util.Bytes;

public class UpdateData{

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

157

Bytes.toBytes("city"), Bytes.toBytes("Delih"));

// Saving the put Instance to the HTable.

hTable.put(p);

System.out.println("data Updated");

// closing HTable

hTable.close();

}

}

Compile and execute the above program as shown below.

$javac UpdateData.java

$java UpdateData

The following should be the output:

data Updated

3. Reading Data using HBase Shell

The get commands and the get () method of HTable class are used to read data from a
table in HBase. Using get command, you can get a single row of data at a time. Its
syntax is as follows:

get’<table name>’,’row1’

Example

The following example shows how to use the get command. Let us scan the first row of
the emp table.

hbase(main): 012:0> get 'emp', '1'

COLUMN CELL

personal: city timestamp = 1417521848375, value = hyderabad

personal: name timestamp = 1417521785385, value = ramu

professional: designation timestamp = 1417521885277, value = manager

professional: salary timestamp = 1417521903862, value = 50000

4 row(s) in 0.0270 seconds

Reading a Specific Column

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

158

Given below is the syntax to read a specific column using the get method.

hbase> get 'table name', ‘rowid’, {COLUMN⇒ ‘column family:column name ’}

Example

Given below is the example to read a specific column in HBase table.

hbase(main): 015:0> get 'emp', 'row1', {COLUMN⇒ 'personal:name'}

COLUMN CELL

personal:name timestamp = 1418035791555, value = raju

1 row(s) in 0.0080 seconds

Reading Data Using Java API

To read data from an HBase table, use the get () method of the HTable class. This
method requires an instance of the Get class. Follow the steps given below to retrieve
data from the HBase table.

Step 1: Instantiate the Configuration Class

Configuration class adds HBase configuration files to its object. You can create a
configuration object using the create () method of the HbaseConfiguration class as
shown below.

Configuration conf = HbaseConfiguration.create();

Step 2: Instantiate the HTable Class

You have a class called HTable, an implementation of Table in HBase. This class is
used to communicate with a single HBase table.

While instantiating this class, it accepts the configuration object and the table name as parameters
. You can instantiate the HTable class as shown below.

HTable hTable = new HTable(conf, tableName);

Step 3: Instantiate the Get Class

You can retrieve data from the HBase table using the get () method of the HTable class.
This method extracts a cell from a given row. It requires a Get class object as
parameter. Create it as shown below.

Get get = new Get(toBytes("row1"));

Step 4: Read the Data

While retrieving data, you can get a single row by id, or get a set of rows by a set of row ids,
or scan an entire table or a subset of rows.

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

159

public static void main (String [] args) throws IOException, Exception {

// Instantiating Configuration class

Configuration config = HBaseConfiguration.create();

// Instantiating HTable class

HTable table = new HTable(config, "emp");

You can retrieve an HBase table data using the add method variants in Get class.

To get a specific column from a specific column family, use the following method.

get.addFamily(personal)

To get all the columns from a specific column family, use the following method.

get.addColumn(personal, name)

Step 5: Get the Result

Get the result by passing your Get class instance to the get method of the HTable class.
This method returns the Result class object, which holds the requested result. Given
below is the usage of get () method.

Result result = table.get(g);

Step 6: Reading Values from the Result Instance

The Result class provides the getValue() method to read the values from its instance.
Use it as shown below to read the values from the Result instance.

byte [] value = result. getValue(Bytes.toBytes("personal"),Bytes.toBytes("name"));

byte [] value1 = result. getValue(Bytes.toBytes("personal"),Bytes.toBytes("city"));

Given below is the complete program to read values from an HBase table.

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.client.Get;

import org.apache.hadoop.hbase.client.HTable;

import org.apache.hadoop.hbase.client.Result;

import org.apache.hadoop.hbase.util.Bytes;

public class RetriveData{

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

160

// Instantiating Get class

Get g = new Get (Bytes.toBytes("row1"));

// Reading the data

Result result = table.get(g);

// Reading values from Result class object

byte [] value = result. getValue(Bytes.toBytes("personal"),Bytes.toBytes("name"));

byte [] value1 = result. getValue(Bytes.toBytes("personal"),Bytes.toBytes("city"));

// Printing the values

String name = Bytes.toString(value);

String city = Bytes.toString(value1);

System.out.println("name: " + name + " city: " + city);

}

}

Compile and execute the above program as shown below.

$javac RetriveData.java

$java RetriveData

The following should be the output:

name: Raju city: Delhi

Deleting a Specific Cell in a Table

Using the delete command, you can delete a specific cell in a table. The syntax of delete
command is as follows:

delete ‘<table name>’, ‘<row>’, ‘<column name >’, ‘<time stamp>’

Example

Here is an example to delete a specific cell. Here we are deleting the salary.

hbase(main): 006:0> delete 'emp', '1', 'personal data:city',

1417521848375

0 row(s) in 0.0060 seconds

Deleting All Cells in a Table

Using the “deleteall” command, you can delete all the cells in a row. Given below is the

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

161

syntax of deleteall command.

deleteall ‘<table name>’, ‘<row>’,

Example

Here is an example of “deleteall” command, where we are deleting all the cells of row1
of emp table.

hbase(main): 007:0> deleteall 'emp','1'

0 row(s) in 0.0240 seconds

Verify the table using the scan command. A snapshot of the table after deleting the
table is given below.

hbase(main): 022:0> scan 'emp'

ROW COLUMN + CELL

2 column = personal data:city, timestamp = 1417524574905, value = chennai

2 column = personal data:name, timestamp = 1417524556125, value = ravi

2 column = professional data:designation, timestamp = 1417524204, value = sr:engg

2 column = professional data:salary, timestamp = 1417524604221, value = 30000

3 column = personal data:city, timestamp = 1417524681780, value = delhi

3 column = personal data:name, timestamp = 1417524672067, value = rajesh

3 column = professional data:designation, timestamp = 1417523187, value = jr:engg

3 column = professional data:salary, timestamp = 1417524702514, value = 25000

4. Deleting Data Using Java API

You can delete data from an HBase table using the delete () method of the HTable class.
Follow the steps given below to delete data from a table.

Step 1: Instantiate the Configuration Class

Configuration class adds HBase configuration files to its object. You can create a
configuration object using the create () method of the the HbaseConfiguration class as
shown below.

Configuration conf = HbaseConfiguration.create();

Step 2: Instantiate the HTable Class

You have a class called HTable, an implementation of Table in HBase. This class is

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

162

used to communicate with a single HBase table. While instantiating this class, it
accepts the configuration object and the table name as parameters. You can instantiate
the HTable class as shown below.

HTable hTable = new HTable(conf, tableName);

Step 3: Instantiate the Delete Class

Instantiate the Delete class by passing the rowid of the row that is to be deleted, in byte
array format. You can also pass timestamp and Rowlock to this constructor.

Delete delete = new Delete(toBytes("row1"));

Step 4: Select the Data to be Deleted

You can delete the data using the delete methods of the Delete class. This class has
various delete methods. Choose the columns or column families to be deleted using
those methods. Take a look at the following examples that show the usage of Delete
class methods.

delete.deleteColumn(Bytes.toBytes("personal"), Bytes.toBytes("name"));

delete.deleteFamily(Bytes.toBytes("professional"));

Step 5: Delete the Data

Delete the selected data by passing the delete instance to the delete () method of the
HTable class as shown below.

table.delete(delete);

Step 6: Close the HTableInstance

After deleting the data, close the HTable Instance.

table.close();

Given below is the complete program to delete data from the HBase table.

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.client.Delete;

import org.apache.hadoop.hbase.client.HTable;

import org.apache.hadoop.hbase.util.Bytes;

public class DeleteData {

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

163

public static void main (String [] args) throws IOException {

}

Compile and execute the above program as shown below.

$javac Deletedata.java

$java DeleteData

The following should be the output:data deleted

// Instantiating Configuration class

Configuration conf = HBaseConfiguration.create();

// Instantiating HTable class

HTable table = new HTable(conf, "employee");

// Instantiating Delete class

Delete delete = new Delete (Bytes.toBytes("row1"));

delete.deleteColumn(Bytes.toBytes("personal"), Bytes.toBytes("name"));

delete.deleteFamily(Bytes.toBytes("professional"));

// deleting the data

table.delete(delete);

// closing the HTable object

table.close();

System.out.println("data deleted......");

}

EnggTree.com

Downloaded from EnggTree.com

http://www.PDFWatermarkRemover.com/buy.htm

