
UNIT I

1.1 - ALGORITHMS

An Algorithm is defined as step by step procedure for solving a problem. An Algorithm

is a well-defined computational procedure consists of a set of instructions that takes some values

as an input, then manipulate them by following prescribed texts in order to produce some values

as output.

1.1.1 –Two Phases of Algorithmic Problem Solving

 Derivation of an algorithm that solves the problem

 Conversion of an algorithm into code (or) program

1.1.2 –Data types and Data Structures:

In Algorithms the data are numbers, words, list & files. Algorithm provides the logic and

data provides the values.

Program = Algorithm + Data Structures

Data Structures refer to the types of data used and how the data are organized in the

program. The Programming languages provide simple data type such as Integers, real numbers

and characters.

1.1.3 – Characteristics of an Algorithm:

An algorithm should have the following characteristics.

Precision – the steps are precisely stated (defined).

Uniqueness – results of each step are uniquely defined and only depend on the input and the

result of the preceding steps.

Finiteness – the algorithm stops after a finite number of instructions are executed.

Effectiveness – algorithm should be most effective among many different ways to solve a

problem.

Input – the algorithm receives input.

Output – the algorithm produces output.

Generality – the algorithm applies to a set of inputs.

Unit I Page 1.1

ALGORITHMINPUT OUTPUT

EnggTree.com

Downloaded from EnggTree.com

 1.1.4 – Qualities of an Algorithm:

The following factors will determine the quality of an algorithm.

Accuracy Algorithm should provide accurate results.

Memory It should require minimum computer memory.

Time The time taken to execute any program is considered as a main quality.

Sequence The procedure of an algorithm must be in a sequential form.

1.1.5 – Representation of an Algorithm:

An algorithm can be represented in a number of ways which include

Natural Language usually verbose and ambiguous.

Flow Chart pictorial representation of an algorithm

Pseudo Code resembles common elements of an language and no particular format

Programming Language Algorithms are the basis of programs. Expressed in High level

language.

Examples:

1. Write an algorithm to find the area of circle.

Step1: Start

Step2: Read the value of radius as r

Step3: Calculate area = 3.14*r*r

Step4: Print the value of area.

Step5: Stop

2. Write an algorithm to find the biggest of two numbers.

Step1: Start

Step2: Read the value of a and b

Step3: Compare the value of a sand b if a>b then

Print ‘A is largest” otherwise print ‘b is largest’

Step4: Stop

3. Write an algorithm for calculating total marks of specified number of subjects given as

66, 99, 98, 87, 89.

Unit I Page 1.2

EnggTree.com

Downloaded from EnggTree.com

Step1: Start

Step2: Read Numbers as N

Step3: Initialize the value of Total as 0 and as 1

Step4: Repeat step 5 to step7 until i is less than n

Step5: Read the marks

Step6: Add mark to the total

Step7: Increment the value of i

Step6: Print the value of total

Step7: Stop

1.2 – Building Blocks of an Algorithm

There are four building blocks of algorithm which are

a) Instructions / Statement

i. Simple Statement

ii. Compound Statement

b) State

c) Control Flow

i. Sequence Control Structure

ii. Selection Control Structure

iii. Case Structure

d) Functions

a) Instructions / Statement

In Computer programming, a statement is a smallest standalone element which expresses

some action to be covered. It is an instruction written in a high level language that commands the

computer to perform a specified action. A program written in such language is formed by

sequence of one or more statements.

Ex:

An Algorithm to add two numbers:

Step-1: Start

Step-2: Declare variables num1, num2 and sum

Step-3: Read values num1, num2

Step-4: Add num1 and num2 and assign the result to sum

Unit I Page 1.3

EnggTree.com

Downloaded from EnggTree.com

 sumnum1+num2

Step-5: Display sum

Step-6: Stop

 There are two types of statements they are

i. Simple Statement

ii. Compound Statement

i) Simple Statement :

 Simple Statement consists of a single logical line.

Ex:

 Expression Statement

 Assignment Statement

 Print Statement

 Import Statement

ii) Compound Statement:

 Compound Statements consist of a group of statements. They control the execution of

other statements. It consists of one or more clauses.

Ex:

 if – statement

 while – statement

 for – statement

 try – statement

b) State

An algorithm is a deterministic automation for accomplishing a goal which given an

initial state, will terminate in a defined end state and internal state for performing an algorithm.

 Initial State starts by keyword “START” or “BEGIN”.

 Internal State starts from data, which is read as an input, written to an output and stored

for processing. The stored data is regarded as a part of Internal State.

 End State is nothing but the keyword “END”

c) Control Flow

Control Flow or Flow of Control is the order function calls, instructions and statement are

executed or evaluated when a program is running. Program Control structures are defined as the

program statements that specifies the order in which statements are executed. There are three

types of control structures. They are.

Unit I Page 1.4

EnggTree.com

Downloaded from EnggTree.com

i. Sequence Control Structure

ii. Selection Control Structure

iii. Case Structure

i) Sequence Control Structure

 Sequence Control Structure is used to perform the actions one after another. It performs

process A and then performs process B and so on. This structure is represented by writing

one process after another.

 The logic is from top to bottom approach.

ii) Selection Control Structure

Selection Control Structure or Decision Control Structure allows the program to make a

choice between two alternate paths whether it is True or False.

1) IF….THEN

2) IF….THEN…ELSE

1) IF….THEN

 This choice makes between two processes.

o If the condition is true. It performs the process.

o If the condition is false. It skips over the process.

Pseudo code Flow Chart

IF Condition THEN

Unit I Page 1.5

Process 1

Process 2

Process n

Start

Read radius r

S=3.14*r*r

Print S

Stop

IF

Conditio

ns

EnggTree.com

Downloaded from EnggTree.com

Process A

…

…

…

END IF

2) IF….THEN…ELSE

 In this structure

o If the condition is true. It performs the process A.

o Else the condition is false. It executes process B.

 The process execution is depending on the condition.

Pseudo code Flow Chart

IF Condition THEN

Process A

ELSE

Process B

END IF

iii) Case Structure:

 This is a multi-way selection structures that is used to choose one option from many

options. If the value is equal to type 1 then it executes process-1, If the value is equal to

type 2 then it executes process-2 and so on. END CASE is used to indicate the end of the

CASE Structure.

Pseudo code Flow Chart

CASE TYPE

case Type-1:

 Process 1

case Type-2:

Unit I Page 1.6

Process

IF

Conditio

ns
Process A Process B

TYPE

EnggTree.com

Downloaded from EnggTree.com

 Process 2

…

…

…

case Type-n:

 Process n

END CASE

d) Functions

Functions are "self-contained" modules of code that accomplish a specific task. Functions

usually "take in" data as INPUT, process it, and "return" a result as OUTPUT. Once a function is

written, it can be used over and over and over again. Functions can be "called" from the inside of

other functions. Functions "Encapsulate" a task (they combine many instructions into a single

line of code).

Ex:

>>>def add(num1,num2): #Function Definition

num3=num1+num2

print(“The sum is”,num3)

return num3

>>>a=10

>>>b=20

>>>c=add(a,b) #Function Call

Flow of a Function:

When a function is "called" the program "leaves" the current section of code and begins

to execute the first line inside the function. Thus the function "flow of control" is:

 The program comes to a line of code containing a "function call".

 The program enters the function (starts at the first line in the function code).

 All instructions inside of the function are executed from top to bottom.

 The program leaves the function and goes back to where it started from.

 Any data computed and RETURNED by the function is used in place of the function in

the original line of code.

Need for Functions

Unit I Page 1.7

Process 2 Process NProcess 1

EnggTree.com

Downloaded from EnggTree.com

 Functions allow us to create sub-steps. (Each sub-step can be its own function and a

group of Instructions)

 They allow us to reuse code instead of rewriting it.

 Functions allow us to keep our variable namespace without any confusion.

 Functions allow us to test small parts of our program in isolation from the rest.

The Steps to Write a Function

 Understand the purpose of the function.

 Define the data that comes into the function (in the form of parameters).

 Define what data variables are needed inside the function to accomplish its goal.

 Decide the data produces as output to accomplish this goal.

Parts of a "black box" (or) Parts of a function

Functions can be called "black boxes" because we don't know how they work. We just

know what is supposed to go into them, and what is supposed to come out of them.

1. The Name - describes the purpose of the function. Usually a verb or phrase, such

as "compute_Average", or just "average".

2. The Inputs - called parameters. Describe what data is necessary for the function

to work.

3. The Calculation - varies for each function

4. The Output – The calculated values from the function and "returned" via the

output variables.

Function Workspace

Every function has its own Workspace which means that every variable inside the

function is only usable during the execution of the function. After that we cannot use the

variable. The variables can be created inside the function or passed as an argument.

Function Workspace

Every function has its own Workspace which means that every variable inside the

function is only usable during the execution of the function. After that we cannot use the

variable. The variables can be created inside the function or passed as an argument.

Formal Parameters vs. Actual Parameters

 Inside the circle function, the variable ‘r’ will be used in place to calculate radius.

Unit I Page 1.8

EnggTree.com

Downloaded from EnggTree.com

 The parameter "r" is called a Formal parameter, this just means a place holder name for

radius.

The variable ‘radius’ is the Actual parameter, this means "what is actually used" for this call to

the function

Example:

Write a Python Program to find area of a circle:

>>>def circle(r): #Where ‘r’ is the Formal Parameter

rad=3.14*r*r

print(“The area of circle is”,rad)

>>>radius=9

>>>circle(radius) #Where ‘radius’ is the Actual Parameter

1.3 NOTATIONS (CLASSIFICATIONS OF AN ALGORITHM):
The Notations of an algorithm is classified into three

i. Pseudo code
ii. Flow Chart

iii. Programming Language

1.3.1. Pseudo Code:
 Pseudo code is a kind of structure English for designing algorithm.
 Pseudo code came from two words.

 Pseudo Means imitation
 Code means instruction

 Pseudo code is a text based tool for human understanding
 Pseudo cannot be compiled nor executed, and there are no real format or syntax rules
 The benefits of pseudo code is it enables the programmer to concentrate on the algorithm

without worrying about all syntactic details

Ex:
READ num1, num2
result = num1 + num2
WRITE result.

Basic Guidelines for writing Pseudo code:
 Write only one statement per line

 Each statement in your pseudocode should express just one action for the
computer

 Capitalize Initial Keyword

Unit I Page 1.9

EnggTree.com

Downloaded from EnggTree.com

 The keywords should be written in capital letters. Ex – READ, WRITE, IF,
ELSE, WHILE

 Indent to show hierarchy (order)
 We use a particular Indentation in each design.
 For sequence statement Indent start from same column
 For selection & looping statement Indent will leave some space and fall inside

the column.
 Ex:

IF a>b then
print a

ELSE
print b

 End multi line Structures
 Each structure must be ended properly to provide more clarity

 Ex: END IF
 Keep statements language Independent.

 The statement should be Independent to the language we are using. The
language features should be used properly.

Advantages of Pseudo Code.
 Can be done easily on a word processor.
 Easily modified.
 Implements structured concepts well.
 No special symbols are used.
 It is simple because it uses English like statements.

Disadvantage of pseudo Code.
 It is not visual.
 There is no standard format.
 Cannot be compiled not executed.

Examples:

1. Write a pseudocode to find the area of circle.

BEGIN

READ radius r

INITIALIZE pi=3.14

COMPUTE Area=pi*r*r

PRINT r

2. Write a pseudocode to find the biggest of two numbers

BEGIN

Unit I Page 1.10

EnggTree.com

Downloaded from EnggTree.com

READ A, B

IF A>B

 PRINT “B is big”

ELSE

 PRINT “A is big”

3. Write a pseudocode for calculating total marks of specified number of subjects given as

66, 99, 98, 87, 89

BEGIN

INITIALIZE total=0,i=1

WHILE i<n

READ mark

total=total+mark

INCREMENT i

PRINT i

END

1.3.2. Flowchart
 A flow chart is a diagrammatic representation that illustrates the sequence of operations

to be performed to arrive the solution.

 Each step in the process is represented by a different symbol and has a short description

of the process steps.

 The flow chart symbols are linked together with arrows showing flow directions.

Flow Chart Symbols:

S.No Name of the Symbol Symbol Meaning

1. Terminal
Represent the start and stop of

the program

2. Input / Output
Denoted either an input or

output operation.

Unit I Page 1.11

EnggTree.com

Downloaded from EnggTree.com

3. Process
Denotes the process to be

carried out.

4. Decision
Represent decision making and

branching

5. Flow Lines
Represent the sequence of steps

and directions of flow

6. Connectors

Represent a circle and a letter or

digit inside the circle. Used to

connect two flow charts

Types of Flow Chart:

 High Level Flow Chart:
 Shows major steps in the process.

 Which also includes intermediate outputs of each step.

 Detailed Flow Chart:
 Which provides detailed picture of a process by mapping all steps

 Which gives the detail about all the steps

 Deployment or Matrix Flow Chart:
 Which maps out the process in terms of who is doing the steps.

 Which is in the matrix format.

 Which shows various participants and the flow of steps among those participants.

Basic Guidelines for preparing Flow Chart:
 Flow chart should have all necessary requirements and should be listed out in logical

order.

 The Flow Chart should be clear neat and easy to follow. There should not be any

ambiguity.

 The usual direction of the flow chart is from left to right and top to bottom.

 Only one flow line should come out from a process symbol

Unit I Page 1.12

EnggTree.com

Downloaded from EnggTree.com

 (or)

 Only one flow line should enter a decision symbol but two or three flow lines can leave.

 Only one flow line is used in conjunction with terminal symbol

 Write within standard symbols briefly. You can also use annotation symbol to describe
the data more clearly.

– – – Calculation Part

 If the flowchart becomes complex then it is better to use connector symbols to reduce the
number of flow lines.

 Flow chart should have a start and stop.

 Validity of a flow chart can be tested by passing through it with a simple test data.

Advantages of Flow Chart:
 Flow Charts are better in communication.

 A Problem can be analyzed in an effective way.

 Program Flow Charts Serve as a good documentation.

 Flow Charts acts as a blue print during system analysis and program development phase.

 The maintenance of operating program becomes easy with the help of flow chart.

Disadvantages of Flow Chart:
 Sometimes the program logic is quite complicated, In that case flowchart becomes

complex and clumsy.

 If alterations are required the flowchart may require re-drawing completely.

 As the flowchart symbols cannot be typed, reproduction of flowchart becomes a problem.

Example:

1. Draw a flowchart to find the area of circle.

Unit I Page 1.13

Start Stop

EnggTree.com

Downloaded from EnggTree.com

2. Draw a flowchart to find the biggest of two numbers

Unit I Page 1.14

Start

Read r

area=3.14*r*r

Print area

Stop

Start

Read a,b

 If

a>b

print a is big print b is big

Stop

EnggTree.com

Downloaded from EnggTree.com

yes No

3. Draw a flowchart for calculating total marks of specified number of subject

Unit I Page 1.15

Start

Read N

Total=0

i=1

If

i<n

Read MarkPrint total

Total=Total+Mark

i=i+1

Stop

EnggTree.com

Downloaded from EnggTree.com

Yes No

1.3.3 Programming Languages:

A computer is the ideal machine to execute computational algorithms because:

 A computer can perform arithmetic operations

 It can also perform operations only if it satisfies some condition.

A Programming language is a specialized language used to instruct the computer to solve

a particular problem.

Types of Computer Programming Languages

Unit I Page 1.16

EnggTree.com

Downloaded from EnggTree.com

There are three types of languages used in computer

i. Machine Language

ii. Assembly Language

iii. Programming Language

i) Machine Language

 Machine Language is also Known as Binary language or Low Level Language.

 Machine Language consists of 0’s and 1’s.

 Each Computer has its own machine language.

 The Machine Language encodes the instructions for the computer.

Ex:

01010010101

ii) Assembly Language

An Assembly language consists of English like mnemonics. There is one mnemonic for

each machine instructions of the computer.

An assembler is used to convert the assembly language into an executable machine code.

Ex for An Assembly language :

Start

add x,y

sub x,y

…

…

End

Difference between Pseudo Code and Assembly Language.

S.No Pseudo Code Assembly Language

1.
Pseudo Codes are not compiled or

executed.

Assembly Language should be compiled and

should be executed.

2.
Pseudo Code should not have a

specified format.

Assembly Language should have a specified

format known as mnemonics.

Unit I Page 1.17

EnggTree.com

Downloaded from EnggTree.com

iii) High Level Programming Language

 A High Level Programming Language consist of people language to simplify the

computer algorithms.

 A High Level Programming Language allows the programmer to write sentence in the

language which can be easily translated into machine language.

 The sentence written in High Level Programming Language is called as statements.

Ex for High Level Programming Language:

main()

{

if(x<y)

{

print(“x is greater”)

}

else

{

print(“y is greater”)

}

}

Some High Level Programming Language:

1. Fortan

2. C

3. C++

4. Java

5. Pearl

Define Compiler:

 A Compiler is a computer software that transforms computer code written in High Level

Programming Language into Machine Language (0,1) as well as vice versa.

Define Interpreter:

 An Interpreter translates a High Level Programming Language into an immediate form of

Machine Level Language. It executes instructions directly without compiling.

Define Assembler:

Unit I Page 1.18

EnggTree.com

Downloaded from EnggTree.com

 An Assembler is used to convert the Assembly Language into an executable Machine

Level Language.

Define Computer Program:

 A Computer Program is a combination of Computer algorithm and a Programming

language. Most programs are English like languages.

 A Computer Program will solve the problem specified in the algorithm.

1.4 Algorithmic Problem Solving:

A sequence of steps involved in designing and analyzing an algorithm is shown in the

figure below.

i) Understanding the Problem

 This is the first step in designing of algorithm.

 Read the problem’s description carefully to understand the problem statement

completely.

 Ask questions for clarifying the doubts about the problem.

 Identify the problem types and use existing algorithm to find solution.

Unit I Page 1.19

Understand the Problem

Decide on Computational Means,

exact vs approximate solving

algorithmic design technique

Design an algorithm

Prove Correctness

Analyze the algorithm

Code the algorithm

EnggTree.com

Downloaded from EnggTree.com

 An Input to an algorithm specifies an instance of the problem and range of the input to

handle the problem.

ii) Decision making

The Decision making is done on the following:

a) Ascertaining the Capabilities of the Computational Device

 After understanding the problem one need to ascertain the capabilities of the

computational device the algorithm is intended for.

 Sequential Algorithms:

o Instructions are executed one after another. Accordingly, algorithms designed to

be executed on such machines.

 Parallel Algorithms:

o An algorithm which can be executed a piece at a time on many different

processing device and combine together at the end to get the correct result.

iii) Choosing between Exact and Approximate Problem Solving:

 The next principal decision is to choose between solving the problem exactly (or) solving

it approximately.

 An algorithm used to solve the problem exactly and produce correct result is called an

exact algorithm.

 If the problem is so complex and not able to get exact solution, then we have to choose an

algorithm called an approximation algorithm. i.e., produces an approximate answer.

Ex: extracting square roots.

iv) Deciding an appropriate data structure:

 In Object oriented programming, data structures is an important part for designing and

analyzes of an algorithm.

 Data Structures can be defined as a particular scheme or structure to organize the data.

v) Algorithm Design Techniques

 An algorithm design technique (or “strategy” or “paradigm”) is a general approach

to solve problems algorithmically that is applicable to a variety of problems from

different areas of computing.

 First they provide guidance for designing an algorithm.

 Second, they classify algorithm according to the design idea.

Unit I Page 1.20

Algorithms+ Data Structures = Programs

EnggTree.com

Downloaded from EnggTree.com

vi) Methods of specifying an algorithm:

 Once an algorithm is designed, we need to specify it some way. There are three ways to

represent an algorithm.

o Pseudo code – is structured English.

o Flowchart – a pictorial representation of an algorithm.

o Programming Language – a high level language to instruct computer to do some

action.

vii) Proving an algorithm’s correctness:

 Once an algorithm has been specified, it has to be proved for its correctness.

 An algorithm has to prove with the input to yield a required output with respective of

time. A Common technique is mathematical induction.

viii) Analyze the algorithm:

 For an algorithm the most important is efficiency. In fact, there are two kinds of

algorithm efficiency. They are:

o Time efficiency, indicating how fast the algorithm runs, and

o Space efficiency, indicating how much extra memory it uses.

 The efficiency of an algorithm is determined by measuring both time efficiency and

space efficiency.

Some factors to analyze an algorithm are:

o Time efficiency of an algorithm

o Space efficiency of an algorithm

o Simplicity of an algorithm

o Generality of an algorithm

ix) Coding of an algorithm:

 The coding / implementation of an algorithm is done by a suitable programming language

like C, C++, JAVA, PYTHON.

 The transition from an algorithm to a program can be done correctly and it should be

checked by testing.

 After testing, the programs are executed and this solves our problem.

1.5 Simple Strategies for Developing Algorithms (Iteration, Recursion:

Iteration:

Unit I Page 1.21

EnggTree.com

Downloaded from EnggTree.com

An Iterative function is one that repeats some parts of the codes again and again until one

condition gets false.

Ex:

Write a Python program to print 10 values:

>>>i=0

>>>while i<=10:

print(“The Value of i is”,i)

i++

>>>

Recursion:

A Recursive function is the one which calls itself again and again to repeat the code. The

recursive function does not check any condition. It executes like normal function definition and the

particular function is called again and again.

Difference between Recursion and Iteration:

S.No Recursion Iteration

1.
Recursion is achieved through

repeated function calls.
Iteration is explicitly a repetition structure.

2.
Recursion terminates when a base case

is recognized.

Iteration terminates when loop continuation test

becomes false.

3.

Recursion causes a copy of function

and additional memory space is

occupied.

Iteration normally occurs within a loop so extra

memory is omitted.

Examples:

Algorithm, Pesudocode, Flowchart for finding Factorial using Recursion

1. Algorithm to find the factorial of given number using recursion

Step1: Start

Step2: Read the value of n

Step3: Call factorial(n) and store the result in f

Unit I Page 1.22

EnggTree.com

Downloaded from EnggTree.com

Step 4: Print the factorial f

Step5: Stop

Subprogram

Step1: Start factorial(n)

Step2: If n is equal to zero then return the value 1

else return n*factorial(n-1).

Sep 3: Stop factorial

2. Write the pseudocode for finding the factorial using recursion

BEGIN factorial

READ n

f=factorial(n)

PRINT f

subprogram

Begin Factorial (n)

IF n==0 THEN return 1

ELSE return n*factorial(n-1)

END

3. Draw the flowchart for finding the factorial using recursion

No

Unit I Page 1.23

Start

Read n

Print f

Stop

f =factorial(n)

Factorial(n)

if

n==

0

Return 1

Return

n*factorial(n-1)

Stop

EnggTree.com

Downloaded from EnggTree.com

yes

ILLUSTRATIVE EXAMPLES

1.1. Find Minimum in a list:
Algorithm:

Step1:Start

Step2:Read total number of elements in the list

Step3:Read the first element as E

Step4:MIN=E

Step5:SET i=2

Step6:If i>n goto Step 11 ELSE goto Step 7

Step7:Read ith element as E

Step8:if E < MIN then set MIN=E

Step9:i=i+1

Step10:goto Step 6

Step11:Print MIN

Step12:stop

Pseudocode
BEGIN

READ total number of elements in the list

READ the first element as E

SET MIN=E

SET i=2

WHILE I <= n

Read ith element as E

if E < MIN then set MIN=E

Unit I Page 1.24

Start

Read N

Read first Element as E

Min= E I=2

IS

I<N

Read I th Element as E

Is

E<

N

I=I+1

MIN=E

Print MIN

Stop

EnggTree.com

Downloaded from EnggTree.com

 i=i+1

Print MIN

END

Flow chart:

 N

 Y

 N

Y

1.2. Find how to insert a card in a list of sorted cards:

Insterting a card in a list of sorted card is same as inserting an element into a sorted array.

Start from the high end of the list, check to see where we want to insert the data. If the element is

less than then move the high element one position and next check with next element repeat the

process until the correct position and then insert the element.

Unit I Page 1.25

EnggTree.com

Downloaded from EnggTree.com

Position 0 1 2 3 4 5

Original list 4 6 9 10 11

7>11 4 6 9 10 11

7>10 4 6 9 10 11

7>9 4 6 9 10 11

7>6 4 6 7 9 10 11

Algorithm:

Step 1: Start
Step 2: Declare variables N, List[], i, and X.
Step 3: READ Number of element in sorted list as N
Step 4: SET i=0
Step 5: IF i<N THEN go to step 6 ELSE go to step 9
Step 6: READ Sorted list element as List[i]
Step 7: i=i+1
Step 8: go to step 5
Step 9: READ Element to be insert as X
Step 10: SET i = N-1
Step 11: IF i>=0 AND X<List[i] THEN go to step 12 ELSE go to step15
Step 12: List[i+1]=List[i]
Step 13: i=i-1

Pseudocode
READ Number of element in sorted list as N
SET i=0
WHILE i<N
READ Sorted list element as List[i]

i=i+1
ENDWHILE
READ Element to be insert as X
SET i = N-1
WHILE i >=0 and X < List[i]
List[i+1] =List[i]
i = i – 1
END WHILE
List[i+1] = X

Flow Chart

Unit I Page 1.26

Start

Read no of element as E

i=0

i<N

Read Sorted List List[i]

Read x

i=N-1

i>=0

&&

X<List[i

]

List[i+1]=List[i]

i=i+1

List[i+1]=X

Stop

EnggTree.com

Downloaded from EnggTree.com

N

Y

N

Y

1.3. Find how to guess an integer number within a range:

The computer randomly selects an integer from 1 to N and ask you to guess it. The

computer will tell you if each guess is too high or too low. We have to guess the number by

making guesses until you find the number that the computer chose.

.

Algorithm

Unit I Page 1.27

EnggTree.com

Downloaded from EnggTree.com

Step 1: Start

Step 2: SET Count =0

Step 3: READ Range as N

Step 4: SELECT an RANDOMNUMBER from 1 to N as R

Step 5: READ User Guessed Number as G

Step 6: Count = Count +1

Step 7: IF R==G THEN go to step 10 ELSE go to step 8

Step 8: IF R< G THEN PRINT “Guess is Too High” AND go to step 5 ELSE go to step9

Step 9: PRINT “Guess is Too Low” AND go to step 5

Step 10: PRINT Count as Number of Guesses Took

Pseudocode:
SET Count =0

READ Range as N

SELECT an RANDOM NUMBER from 1 to N as R

WHILE TRUE

READ User guessed Number as G

Count =Count +1

IF R== G THEN

BREAK

ELSEIF R<G THEN

DISPLAY “Guess is Too High”

ELSE

DISPLAY “Guess is Too Low”

ENDIF

ENDWHILE

DISPLAY Count as Number of guesses Took

Unit I Page 1.28

Start

Count=0

Read range N

R=random Number from 1 to N

Read User guessesed Number G

Count=Count+1

IS

R==

G

IS

R>G

IS

R>G

Print “Grade is too low”

Print “Grade is high”

Print count

Stop

EnggTree.com

Downloaded from EnggTree.com

Y

N

N

Y

Y

1.4 Find the towers of Hanoi:

 The Tower of Hanoi puzzle was invented by the French mathematician it has three poles

and a stack of disks, each disk a little smaller than the one beneath it. Their assignment was to

transfer all the disks from one of the three poles to another.

 This should be done with two important constraints.

o We can only move one disk at a time.

Unit I Page 1.29

EnggTree.com

Downloaded from EnggTree.com

o We cannot place a larger disk on top of a smaller one.

Figure 1 shows an example of a configuration of disks in the middle of a move from the

first pole to the third pole.

An outline to

solve this

problem,

from the

starting pole,

to the goal

pole, using an intermediate pole:

1. Move a tower of height-1 to an intermediate pole, using the final pole.

2. Move the remaining disk to the final pole.

3. Move the tower of height-1 from the intermediate pole to the final pole using the

original pole.

we can use the three steps above recursively to solve the problem.

Unit I Page 1.30

EnggTree.com

Downloaded from EnggTree.com

Python Program to solve Towers of Hanoi:

>>>def moveTower(height,fromPole, toPole, withPole):

 if height >= 1:

 moveTower(height-1,fromPole,withPole,toPole)

 moveDisk(fromPole,toPole)

 moveTower(height-1,withPole,toPole,fromPole)

>>>def moveDisk(fp,tp):

 print("moving disk from",fp,"to",tp)

>>>moveTower(3,"A","B","C")

Output:

moving disk from A to B

moving disk from A to C

moving disk from B to C

moving disk from A to B

moving disk from C to A

moving disk from C to B

moving disk from A to B

A recursive Step based algorithm for Tower of Hanoi

Step 1: BEGIN Hanoi(disk, source, dest, aux)

Step 2: IF disk == 1 THEN go to step 3 ELSE go to step 4

Step 3: move disk from source to dest AND go to step 8

Step 4: CALL Hanoi(disk - 1, source, aux, dest)

Step 5: move disk from source to dest

Step 6: CALL Hanoi(disk - 1, aux, dest, source)

Step 7: END Hanoi

A recursive Pseudocode for Tower of Hanoi

Procedure Hanoi(disk, source, dest, aux)

IF disk == 1 THEN

move disk from source to dest

ELSE

Hanoi(disk - 1, source, aux, dest) // Step 1

move disk from source to dest // Step 2

Hanoi(disk - 1, aux, dest, source) // Step 3

END IF

Unit I Page 1.31

EnggTree.com

Downloaded from EnggTree.com

END Procedure

Flow Chart for Tower of Hanoi Algorithm

WORKSHEETS

Unit I Page 1.32

Begin Hanoi(disk,source,dest,aux)

IS

disk==1

Honai(disk-1,source,aux,dest)
Move disk from source to dest

Move disk from source to dest

Honai(disk-1,source,aux,dest)

Stop

EnggTree.com

Downloaded from EnggTree.com

1.1 Draw a Flowchart and write a pesudocode to add two numbers.

1. 2. Draw a Flowchart and write a pesudocode to find biggest between three numbers.

Unit I Page 1.33

Flowchart:

Pseudocode:

Flowchart:

EnggTree.com

Downloaded from EnggTree.com

1. 3. Draw a Flowchart and write a pesudocode to find quadratic equation.

Unit I Page 1.34

Pseudocode:

Flowchart:

EnggTree.com

Downloaded from EnggTree.com

1. 4. Draw a Flowchart and write a pesudocode to check a students grade.

Unit I Page 1.35

Pseudocode:

Flowchart:

EnggTree.com

Downloaded from EnggTree.com

1. 5. Draw a Flowchart and write a pesudocode to check a number is even or odd.

Unit I Page 1.36

Pseudocode:

Flowchart:

EnggTree.com

Downloaded from EnggTree.com

1.6 Find the sum of n numbers

Unit I Page 1.37

Pseudocode:

Flowchart:

EnggTree.com

Downloaded from EnggTree.com

1.7. Draw a Flowchart and write a pesudocode to find Fibonacci series

Unit I Page 1.38

Pseudocode:

Flowchart:

EnggTree.com

Downloaded from EnggTree.com

1.8. Draw a Flowchart and write a pesudocode to find factorial

Unit I Page 1.39

Pseudocode:

Flowchart:

EnggTree.com

Downloaded from EnggTree.com

TWO MARKS

Unit I Page 1.40

Pseudocode:

EnggTree.com

Downloaded from EnggTree.com

1. What is an algorithm? (University question)

Algorithm is an ordered sequence of finite, well defined, unambiguous instructions for

completing a task. It is an English-like representation of the logic which is used to solve the

problem. It is a step- by-step procedure for solving a task or a problem. The steps must be

ordered, unambiguous and finite in number.

2. Write an algorithm to find minimum of 3 numbers in a list. (University question)

ALGORITHM : Find Minimum of 3 numbers in a list

 Step 1: Start

 Step 2: Read the three numbers A, B, C

 Step 3: Compare A and B.

If A is minimum, go to step 4 else go to step 5 Step 4: Compare A and C.

If A is minimum, output “A is minimum” else output “C is minimum”. Go to step 6.

 Step 5: Compare B and C.

If B is minimum, output “B is minimum” else output “C is minimum”.

 Step 6: Stop

3. List the building blocks of an algorithm.

 Statements

 Sequence

 Selection or Conditional

 Repetition or Control flow

 Functions

4. Define statements. List its type

Statements are instructions in Python designed as components for algorithmic problem

solving. For example. An input statement collects a specific value from the user for a variable

within the program. An output statement writes a message or the value of a program variable to

the user’s screen.

5. Write the pseudo code to calculate the sum and product of two numbers and display.

BEGIN

INITIALIZE variables sum, product, number1, number2

READ number1, number2 sum = number1+ number2

PRINT “The sum is “, sum

Unit I Page 1.41

EnggTree.com

Downloaded from EnggTree.com

COMPUTE product = number1 * number2

PRINT “The Product is “, product

END

6. What is a function?

Functions are "self-contained" modules of code that accomplish a specific task. Functions

usually "take in" data, process it, and "return" a result. Once a function is written, it can be used

over and over again. Functions can be "called" from the inside of other functions.

7. Write the pseudo code to calculate the sum and product displaying the answer on the

monitor screen.

BEGIN

INITIALIZE variables sum, product, number1, number2 of type real

READ number1, number2 sum = number1 +number2

PRINT “The sum is “, sum

COMPUTE product = number1 * number2

PRINT “The Product is “, product

END program

8. Give the rules for writing Pseudo codes.

o Write one statement per line.

o Capitalize initial keywords.

o Indent to show hierarchy.

o End multiline structure.

o Keep statements to be language independent

.

9. Give the difference between flowchart and pseudo code.

 Flowchart is a graphical representation of the algorithm.

 Pseudo code is a readable, formally English like language representation.

10. Define a flowchart.

A flowchart is a diagrammatic representation of the logic for solving a task. A flowchart

is drawn using boxes of different shapes with lines connecting them to show the flow of control.

The purpose of drawing a flowchart is to make the logic of the program clearer in a visual form.

11. Give an example of Iteration. a = 0

Unit I Page 1.42

EnggTree.com

Downloaded from EnggTree.com

 for i from 1 to 3 // loop three times

 {

 a = a + I // add the current value of i to a

 }

 print a // the number 6 is printed (0 + 1; 1 + 2; 3 + 3)

12. Write down the rules for preparing a flowchart.

 A flowchart should have a start and end,

 The direction of flow in a flowchart must be from top to bottom and left to right

 The relevant symbols must be used while drawing a flowchart.

13. Mention the characteristics of an algorithm.

 Algorithm should be precise and unambiguous.

 Instruction in an algorithm should not be repeated infinitely.

 Ensure that the algorithm will ultimately terminate.

 Algorithm should be written in sequence.

 Algorithm should be written in normal English.

 Desired result should be obtained only after the algorithm terminates.

14. Define the two modes in Python.

Python has two basic modes: script and interactive.

The normal mode is the mode where the scripted and finished .py files are run in the Python

interpreter. Interactive mode is a command line shell which gives immediate feedback for each

statement, while running previously fed statements in active memory

15. Give the various data types in Python

 Python has five standard data types

 Numbers

 String

 List

 Tuple

 Dictionary

16. List out the simple steps to develop an algorithm.

Unit I Page 1.43

EnggTree.com

Downloaded from EnggTree.com

 Algorithm development process consists of five major steps.

 Step 1: Obtain a description of the problem.

 Step 2: Analyze the problem.

 Step 3: Develop a high-level algorithm.

 Step 4: Refine the algorithm by adding more detail.

 Step 5: Review the algorithm.

17.Give the differences between recursion and iteration

Recursion Iteration

Function calls itself until the base condition is Repetition of process until the condition fails.
reached.

Only base condition (terminating condition) is It involves four steps: initialization, condition,
specified. execution and updation.

It keeps our code short and simple. Iterative approach makes our code longer.
It is slower than iteration due to overhead of Iteration is faster.
maintaining stack.

It takes more memory than iteration due to Iteration takes less memory.
overhead of maintaining stack.

18. What are advantages and disadvantages of recursion?

Advantages Disadvantages
Recursive functions make the code look clean Sometimes the logic behind recursion is hard to
and elegant. follow through.

A complex task can be broken down into Recursive calls are expensive (inefficient) as
simpler sub-problems using recursion. they take up a lot of memory and time.

Sequence generation is easier with recursion Recursive functions are hard to debug.
than using some nested iteration.

19. Define control flow statement.

A program's control flow is the order in which the program's code executes. The control

flow of a Python program is regulated by conditional statements, loops, and function calls.

20. Write an algorithm to accept two number. compute the sum and print the result.

(University question)

Unit I Page 1.44

EnggTree.com

Downloaded from EnggTree.com

Step 1: Start

Step 2: READ the value of two numbers

Step 3:Compute sum of two numbers

Step 4 :Print the sum

Step 5:Stop

21. Write an algorithm to find the minimum number in a given list of numbers. (University

question)

 Step 1: Start

 Step 2:Read the total number of element in the list as N

 Step3:Read first element as E

 Step 4:MIN=E

 Step 5:Set i=2

 Step6:IF i>n goto Step 11 ELSE goto Step 7

 Step 7:Read i th element as E

 Step 8:IF E<MIN then set MIN=e

 Step 9:i=i+1

 Step 10:goto step 6

 Step 11:print MIN

 Step12:Stop

22. Outline the logic to swap the contents of two identifiers without using the third variable

(University question)

 Step1: Start

 Step 2:Read A,B

 Step 3 :A=A+B

 Step 4:B=A-B

 Step5:A=A-B

 Step 6:Print A ,B

 Step 7:Stop

Unit I Page 1.45

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

UNIT II DATA, EXPRESSIONS, STATEMENTS

Python interpreter and interactive mode; values and types: int, float, boolean, string, and

list; variables, expressions, statements, tuple assignment, precedence of operators, comments;

Illustrative programs: exchange the values of two variables, circulate the values of n variables,

distance between two points.

PROGRAM

The most important skill for a computer Engineer is problem solving. Problem solving

means the ability to formulate problem, think creatively about solution clearly and accurately.

The process of learning to program is an excellent opportunity to practice Problem solving skills.

 “A program is a sequence of instructions that specifies how to perform a computation” .The

computation might be mathematical i e Solving equations, Finding the roots of polynomial,

symbolic computation such as searching and replacing text in a document.

Basic Instruction in Language

Input: Get data from Keyboard.

Output: Display data on the screen

Math: Perform the mathematical operations.

Conditional Execution: Check condition and execute certain code.

Repetition: Perform some action repeatedly.

2.1 INTRODUCTION

Python

Python is a high level programming language like C, C++ designed to be easy to read,

and less time to write. It is an open source and it is an interpreter which directly executes the

program without creating any executable file. Python is portable which means python can run on

different platform with less or no modifications.

Features of Python:

 Python is publicly available open source software.

 Python is easy to learn.

 Python is easy to read.

 Python is easy to maintain.

 Python provides automatic memory management.

 Python is portable.

 Python support database and GUI(Graphical User Interface)

2.2 PYTHON INTERPRETER AND INTERACTIVE MODE

Unit II Page 2.1

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

2.2.1 Python Interpreter

Python Interpreter translates high level instruction into an immediate form of machine
level language. It executes instructions directly without compiling.

The Python interpreter is usually installed in C:/Program Files/Python3.6. In windows

operating python can also be found in the start menu. All Programs Python 3.6  Python 3.6

(Shell) and Python IDLE.

2.2.2 Python Interactive mode

 Interactive mode is a command line which gives immediate feedback for each statement.

Python interactive mode can be start by two methods - Python 3.6 (Shell) and Python

IDLE.

 Python 3.6 (Shell), A prompt will appear and it usually have 3 greater than signs (>>>).

Each Statements can be enter after this (>>>) symbol. For continuous lines three dots (…)

will represent the multiple lines.

 Python IDLE (Integrated Development for Learning Environment) which provides a user

friendly console to the python users. Different colors are used to represent different

keywords.

 IDLE starts by python version, after a line (>>>) three greater than symbols will be

displayed. The statements will be executed in that line.

Example:

>>> 1+1

2

>>>5+10

15

2.2.3 In Script mode

 In script mode, type python program in a file and store the file with .py extension and use

the interpreter to execute the content of the file which is called a script.

 Working in script mode is convenient for testing small piece of code because you can

type and execute them immediately, But for more than few line we can use script since

we can modify and execute in future.

2.2.4 Debugging

Unit II Page 2.2

Source Code
Interpreter

(or)
Intermediate

Source Code

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

 Programming is error –prone, programming errors are called bugs and process of tracking

them is called debugging.

 Three kinds of error can occur in a program:

o Syntax Error

o Runtime Error

o Semantic error.

Syntax error:

 Syntax refers to the structure of a program and rules about the structure. Python can only

execute a program if the syntax is correct otherwise the interpreter display an error

message.

Runtime Error:

 The error that occurs during the program execution is called run time error.

Semantic Error:

 The computer will not generate any error message but it will not do the right thing since

the meaning of the program is wrong.

2.2.5 Integrated Development Environment (IDE)

We can use any text editing software to write a Python script file. We just need to save it

with the .py extension. IDE is a piece of software that provides useful features like code hinting,

syntax highlighting and checking, file explorers etc. to the programmer for application

development.

IDLE is a graphical user interface (GUI) that can be installed along with the Python

programming language.

Example:
 Type the following code in any text editor or an IDE and save it as helloWorld.py

print("Hello world!")

To run the script, type python helloWorld.py in the command window and the output as
follows:
Hello world!

2.3 VALUES AND DATA TYPES

Unit II Page 2.3

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

2.3.1Values

A value is one of the fundamental things; a program works with like a word or number.

Some example values are 5, 83.0, and 'Hello, World!'. These values belong to different types:

5 is an integer, 83.0 is a floating-point number, and 'Hello, World!' is a string. If you are not

sure what type a value has, the interpreter can tell you:

>>>type(5)

<class 'int'>

>>>type(83.0)

<class 'float'>

>>>type('Hello, World!')

<class 'str'>

In these results, the word ―class is used in the sense of a category; a type is a category‖

of values. Integers belong to the type int, strings belong to str and floating-point numbers belong

to float. The values like '5' and '83.0' look like numbers, but they are in quotation marks like

strings.

>>>type('5')

<class 'str'>

>>>type('83.0')

<class 'str'>

2.3.2 Standard Datatypes

A datatype is a category for values and each value can be of different types. There are 7

data types mainly used in python interpreter.

a) Integer
b) Float
c) Boolean
d) String
e) List
f) Tuple
g) Dictionary

a) Integer
Let Integer be positive values, negative values and zero.

Example:

>>>2+2

 4

>>>a=-20

Unit II Page 2.4

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

print()  20

>>> type(a)  <type ‘int’>

b) Float

A floating point value indicates number with decimal point.

Example:

>>> a=20.14

>>>type(a)  <type ‘float’>

c) Boolean

A Boolean variable can take only two values which are True or False. True and False

are simply set of integer values of 1 and 0.The type of this object is bool.

Example:

>>>bool(1)

True

>>>bool(0)

False

>>>a=True

>>>type(a)  <type ‘bool’>

>>>b=false #Prints error

>>>c=’True’

>>>type(c)  <type ‘str’>

The boolean type is a subclass of the int class so that arithmetic using a boolean works.

>>>True + 1

2

>>>False * 85

0

A Boolean variable should use Capital T in true & F in False and shouldn’t be enclosed within

the quotes.

>>>d=10>45  #Which returns False

Boolean Operators

Boolean Operations are performed by ‘AND’, ‘OR’, ‘NOT’.

Example:

True and True  True

True and False  False

True or True  True

Unit II Page 2.5

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

False or True  False

not False  True

d) String

A String is an ordered sequence of characters which can be created by enclosing

characters in single quotes or double quotes.

Example:

>>>a=”Hello”

>>>type(a)

 <type ‘str’>

Subsets of strings can be taken using the slice operator ([] and [:]) with indexes starting at 0 in

the beginning of the string and working their way from -1 at the end. The plus (+) sign is the

string concatenation operator and the asterisk (*) is the repetition operator.

Example:

>>>str = 'Python Programming'
>>>print(str) # Prints complete string
>>>print(str[0]) # Prints first character of the string
>>>print(str[-1]) # Prints last character of the string
>>>print(str[2:5]) # Prints characters starting from 3rd to 5th
>>>print(str[2:]) # Prints string starting from 3rd character
>>>print(str * 2) # Prints string two times
>>>print(str + " Course") # Prints concatenated string

Output
Python Programming
P
g
tho
thon Programming
Python ProgrammingPython Programming
Python Programming Course

String Functions:

Unit II Page 2.6

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

For the following string functions the value of str1 and str2 are as follows:

>>>str1=”Hello”

>>>str2=”World”

S.No Method Syntax Description Example
1.

+ String1 + String2 It Concatenates two Strings
print(str1+str2)
HelloWorld

2.
* String*3 It multiples the string

str1*3 
HelloHelloHello

3. len() len(String) Returns the length of the String len(str1) 5

4.

centre() centre(width,fullchar)

The String will be centred
along with the width specified
and the charecters will fill the
space

str1.centre(20,+) 
++++Hello++++

5.
lower() String.lower()

Converts all upper case into
lower case

str1.lower()  hello

6.
upper() String.upper()

Converts all lower case into
upper case

str1.upper()  HELLO

7.
split() String.split(“Char”)

splits according to the
character which is present
inside the function

str1.split(“+”) 
H+E+L+L+O

8.
ord() ord(String)

It converts a string in to its
corresponding value

ord(‘a’) 96

9.
chr() chr(Number)

It converts a number in to its
corresponding String

chr(100)-->’d’

10.
rstrip() rstrip()

It removes all the spaces at the
end

rstrip(a)  it returns -1

11. \n print(“String\n”) New Line Character print(“Hello\n”)
12. \t print(“String\t”) It provides Space print(“Hello\t”)

13.
\’ print(“String\’String”) Escape Character (/) is used

to print single quote or double
quote in a String

print(“Hello I\’m
Fine”)

14.
\” print(“String\”String”)

print(“Hello I\”m
Fine”)

e) List

A list is an ordered set of values, where each value is identified by an index. The values

that make up a list are called its elements. A list contains items separated by commas and

enclosed within square brackets ([]). Lists are mutable which means the items in the list can be

add or removed later.

Unit II Page 2.7

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

The values stored in a list can be accessed using the slice operator ([] and [:]) with

indexes starting at 0 in the beginning of the list and working their way to end -1. The plus (+)

sign is the list concatenation operator, and the asterisk (*) is the repetition operator.

Example:
>>>list = ['Hai', 123 , 1.75, 'vinu', 100.25]
>>>smalllist = [251, 'vinu']
>>>print(list) # Prints complete list
>>>print(list[0]) # Prints first element of the list
>>>print(list[-1]) # Prints last element of the list
>>>print(list[1:3]) # Prints elements starting from 2nd till 3rd
>>>print list([2:]) # Prints elements starting from 3rd element
>>>print(smalllist * 2) # Prints list two times
>>>print(list + smalllist) # Prints concatenated lists

Output
['Hai', 123, 1.75, 'vinu', 100.25]
Hai
100.25
[123, 1.75]
[1.75, 'vinu', 100.25]
[251, 'vinu', 251, 'vinu']
['Hai', 123, 1.75, 'vinu', 100.25, 251, 'vinu']

f) Tuple

Tuple are sequence of values much like the list. The values stored in the tuple can be of

any type and they are indexed by integers. A tuple consists of a sequence of elements separated

by commas. The main difference between list and tuples are:” List is enclosed in square bracket

([]) and their elements and size can be changed while tuples are enclosed in parenthesis (()) and

cannot be updated.

Syntax:

Example:

>>> tuple1=(‘1’,’2’,’3’,’5’)

>>>tuple2=(‘a’,’b’,’c’)

>>>tuple3=’3’,’apple’,’100’

>>>print(tuple2) #print tuple2 elements

>>>print(tuple2[0]) #print the first element of tuple2

Unit II Page 2.8

tuple_name=(items)

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

>>>print(tuple2 + tuple3) #print the concatenation of tuple2 and tuple3

>>>print(tuple3[2]) #print the second element of tuple3

Output:

(‘a’,’b’,’c’)

(‘a’)

(‘1’,’2’,’3’,’5’,‘a’,’b’,’c’)

(’3’)

g) Dictionary

Dictionaries are an unordered collection of items. Dictionaries are enclosed by curly

braces ‘{ }’ .The element in dictionary is a comma separated list of keys: value pairs where keys

are usually numbers and strings and values can be any arbitrary python data types. The value of a

dictionary can be accessed by a key. and values can be accessed using square braces ‘[]’

Syntax:

Example:

>>>dict1={}

>>>dict2={1:10,2:20,3:30}

>>>dict3={‘A’:’apple’,’B’:’200’}

>>>Dict={‘Name’:’john’,’SSN’:4576,’Designation’:’Manager’}

2.4 PYTHON KEYWORDS:

Keywords are reserved words that cannot be used as ordinary identifiers. All the

keywords except True, False and None are in lowercase .

False class finally is return None
continue for lambda try True def
from nonlocal while and del global
not with as elif if or
yield assert else import pass break
except in raise and print exec

2.5 PYTHON IDENTIFIERS:

Identifiers are names for entities in a program such as class, variables and functions etc.

Rules for defining Identifiers:

Unit II Page 2.9

dict_name= {key: value}

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

Identifiers can be composed of uppercase, lowercase letters, underscore and digits bur

should start only with an alphabet or an underscore.

 Identifiers can be a combination of lowercase letters (a to z) or uppercase letters (A to Z)

or digits or an underscore.

 Identifiers cannot start with digit

 Keywords cannot be used as identifiers.

 Only (_) underscore special symbol can be used.

Valid Identifiers: sum total _ab_ add_1

Invalid Identifies: 1x x+y if

2.6 VARIABLES

A variable is nothing but a reserved memory location to store values. A variable in a
program gives data to the computer.
Ex:
>>>b=20
>>>print(b)

2.7 PYTHON INDENTATION

Python uses indentation. Block of code starts with indentation and ends with the

unintended line. Four whitespace character is used for indentation ans is preferred over tabs.

Ex:

x=1

if x==1:

print(“x is 1”)

Result:

x is 1

2.8 EXPRESSIONS

An Expression is a combination of values, variables and operators.
Ex:
>>>10+20
12

2.9 STATEMENTS

A Statement is an instruction that a python interpreter can execute.IN python enf of a
statement is marked by a newline character.
c=a+b
Multiline statement can be used in single line using semicolon(;)
>>a=1;b=10;c=a +b

Unit II Page 2.10

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

Ex:
>>>b=20
>>>print(b)
>>>print(“\”Hello\””)

Difference between a Statement and an Expression

A statement is a complete line of code that performs some action, while an expression is

any section of the code that evaluates to a value. Expressions can be combined ―horizontally

into larger expressions using operators, while statements can only be combined vertically by

writing one after another, or with block constructs. Every expression can be used as a statement,

but most statements cannot be used as expressions

2.10 TUPLE ASSIGNMENTS

Tuple Assignment means assigning a tuple value into another tuple.

Ex:

 t=(‘Hello’,’hi’)

>>>m,n=t

>>>print(m)  Hello

>>>print(n)  hi

>>>print(t)  Hello,hi

In order to interchange the values of the two tuples the following method is used.

>>>a=(‘1’,’4’)

>>>b=(‘10’,’15’)

>>>a,b=b,a

>>>print(a,b)

((‘10’,’15’), (‘1’,’4’))

2.11 COMMENTS

Comments are non-executable statements which explain what program does. There are

two ways to represent a comment.

2.11.1 Single Line Comment

Begins with # hash symbol

Ex:

>>>print(“Hello world”) # prints the string

Unit II Page 2.11

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

2.11.2 Multi Line Comment

Multi line comment begins with a double quote and a single quote and ends with the

same

Ex:

>>>”’This is a multi line comment’”

2.12 OPERATORS:

Operators are the construct which can manipulate the value of operands.

Eg: 4+5=9

Where 4, 5, 9 are operand

+ is Addition Operator

= is Assignment Operator

Types of Operator:

1. Arithmetic Operator
2. Comparison Operator (or) Relational Operator
3. Assignment Operator
4. Logical Operator
5. Bitwise Operator
6. Membership Operator
7. Identity Operator

1. Arithmetic Operator
It provides some Arithmetic operators which perform some arithmetic operations

Consider the values of a=10, b=20 for the following table.

 Operator Meaning Syntax Description

+ Addition a+b It adds and gives the value 30
- Subtraction a-b It subtracts and gives the value -10
* Multiplication a*b It multiplies and gives the value 200
/ Division a/b It divides and gives the value 0.5

% Modulo a%b It divides and return the remainder 0
** Exponent a**b It performs the power and return 1020

// Floor a//b It divides and returns the least quotient

Example Program:

1.Write a Python Program with all arithmetic operators

>>>num1 = int(input('Enter First number: '))
>>>num2 = int(input('Enter Second number '))
>>>add = num1 + num2

Unit II Page 2.12

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

>>>dif = num1 - num2
>>>mul = num1 * num2
>>>div = num1 / num2
>>>modulus = num1 % num2
>>>power = num1 ** num2
>>>floor_div = num1 // num2
>>>print('Sum of ',num1 ,'and' ,num2 ,'is :',add)
>>>print('Difference of ',num1 ,'and' ,num2 ,'is :',dif)
>>>print('Product of' ,num1 ,'and' ,num2 ,'is :',mul)
>>>print('Division of ',num1 ,'and' ,num2 ,'is :',div)
>>>print('Modulus of ',num1 ,'and' ,num2 ,'is :',modulus)
>>>print('Exponent of ',num1 ,'and' ,num2 ,'is :',power)
>>>print('Floor Division of ',num1 ,'and' ,num2 ,'is :',floor_div)

Output:

>>>
Enter First number: 10
Enter Second number 20
Sum of 10 and 20 is : 30
Difference of 10 and 20 is : -10
Product of 10 and 20 is : 200
Division of 10 and 20 is : 0.5
Modulus of 10 and 20 is : 10
Exponent of 10 and 20 is : 100000000000000000000
Floor Division of 10 and 20 is : 0
>>>

2. Comparison Operator (or) Relational Operator

These operators compare the values and it returns either True or False according to the

condition. Consider the values of a=10, b=20 for the following table.

Operator Syntax Meaning Description

== a==b Equal to It returns false

!= a!=b Not Equal to It returns true

> a>b Greater than It returns false

< a<b Lesser than It returns true

>= a>=b Greater than or Equal to It returns false

<= a<=b Lesser than or Equal to It returns true

Unit II Page 2.13

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

3. Assignment Operator

Assignment operators are used to hold a value of an evaluated expression and used for

assigning the value of right operand to the left operand.

Consider the values of a=10, b=20 for the following table.

Operator Syntax Meaning Description

= a=b a=b It assigns the value of b to a.
+= a+=b a=a+b It adds the value of a and b and assign it to a.
- = a-=b a=a-b It subtract the value of a and b and assign it to a.
= a=b a=a*b It multiplies the value of a and b and assign it to a.
/= a/=b a=a/b It divides the value of a and b and assign it to a.

%= a%=b a=a%b It divides the value of a and b and assign the
remainder to a.

= a=b a=a**b It takes ‘a’ as base value and ‘b’ as its power and
assign the answer to a.

//= a//=b a=a//b It divides the value of a and b and takes the least
quotient and assign it to a.

4. Logical Operator

Logical Operators are used to combine two or more condition and perform logical

operations using Logical AND, Logical OR, Logical Not.

Consider the values of a=10, b=20 for the following table.

Operator Example Description

AND if(a<b and a!=b) Both Conditions are true
OR if(a<b or a!=b) Anyone of the condition should be true

NOT not (a<b)
The condition returns true but not
operator returns false

5. Bitwise Operator

Bitwise Operator works on bits and performs bit by bit operation.

Consider the values of a=60, b=13 for the following table.

Operator Syntax Example Description

&
Binary AND

a&b= 12
It do the and operation
between two operations

|
Binary OR

a|b= 61
It do the or operation between
two operations

~
Binary Ones
Complement

~a=61
It do the not operation
between two operations

<< Binary Left Shift <<a It do the left shift operation
>> Binary Right Shift >>a It do the right shift operation

Unit II Page 2.14

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

A B A&B A|B ~A

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

1. Write a Python Program with all Bitwise Operator

a = 10 # 10 = 0000 1010
b = 20 # 20 = 0001 0100
c = 0
c = a & b; # 0 = 0000 0000
print ("Line 1 - Value of c is ", c)
c = a | b; # 30 = 0001 1110
print ("Line 2 - Value of c is ", c)
c = ~a; # -11 = 0000 1011
print ("Line 3 - Value of c is ", c)
c = a << 2; # 40 = 0011 1000
print ("Line 4 - Value of c is ", c)
c = a >> 2; # 2 = 0000 0010
print ("Line 5 - Value of c is ", c)

Output:

Line 1 - Value of c is 12

Line 2 - Value of c is 61

Line 3 - Value of c is -61

Line 4 - Value of c is 240

Line 5 - Value of c is 15

6. Membership Operator

Membership Operator test for membership in a sequence such as strings, lists or tuples.

Consider the values of a=10, b=[10,20,30,40,50] for the following table.

Operator Syntax Example Description

in
value in String or

List or Tuple
a in b returns True

If the value is ‘in’ the list then
it returns True, else False

not in
value not in String

or List or Tuple
a not in b returns False

If the value is ‘not in’ the list
then it returns True, else False

Example:

x=’python programming’

Unit II Page 2.15

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

print(‘program’ not in x)

print(‘program‘ in x)

print(‘ Program‘ in x)

Output:

False

True

False

7. Identity Operator

Identity Operators compare the memory locations of two objects.

Consider the values of a=10, b=20 for the following table.

Operator Syntax Example Description

is variable 1 is variable 2 a is b returns False

If the variable 1 value is pointed
to the same object of variable 2
value then it returns True, else
False

is not
variable 1 is not

variable 2
a is not b returns

False

If the variable 1 value is not
pointed to the same object of
variable 2 value then it returns
True, else False

Example:

x1=7

y1=7

x2=’welcome’

y2=’Welcome’

print (x1 is y1)

print (x2 is y2)

print(x2 is not y2)

Output:

True

False

True

Unit II Page 2.16

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

2.13 PRECEDENCE OF PYTHON OPERATORS

The combination of values, variables, operators and function calls is termed as an

expression. Python interpreter can evaluate a valid expression. When an expression contains

more than one operator, the order of evaluation depends on the Precedence of operations.

For example, Multiplication has higher precedence than Subtraction.
>>> 20 – 5*3
5
But we can change this order using Parentheses () as it has higher precedence.
>>> (20 - 5) *3
45
The operator precedence in Python are listed in the following table.

Table :Operator precedence rule in Python

S. No Operators Description

1. () Parentheses

2. ** Exponent

3. +x, -x, ~x Unary plus, Unary minus, Bitwise NOT

4. *, /, //, % Multiplication, Division, Floor division, Modulus

5. +, - Addition, Subtraction

6. <<, >> Bitwise shift operators

7. & Bitwise AND

8. ^ Bitwise XOR

9. | Bitwise OR

10. ==, !=, >, >=, <, <=,
is, is not, in, not in Comparison, Identity, Membership

operators

11. not Logical NOT

12. and Logical AND

13. or Logical OR

2.14 ASSOCIATIVITY OF PYTHON OPERATORS

If more than one operator exists in the same group. These operators have the same

precedence. When two operators have the same precedence, associativity helps to determine

which the order of operations. Associativity is the order in which an expression is evaluated that

has multiple operator of the same precedence. Almost all the operators have left-to-right

Unit II Page 2.17

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

associativity. For example, multiplication and floor division have the same precedence. Hence, if

both of them are present in an expression, left one evaluates first.

Example:

>>> 10 * 7 // 3

23

>>> 10 * (7//3)

20

>>> (10 * 7)//3

23

10 * 7 // 3 is equivalent to (10 * 7)//3.

Exponent operator ** has right-to-left associativity in Python.

>>> 5 ** 2 ** 3

390625

>>> (5** 2) **3

15625

>>> 5 **(2 **3)

390625

2 ** 3 ** 2 is equivalent to 2 ** (3 ** 2).

PRECEDANCE OF ARITHMETIC OPERATORS

Precedence Operator Description

1 **, () Exponent, Inside Parenthesis

2 /, *, %, // Division, Multiplication, Modulo, Floor

3 +, - Addition, Subtraction

2.15 FUNCTIONS

A function is a named sequence of statements that performs a specific task. Functions

help programmers to break complex program into smaller manageable units. It avoids repetition

and makes code reusable.

Types of Functions

Functions can be classified into

Unit II Page 2.18

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

 BUILT-IN FUNCTIONS

 USER DEFINED FUNCTIONS

2.15.1 BUILT-IN FUNCTIONS

The Python interpreter has a number of functions that are always available for use. These

functions are called built-in functions. The syntax is

i) type()

>>>type(25)

<class 'int'>

The name of the function is type(). The expression in parentheses is called the argument

of the function. The result, for this function, is the type of the argument. Function takes an

argument and returns a result. The result is also called the return value.

Python provides functions that convert values from one type to another. The int()

function takes any value and converts it to an integer, if it can, or it shows error otherwise:

ii) Casting:

>>>int('25')

25

>>>int('Python')

valueError: invalid literal for int(): Python

int() can convert floating-point values to integers, but it doesn’t round off; it chops off the

fraction part:

>>>int(9.999999)

9

>>>int(-2.3)

-2

float() converts integers and strings to floating-point numbers:

>>>float(25)

25.0

>>>float('3.14159')

3.14159

Finally, str() converts its argument to a string:

>>>str(25)

Unit II Page 2.19

function_name(parameter 1, parameter 2)

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

'25'

iii) range()

The range() constructor returns an immutable sequence object of integers between the

given start integer to the stop integer.

Python's range() Parameters

The range() function has two sets of parameters, as follows:

i) range(stop)

stop: Number of integers (whole numbers) to generate, starting from zero.

eg. range(3) == [0, 1, 2].

ii) range([start], stop[, step])

 start: Starting number of the sequence.

 stop: Generate numbers up to, but not including this number.

 step: Difference between each number in the sequence.

Example:

>>>range(10)

[0,1,2,3,4,5,6,7,8,9]

>>>range(5,10)

[5,6,7,8,9]

>>>range[10,1,-2]

[10,8,6,4,2]

iv) Printing to the Screen

print() function will prints as strings ,everything in a comma separated sequence of

expressions, and it will separate the results with single blanks by default.

Example:

>>> x=10

>>> y=7

>>>print(‘The sum of’,x, ‘plus’, y, ‘is’, x+y)

Output:

The sum of 10 plus 7 is 17

print statement can pass zero or more expressions separated by commas.

Unit II Page 2.20

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

v) Reading Keyboard Input:

Python provides a built-in function to read a line of text as a standard input, which by

default comes from the keyboard. This function is:

 input()

The input() Function

The input([prompt]) function print the string which is in the prompt and the cursor point

will wait for an input.

>>>str = input("Enter your input: ");

Enter your input: 10

>>> print(“The input is : ", str)

10

2.15.2 USER-DEFINED FUNCTIONS

If the user create own functions then these functions are called user-defined functions.

Function Definition

Syntax:

A function definition is a heart of the function where we will write main operation of that

function.

Syntax:

Components of function definition

1. Keyword def marks the start of function header.

2. A function name to uniquely identify it.

3. Parameters (arguments) through which pass values to a function. They are optional.

4. A colon (:) to mark the end of function header.

5. Optional documentation string (docstring) to describe what the function does.

6. One or more valid python statements that make up the function body. Statements must

have same indentation level.

7. An optional return statement to return a value from the function.

Unit II Page 2.21

def function_name(parameter 1, parameter 2):

#Function Definition statements

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

Example:

>>>def welcome(person_name):

"""This function welcome the person passed in as parameter"""

print(" Welcome " , person_name , " to learn Python")

Using Function or Function Call

Once we have defined a function, we can call it from another function, program or even

the Python prompt. To call a function we simply type the function name with appropriate

parameters.

Syntax:

Example:

>>> welcome('Students')

Output:

Welcome Students to learn Python.

The return statement:

The return statement is used to exit a function and go back to the place from where it was

called.

Syntax:

This statement can contain expression which gets evaluated and the value is returned. If

there is no expression in the statement or the return statement itself is not present inside a

function, then the function will return the None object.

Example:

>>>def absolute_value(num):

"""This function returns the absolute value of the entered number"""

if num >= 0:

return num

else:

Unit II Page 2.22

function_name(parameter 1, parameter 2)

return variable_name

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

return -num

>>>print(absolute_value(5))

>>>print(absolute_value(-7))

Output:

5

7

2.15.3 FLOW OF EXECUTION

The order in which statements run is called the flow of execution. Execution always

begins at the first statement of the program. Statements are run one at a time, in order from top to

bottom. Function definitions do not alter the flow of execution of the program, but when the

function is called Instead of going to the next statement, the flow jumps to the body of the

function, runs the statements there, and then comes back to pick up where it left off.

2.15.4 PARAMETERS AND ARGUMENTS

Inside the function, the arguments are assigned to variables called parameters. Here is a

definition for a function that takes an argument:

Function Arguments

Types of Formal arguments:

 Required arguments

 Default arguments

 Keyword arguments

 Variable-length arguments

Required Arguments

Required arguments are the arguments passed to a function in correct positional order.

Here, the number of arguments in the function call should match exactly with the function

definition.

Example:

>>>def add(a,b): # add() needs two arguments, if not it shows error

return a+b

>>>a=10

>>>b=20

>>>print("Sum of ", a ,"and ", b, "is" , add(a,b))

Output:

Unit II Page 2.23

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

Sum of 10 and 20 is 30

Default Arguments:

A default argument is an argument that assumes a default value if a value is not provided

in the function call for that argument.

Example:

>>>def add(a,b=0):

print ("Sum of ", a ,"and ", b, "is" ,a+b)

>>>a=10

>>>b=20

>>>add(a,b)

>>>add(a)

Output:

Sum of 10 and 20 is 30

Sum of 10 and 0 is 10

Keyword Arguments:

Keyword arguments are related to the function calls. When you use keyword arguments

in a function call, the caller identifies the arguments by the parameter name.

Example:

>>>def add(a,b):

print ("Sum of ", a ,"and ", b, "is" ,a+b)

>>>a=10

>>>b=20

>>>add(b=a,a=b)

Output:

Sum of 20 and 10 is 30

Variable-Length Arguments:

The special syntax *args in function definitions in python is used to pass a variable

number of arguments to a function. It is used to pass a non-keyworded, variable-length argument

list.

 The syntax is to use the symbol * to take in a variable number of arguments; by

convention, it is often used with the word args.

Unit II Page 2.24

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

 What *args allows you to do is take in more arguments than the number of formal

arguments that you previously defined. With *args, any number of extra arguments can

be tacked on to your current formal parameters

Example:

>>>def myFun(*argv):

for arg in argv:

print (arg)

>>>myFun('Hello', 'Welcome', 'to', 'Learn Python')

Output:

Hello

Welcome

to

Learn Python

The Anonymous Functions or Lambda Functions

In Python, anonymous function is a function that is defined without a name. While

normal functions are defined using the def keyword, in Python anonymous functions are defined

using the lambda keyword. Hence, anonymous functions are also called lambda functions.

Syntax:

Example:

>>>double = lambda x: x * 2

print(double(5))

Output:

10

In the above program, lambda x: x * 2 is the lambda function. Here x is the argument and

x * 2 is the expression that gets evaluated and returned.

The same Anonymous function can be written in normal function as

>>>def double(x):

 return x * 2

>>>double(5)

Unit II Page 2.25

lambda arguments: expression

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

2.16 MODULES

Modules

a) Importing Modules

b) Built-in Modules

Define Module

A module allows you to logically organize the python code. Grouping related code into a

module makes the code easy to use. A module is a file consisting python code. A module can

define functions, classes and variables. A module can also include runnable code.

Example:

The Python code for a module add normally resides in a file named addition.py.
support.py

>>>def add(a,b):
result=a+b
return result

a) Importing Modules
We can invoke a module by two statements

i. import statement
ii. from…import statement

i) The import Statement

You can use any Python source file as a module by executing an import statement in

some other Python source file.

Syntax:

import module

Example:

import addition # Import module addition

addition.add(22,33) # Now we can call the function in that module as

Result:

Addition of two number is 55

ii) The from...import Statement

Python's from statement lets to import specific attributes from a module into the current

namespace. Multiple function can be imported by separating by their names with commas .

Syntax:

from module_name import function_name

 Example:

Unit II Page 2.26

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

addition.py

>>>def add(a,b):
result=a+b
return result

subt.py
>>>def sub(a,b):

result=a-b
return result

>>>from example import add,sub

>>> print(addition.add(9,2))

11

>>>print(subt.sub(5,2))

3

b) Built-in Modules

Python have many built-in modules such as random, math, os, date, time, URLlib21.

i) random module:

This module is used to generate random numbers by using randint function.

Ex:

import random

print(random.randint(0,5))

print(random.random())

print(random.random()*10)

my_data=[156,85,”john’,4.82,True]

print(random.choice(my_data))

Output:

1

0.675788

5.2069

4.82

ii) math module:

This math module provides access to mathematical constants and functions.

Ex:

>>>import math

>>>math.pi #Pi, 3.14

Unit II Page 2.27

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

>>>math.e #Euler’s number

>>>math.degrees(2) #2 rads=114.59 degrees

>>>math.sin(2) #sin of 2

>>> math.cos(0.5) #cos of 0.5

>>> math.tan(0.23) #tan of 0.23

>>> math.sqrt(49) #sqrt of 49 is 7

>>>math.factorial(5) #factorial of 5 is 1*2*3*4*5=120

iii) date & time module

It is useful for web development. This is module is use to display date and time

Ex:

>>>import datetime

>>> x = datetime.datetime.now()

>>>print(x)

Output:

iii)Calender module:

This module is used to display calendar

>>>import calendar

>>>cal=calendar.month(2019,5)

>>>print(cal)

 Output:

Calendar is displayed

Unit II Page 2.28

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

ILLUSTRATIVE EXAMPLES

Note- Always get an Input from the USER.

1. Write a python Program to find the area of a triangle

a = float(input('Enter first side: '))
b = float(input('Enter second side: '))
c = float(input('Enter third side: ')) # calculate the semi-perimeter
s = (a + b + c) / 2 # calculate the area
area = (s*(s-a)*(s-b)*(s-c)) ** 0.5
print(“The area of the triangle is f”,area) # displays the area

Output:
>>> Enter first side: 6
 Enter second side: 8
 Enter third side: 10
 The area of the triangle is f 24.0
>>>

2. Write a python Program to find the quadratic equation

import cmath # import complex math module
a = float(input('Enter a: ')) # To take coefficient from the users
b = float(input('Enter b: '))
c = float(input('Enter c: ')) # calculate the discriminant
d = (b**2) - (4*a*c)
sol1 = (-b-cmath.sqrt(d))/(2*a) # find two solutions
sol2 = (-b+cmath.sqrt(d))/(2*a)
print(“The solution are {0} and {1}”.format(sol1,sol2)) # displays the quadratic equation

Output:
>>> Enter a: 1
 Enter b: 5
 Enter c: 6
 The solution are (-3+0j) and (-2+0j)

3. Write a Python program to swap two numbers using a temporary variable.

x = input('Enter value of x: ') # To take input from the user
y = input('Enter value of y: ')
temp = x # create a temporary variable
x = y
y = temp
print('The value of x after swapping: {}'.format(x))
print('The value of y after swapping: {}'.format(y))

Output:
>>> Enter value of x: 10
 Enter value of y: 20
 The value of x after swapping: 20
 The value of y after swapping: 10

Unit II Page 2.29

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

4. Write a Python Program to find the distance between two points

import math
def distance(x1,y1,x2,y2): # Defining the Function Distance

 dx=x2-x1
 dy=y2-y1
 print("The value of dx is", dx)
 print("The value of dy is", dy)
 d= (dx**2 + dy**2)
 dist=math.sqrt(d)
 return dist

x1 = float(input("Enter the first Number: ")) #Getting inputs from the user
x2 = float(input("Enter the Second Number: "))
y1 = float(input("Enter the third number: "))
y2 = float(input("Enter the forth number: "))
print("The distance between two points are",distance(x1,x2,y1,y2))

#Calling the function distance
Output:
>>> Enter the first Number: 2
 Enter the Second Number: 4
 Enter the third number: 6
 Enter the forth number: 12
 The value of dx is 4.0
 The value of dy is 8.0
 The distance between two points are 8.94427190999916

6. Write a program to circulate the values of list.

def circulate(list,n):
return list[n:]+list[:n]

>>>print(“The Values Shift two places in Clockwise: ”circulate([1,2,3,4,5,6,7],2))
>>>print(“The Values Shift three places in Anti Clockwise: ”circulate([1,2,3,4,5,6,7],-3))

Output:
The Values Shift two places in Clockwise: [3,4,5,6,7,1,2,]
The Values Shift three places in Anti Clockwise: [5, 6, 7, 1, 2, 3, 4]

Unit II Page 2.30

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

WORKSHEETS

Note: - Always Get an Input from the User

2.1. Write a python program to find the area of a circle

2.2 Write a python program to convert Kilometers to Miles (Conversion factor = 0.621)
Formula: miles=kilometer*conversion_factor

2.3. Write a python program to find the average of 5 numbers

Unit II Page 2.31

Program:

Output:

Program:

Output:

Program:

Output:

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

2.4. Write a python program to find Simple Interest

Formula: Simple Interest = (P x T x R)/100

2.5. Write a python program to find Compound Interest

Formula: Compound Interest = P(1+ R/100)Time

2.6. Write a python program to o display your details like name, age, address in three

different lines.

Unit II Page 2.32

Program:

Output:

Program:

Output:

Program:

Output:

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

TWO MARKS
1. What is a value? What are the different types of values? (University question)

A value is one of the fundamental things – like a letter or a number – that a program

manipulates. Its types are: integer, float, , strings , lists and Dicitionary.

2. Define a variable and write down the rules for naming a variable.

A name that refers to a value is a variable. Variable names can be arbitrarily long. They

can contain both letters and numbers, but they have to begin with a letter. It is legal to use

uppercase letters, but it is good to begin variable names with a lowercase letter.

3. Define keyword and enumerate some of the keywords in Python. (University question)

A keyword is a reserved word that is used by the compiler to parse a program. Keywords

cannot be used as variable names. Some of the keywords used in python are: and, del, from, not,

while, is, continue.

4. Define statement and what are its types?

A statement is an instruction that the Python interpreter can execute. There are two types

of statements: print and assignment statement.

5. What do you meant by an assignment statement?

An assignment statement creates new variables and gives them values:

Eg 1: Message = “hello”

Eg 2: n = 17

6. What is tuple? (University question)

A tuple is a sequence of immutable Python objects. Tuples are sequences, like lists. The

differences between tuples and lists are, the tuples cannot be changed unlike lists and tuples use

parentheses, whereas lists use square brackets. Creating a tuple is as simple as putting different

comma-separated values. Comma-separated values between parentheses can also be used.

Example: tup1 = ('physics', 'chemistry', 1997, 2000);

7. What is an expression?

An expression is a combination of values, variables, and operators. An expression is

evaluated using assignment operator.

Examples: Y=x + 17

Unit II Page 2.33

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

8. What do you mean by an operand and an operator? Illustrate your answer with relevant

example.

An operator is a symbol that specifies an operation to be performed on the operands. The

data items that an operator acts upon are called operands. The operators +, -, *, / and ** perform

addition, subtraction, multiplication, division and exponentiation.

Example: 20+32

In this example, 20 and 32 are operands and + is an operator.

9. What is the order in which operations are evaluated? Give the order of precedence.

 The set of rules that govern the order in which expressions involving multiple operators

and operands are evaluated is known as rule of precedence. Parentheses have the highest

precedence followed by exponentiation. Multiplication and division have the next highest

precedence followed by addition and subtraction.

10. Illustrate the use of * and + operators in string with example.

The * operator performs repetition on strings and the + operator performs concatenation

on strings.

Example:

>>> ‘Hello*3’

Output: HelloHelloHello

>>>’Hello+World’

Output: HelloWorld

11. What is the symbol for comment? Give an example.

is the symbol for comments in python.

Example:

compute the percentage of the hour that has elapsed

12. What is function call?

A function is a named sequence of statements that performs a computation. When we

define a function, we specify the name and the sequence of statements. Later, we can “call” the

function by its name called as function call.

Unit II Page 2.34

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

13. Identify the parts of a function in the given example.

>>> betty = type("32")

>>> print betty

The name of the function is type, and it displays the type of a value or variable. The value

or variable, which is called the argument of the function, is enclosed in parentheses. The

argument is 32. The function returns the result called return value. The return value is stored in

betty.

14. What is a local variable?

A variable defined inside a function. A local variable can only be used inside its function.

15. What is the output of the following?

a. float(32)

b. float("3.14159")

Output:

a. 32.0 The float function converts integers to floating-point numbers.

b. 3.14159 The float function converts strings to floating-point numbers.

16. What do you mean by flow of execution?

In order to ensure that a function is defined before its first use, we have to know the order

in which statements are executed, which is called the flow of execution. Execution always begins

at the first statement of the program. Statements are executed one at a time, in order from top to

bottom.

17. Write down the output for the following program.

first = 'throat'

second = 'warbler' print first + second

Output:

throatwarbler

18. Give the syntax of function definition.

def NAME(LIST OF PARAMETERS):

STATEMENTS

Unit II Page 2.35

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

19. Explain the concept of floor division.

The operation that divides two numbers and chops off the fraction part is known as floor

division.

20. What is type coercion? Give example.

Automatic method to convert between data types is called type coercion. For

mathematical operators, if any one operand is a float, the other is automatically converted to

float.

Eg:

>>> minute = 59

>>> minute / 60.0

0.983333333333

21. Write a math function to perform √2 / 2.

>>> math.sqrt(2) / 2.0

0.70710678118

22. What is meant by traceback?

A list of the functions that tells us what program file the error occurred in, and what line,

and what functions were executing at the time. It also shows the line of code that caused the

error.

23. Write a program to accept two numbers multiply them and print them. (University

question)

A=10

B=2

multiplication=A*B

print (“Multiplication of two numbers :” ,multiplication)

Unit II Page 2.36

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

UNIT III CONTROL FLOW, FUNCTIONS, STRINGS

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained

conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions:

return values, parameters, local and global scope, function composition, recursion; Strings: string

slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative

programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

BOOLEAN VALUES:

Boolean values can be tested for truth value, and used for IF and WHILE condition. There
are two values True and False. 0 is considered as False and all other values considered as True.

Boolean Operations:

Consider x=True, y= False
Operator Example Description

and x and y- returns false Both operand should be true
or x or y- returns true Anyone of the operand should be true
not not x returns false Not carries single operand

3.1 CONTROL STRUCTURES

if statement while loop break statement

if-else statement for loop pass statement

if-elif-else statement nested loop continue statement

Nested Conditional

3.1.1 Decision Making (or) Conditionals (or) Branching

The execution of the program depends upon the condition. The sequence of the control

flow differs from the normal program. The decision making statements evaluate the conditions

and produce True or False as outcome.

Unit III Page 3.1

Unconditional Stmt

Control structures

Decision Making Iteration

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

Types of conditional Statement

1. if statement
2. if-else statement
3. if-elif-else statement
4. Nested Conditional

1.if statement

If statement contains a logical expression using which data is compared and a decision is
made based on the result of comparison.
Syntax

Flow Chart

False

True

Example:
a=10
if a==10:

print(“a is equal to 10”)
Output:

a is equal to 10

2. if else statement

 The second form of if statement is “alternative execution” in which there are two possibilities and

the condition determines which block of statement executes.

Syntax

Unit III Page 3.2

Test
Expres

sion

Body of if stmt

if expression:
true statements

if test_expression:
true statements

else:
false statements

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

If the testexpression evaluates to true then truestatements are executed else falsestatements are

executed.

Flow Chart

True False

Example:

a=10
if a==10:

print(“a is equal to 10”)
else:

print(“a is not equal to 10”)
Output:

a is equal to 10

3.elif else Statement(chained conditionals)

The elif statement or chained conditional allows you to check multiple expressions for true

and execute a block of code as soon as one of the conditions evaluates to true. The elif statement

has more than one statements and there is only one if condition.

Syntax

Unit III Page 3.3

Test
Expres

sion

Body of elseBody of if

End of Code

if expression 1:
true statements

elif expression 2:
true statements

elif expression 3:
true statements

else:
false statement

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

Flow Chart

False

True False

True

Example:

a=9
if a==10:

print(“a is equal to 10”)
elif a<10:

print(“a is lesser than 10”)
elif a>10:

print(“a is greater than 10”)
 else

print(“a is not equal to 10”)

Output::

a is less than 10

Unit III Page 3.4

Test
Expressi

on
of if

Test
Expressi

on
of elif

Body of if

Body of elseBody of elif

End of Code

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

4. Nested Conditionals (or) Nested if-else

One conditional can also be nested with another condition.(ie) we can have if…elif….else

statement inside another if …elif…else statements.

Syntax

Flow Chart

True False

True False

Unit III Page 3.5

if expression 1:
true statements

else:
if expression 2:
true statements
else:
false statement

Test
Conditio

n 1

Test
Conditio

n 2

Body of if

Body of if Body of else

End of Code

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

Example:

a=10
if a==100:

print(“a is equal to 10”)
else:

if a>100:
print(“a is greater than 100”)

else
print(“a is lesser than 100”)

Output:

a is lesser than 100

3.1.2 Iteration (or) Looping Statement

An Iterative statement allows us to execute a statement or group of statement multiple

times. Repeated execution of a set of statements is called iteration or looping.

Types of Iterative Statement

1. while loop
2. for loop
3. Nested loop

1. while loop

A while loop executes a block of statements again and again until the condition gets false.

The while keyword is followed by test expression and a colon. Following the header is an

indented body.

Syntax

Flow Chart

 Entering While

loop

False

 True

Unit III Page 3.6

while expression:

true statements

Test
Expressi

on

Body of while

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

 Exit Loop

Example-1:

1.Write a python program to print the first 100 natural numbers

i=1
while (i<=100):

print(i)
 i=i+1
Output:

Print numbers from 1 to 100

Example-2:

2. Write a python program to find factorial of n numbers.

n=int(input("Enter the number:"))
i=1
fact=1
while(i<=n):

 fact=fact*i
 i=i+1

print("The factorial is",fact)
Output:

Enter the number: 5

The factorial is 120

2. for loop

The for loop is used to iterate a sequence of elements (list, tuple, string) for a specified

number of times.

For loop in python starts with the keyword “for”followed by an arbitrary variable name,which

holds its value in the following sequence objects.

Syntax

for iterating_variable in sequence:
statements

A sequence represents a list or a tuple or a string. The iterating variable takes the first item

in the sequence. Next, the statement block is executed. Each item in the list is assigned to the

iterating variable and the statements will get executed until the last item in the sequence get

assigned.

Unit III Page 3.7

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

Flow Chart

Entering for each item in
for loop sequence

 No Yes

 Exit Loop

Example-1:

for letter in”python”:
print(“The current letter:”, letter)

Output:
The current letter: p
The current letter: y
The current letter: t
The current letter: h
The current letter: o
The current letter: n

Example-2:

>>>fruit=[‘apple’, ‘orange’, ‘mango’]
>>>for f in fruit:

print(“The current fruit”, f)
>>>print(“End of for”)
Output:

The current fruit: apple
The current fruit: orange
The current fruit: mango
End of for

3.Nested loop

Python Programming allows using one loop inside another loop. For example using a

while loop or a for loop inside of another while or for loop.

Unit III Page 3.8

Is Last
Item

Reached
?

Body of for

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

 Syntax- nested for loop

for iterating_variable in sequence:
for iterating_variable in sequence:

Innerloop statements
Outer Loop statements

3.1.3.Unconditional Statement

In a situation the code need to exit a loop completely when an external condition is

triggered or need to skip a part of the loop. In such situation python provide unconditional

statements.

Types of Unconditional looping Statement

1. break statement

2. continue statement

3. pass statement

1.break statement

A break statement terminates the current loop and transfers the execution to statement
immediately following the loop. The break statement is used when some external condition is
triggered.
Syntax

Flow Chart

 If condition

 is true

 If condition is False

Unit III Page 3.9

break

Condition Code

Conditio
n

brea
k

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

Example:

for letter in”python”:
if letter==’h’:

break
print(letter)

 print(“bye”)

Output:
pyt
bye

2. continue statement

A continue statement returns the control to the beginning of the loop statement. The
continue statement rejects all remaining statement and moves back to the top of the loop.
Syntax

Flow Chart

 If condition

 is true

 If condition is False

Example:

for letter in”python”:
if letter==’h’:

continue
print(letter)

 print(“bye”)

Output:
pyton
bye

Unit III Page 3.10

continue

Condition Code

Conditio
n

conti
nue

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

3. pass statement

A pass statement is a null operation, and nothing happens when it executed.
Syntax

Example:

for letter in”python”:
if letter==’h’:

pass
print(letter)

 print(“bye”)

Output:
python
bye

3.2 Fruitful Functions:

Function that returns value are called as fruitful functions. The return statement is followed

by an expression which is evaluated, its result is returned to the caller as the “fruit” of calling this

function.

len(variable) – which takes input as a string or a list and produce the length of string or a list as an

output.

range(start, stop, step) – which takes an integer as an input and return a list containing all the

numbers as the output.

Example-1:
Write a python program to find distance between two points:

import math
def distance(x1,y1,x2,y2): # Defining the Function Distance

 dx=x2-x1
 dy=y2-y1
 print("The value of dx is", dx)
 print("The value of dy is", dy)
 d= (dx**2 + dy**2)
 dist=math.sqrt(d)
 return dist

x1 = float(input("Enter the first Number: ")) #Getting inputs from user
x2 = float(input("Enter the Second Number: "))
y1 = float(input("Enter the third number: "))
y2 = float(input("Enter the forth number: "))
print("The distance between two points are",distance(x1,x2,y1,y2))

Unit III Page 3.11

pass

Input the valuefruitful functionreturn the result

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

#Calling the function distance
Output:
>>> Enter the first Number: 2
 Enter the Second Number: 4
 Enter the third number: 6
 Enter the forth number: 12
 The value of dx is 4.0
 The value of dy is 8.0
 The distance between two points are 8.94427190999916
>>>
Explanation for Example 1:

Function Name – ‘distance()’
Function Definition – def distance(x1, y1, x2, y2)
Formal Parameters - x1, y1, x2, y2
Actual Parameter – dx, dy
Return Keyword – return the output value ‘dist’
Function Calling – distance(x1, y1, x2, y2)

Parameter in fruitful function
A function in python

 Take input data, called parameter
 Perform computation
 Return result

 Once the function is defined,it can be called from main program or from another function.

Function call statement syntax

Parameter is the input data that is sent from one function to another. The parameters are of two

types

1. Formal parameter

 The parameter defined as part of the function definition.

 The actual parameter is received by the formal parameter.

2. Actual parameter

 The parameter is defined in the function call

Unit III Page 3.12

def funct(param1,param2):

statements

return value

Result=function_name(param1,param2)

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

Example-1:

def cube(x):

return x*x*x #x is the formal parameter

a=input(“Enter the number=”)

b=cube(a) #a is the actual parameter

print”cube of given number=”,b

Output:

Enter the number=2

Cube of given number=8

3.3 Composition:

A Composition is calling one function from another function definition.

Example:
Write a python program to add three numbers by using function:

def addition(x,y,z): #function 1
 add=x+y+z
 return add

def get(): #function 2
 a=int(input("Enter first number:"))
 b=int(input("Enter second number:"))
 c=int(input("Enter third number:"))
 print("The addition is:",addition(a,b,c)) #Composition function calling

get() #function calling
Output:
Enter first number:5
Enter second number:10
Enter third number:15
The addition is: 30

3.4 SCOPE :GLOBAL AND LOCAL

Scope is the portion of the program from where a namespace can be accessed directly

without any prefix. When a reference is made inside a function, the name is searched in the local

namespace, then in the global namespace and finally in the built-in namespace.

Unit III Page 3.13

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

Local scope Example:
 def outer_function():

a=”I am in india”
def inner_function():

a=” I am in TamilNadu”
print(“a=”a)

inner_function()
print(‘a=”,a)

>>>a=”I am in world”
>>>outer_function()
>>>print(‘a=’,a)
Output:

a=I am in TamilNadu
a=I am in India
a=I am in World

Global scope Example:
 def outer_function():

global a
a=”I am in india”
def inner_function():

a=” I am in TamilNadu”
print(“a=”a)

iner_function()
print(‘a=”,a)

>>>a=”I am in world”
>>>outer_function()
>>>print(‘a=’,a)
Output:

a=I am in TamilNadu
a=I am in TamilNadu
a=I am in TamilNadu

3.5 Recursion:
A Recursive function is the one which calls itself again and again to repeat the code. The

recursive function does not check any condition. It executes like normal function definition and
the particular function is called again and again
Syntax:

Unit III Page 3.14

def function(parameter):
#Body of function

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

Example-1:
Write a python program to find factorial of a number using Recursion:

(Positive value of n , then n! can be calculated as n!=(n-1)….2.1 it can be written as (n-1)!
 Hence n! is the product of n and (n-1)! n!=n.(n-1)!)

def fact(n):
 if(n<=1):
 return n
 else:
 return n*fact(n-1)
n=int(input("Enter a number:"))
print("The Factorial is", fact(n))

Output:
>>> Enter a number:5
 The Factorial is 120
>>>
Explanation:

First Iteration - 5*fact(4)
Second Iteration - 5*4* fact(3)
Third Iteration - 5*4*3*fact(2)
Fourth Iteration - 5*4*3*2* fact(1)
Fifth Iteration - 5*4*3*2*1

Example-2:
Write a python program to find the sum of a ‘n’ natural number using Recursion:
def nat(n):

if(n<=1):
 return n
 else:
 return n+nat(n-1)
>>>n=int(input("Enter a number:"))
>>>print("The Sum is", nat(n))
Output:
>>> Enter a number: 5
 The Sum is 15
>>>
Explanation:

First Iteration – 5+nat(4)
Second Iteration – 5+4+nat(3)
Third Iteration – 5+4+3+nat(2)
Fourth Iteration – 5+4+3+2+nat(1)
Fifth Iteration – 5+4+3+2+1

Unit III Page 3.15

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

3.6 String:

A string is a combination of characters. A string can be created by enclosing the characters

within single quotes or double quotes. The character can be accessed with the bracket operator.

Example:

var1=’Hello’
var2=”Python Programming”
print(var1) # Prints Hello
print(var2) # Prints Python Programming

Traversal with a for Loop
A lot of computations involve in processing a string, one character at a time. Often they

start at the beginning, select each character in turn, do something to it, and continue until the end.

This pattern of processing is called a traversal.

Example:

>>>index = 0

>>>str="Python"

>>>while index < len(str):

letter = str[index]

print(letter, end="")

index = index+1

Output:

Python

3.6.1 String Slices:

A segment of a string is called a slice. Selecting a slice is similar to selecting a character.

Syntax:
variable [start:stop]
<String_name> [start:stop]

Example
Char a= “B A N A N A”

Index from Left 0 1 2 3 4 5

Index from Right -6 -5 -4 -3 -2 -1

>>>print(a[0])  prints B #Prints B Alone 0th Position

>>>print(a[5])  prints A #Prints A Alone Last Position

>>>print(a[-4])  print N #Print From Backwards -4th Position

>>>a[:]  'BANANA' #Prints All

>>>print(a[1:4])  print ANA #Print from 1st Position to 4th Position

>>> print(a[1:-2])  ANA #Prints from 1st position to -3th Position

Unit III Page 3.16

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

3.6.2 Strings are Immutable:

Strings are immutable which mean we cannot change the exiting string.

>>>var1=”Hello”

>>>var1[0]=”J” #Displays Error

3.6.3 Strings Methods (or) Types of functions in String:

Consider the value of a, b, c be

a=”Hello”, b=”hELLO”, c=”1234+56”

S.No Method Syntax Description Example

1. len() len(String) Returns the length of the String len(a) 5

2. center()
String.center(width,fill
char)

The String will be centered
along with the width specified
and the characters will fill the
space

a.center(20,+) 
++++Hello++++

3. lower() String.lower()
Converts all upper case into
lower case

b.lower()  hello

4. upper() String.upper()
Converts all lower case into
upper case

a.upper()  HELLO

5. capitalize() String.capitalize()
It converts the first letter into
capital

b.capitalize()  Hello

6. split() String.split(“Char”)
splits according to the character
which is present inside the
function

c.split(“+”) 
[‘1234’,’56’]

7. join() String1.join(String2)
It concatenates the string with
the sequence

a.join(b) 
Hello hELLO

8. isalnum() String.isalnum()

It checks the string is alpha
numeric or not. If the string
contains 1 or more
alphanumeric characters it
returns 1, else its returns 0

c.isalnum()  returns 1

9. isalpha() String.isalpha()
Returns true if it has at least 1
or more alphabet characters,
else it return false

b.isalpha() returns 1

10. isdigit() String.isdigit()
Returns true if it has at least 1
or more digits, else it return
false

b.isdigit() returns 0

11. islower() String.islower()
Returns true if the string has all
Lower case characters, else it
return false

b.islower()  returns 0

12. isupper() String.isupper()
Returns true if the string has all
Upper case characters, else it
return false

b.isupper() returns 0

Unit III Page 3.17

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

13. isnumeric() String.isnumeric()
Returns true if the string
contains only numeric character
or false otherwise

a.isnumeric() returns
0

14. isspace() String.isspace()
Returns true if the string
contains only wide space
character or false otherwise

a.isspace()  returns 0
e=” ”
e.isspace()  returns 1

15. istitle() String.istitle()
Returns true if the string is
properly titled or false
otherwise

d=”Hello How R U”
d.istitle() returns 1

16. isdecimal() String.isdecimal()
Returns true if the string
contains decimal value or false
otherwise

c.isdecimal()  returns
1

17. title() String.title()
Returns title cased, all the
characters begin with upper
case

d=”hello how h u”
d.title()  ”Hello How
R U”

18. find()
String.find(“text”,
start,end)

If the string is found it returns
index position or it returns -1

a.find(“e”,0,4) 
returns 1 (index
position)

19. endswith()
String.endswith(“text”
, beg, end)

The string will check for
whether the character is ending
with the specified character. If
it found it returns true, else
false

a.endswith(i,0) 
returns false

20. index()
String.index(‘text’,beg
, end)

It is same as find(). but it raises
exception when the string is not
found

a.index(‘l’,0)  returns
2

21. count()
String.count(‘text’,beg
, end)

It counts howmany times a
string appears

a.count(‘l’,0)  returns
2

22. rfind()
String.rfind(‘text’,beg,
end)

It finds a string from right to
left

a.rfind(‘i’) -1

23. rindex()
String.rindex(‘text’,
beg, end)

Same as index() but moves
from right to left

a.rindex(‘l’,0) 
returns 3

24. rjust()
String.rjust(width,
fillchar)

It will justify the character into
right and fill with the character

a.rjust(10,’-‘)
-----Hello

25. ljust()
String.ljust(width,
fillchar)

It will justify the character into
left and fill with the character

a.ljust(10,a,’+‘)
Hello+++++

26. rstrip() rstrip()
It removes all the spaces at the
end

rstrip(a)  it returns -1

27. startswith()
startswith(text, beg,
end)

It checks whether the character
starts with the specified one

a.stratswith(H,0) 
returns true

Unit III Page 3.18

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

3.6.4 Strings Modules:

This module contains a number of functions to process standard python strings. Using

import string’ we can invoke string functions.

Example: Using the string module

import string

text = "Monty Python's Flying Circus"

print("upper", "=>", string.upper(text))

print("lower", "=>", string.lower(text))

print("split", "=>", string.split(text))

print("join", "=>", string.join(string.split(text), "+"))

print("replace", "=>", string.replace(text, "Python", "Java"))

print("find", "=>", string.find(text, "Python"), string.find(text, "Java"))

print("count", "=>", string.count(text, "n"))

Output:

upper => MONTY PYTHON'S FLYING CIRCUS
lower => monty python's flying circus
split => ['Monty', "Python's", 'Flying', 'Circus']
join => Monty+Python's+Flying+Circus
replace => Monty Java's Flying Circus
find => 6 -1
count => 3

The ‘ in’ Operator

The word in is a boolean operator that takes two strings and returns True if the first appears as a

substring in the second:

>>>‘t’ in 'python'

True

>>> 'jan' in 'python'

False

3.9 List as Array

To store such data, in Python uses the data structure called list (in most programming

languages the different term is used — “array”).

Arrays are sequence types and like lists, except that the type of objects stored in them is

constrained. A list (array) is a set of objects. Individual objects can be accessed using ordered

indexes that represent the position of each object within the list (array).

The list can be set manually by enumerating of the elements the list in square brackets, like here:

Unit III Page 3.19

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

Primes = [2, 3, 5, 7, 11, 13]

Rainbow = ['Red', 'Orange', 'Yellow', 'Green', 'Blue', 'Indigo', 'Violet']

The list Primes has 6 elements, namely:

Primes[0] = 2, Primes[1] = 3, Primes[2] = 5, Primes[3] = 7,Primes[4] = 11, Primes[5] = 13.

ILLUSTRATIVE EXAMPLES
Note- Always get an Input from the USER.

1. Program to find the square root using Newton Method.

2. Program to find the GCD of two numbers

3. Program to find the exponential of a number

4. Program to find the sum of n numbers.

5. Program to find the maximum and minimum in a list

6. Program to perform the linear search

7. Program to perform Binary search

1. Write a python Program to Check if a Number is Positive, Negative or 0
Using if...elif...else

num = float(input("Enter a number: "))
if num > 0:

 print("Positive number")
elif num == 0:

 print("Zero")
else:

 print("Negative number")
Output:

>>> Enter a number: 5

 Positive number
3.2 Using Nested if

num = float(input("Enter a number: "))

if num >= 0:
 if num == 0:
 print("Zero")
 else:
 print("Positive number")

else:
 print("Negative number")
Output:

>>> Enter a number: 5

 Positive number

Unit III Page 3.20

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

3.3 Write a Python Program to Check a year is Leap Year or not.
year = int(input("Enter a year: ")) # To get year (integer input) from the user
if (year % 4) == 0:

 if (year % 100) == 0:
 if (year % 400) == 0:
 print("{0} is a leap year".format(year))
 else:
 print("{0} is not a leap year".format(year))
 else:
 print("{0} is a leap year".format(year))

else:
 print("{0} is not a leap year".format(year))
Output:
>>>
Enter a year: 2000
2000 is a leap year
>>>
Enter a year: 1991
1991 is not a leap year

3.4 Write a Python Program to Print the Fibonacci sequence
nterms = int(input("How many terms? "))

first two terms
n1 = 0
n2 = 1
count = 0

check if the number of terms is valid
if nterms <= 0:

 print("Please enter a positive integer")
elif nterms == 1:

 print("Fibonacci sequence upto",nterms,":")
 print(n1)

else:
 print("Fibonacci sequence upto",nterms,":")
 while count < nterms: # Starting of While loop
 print(n1,end=' , ')
 nth = n1 + n2
 # update values
 n1 = n2
 n2 = nth
 count += 1 # Ending of While loop

Output:
How many terms? 10
Fibonacci sequence upto 10 :
0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 ,
>>>

Unit III Page 3.21

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

3.5 Write a Python Program to Check a number is Armstrong Number or not.

num = int(input("Enter a number: "))
sum = 0 # initialize sum
temp = num # find the sum and cube of each digit
while temp > 0:

 digit = temp % 10
 sum += digit ** 3
 temp //= 10

if num == sum: # display the result
 print(num,"is an Armstrong number")

else:
 print(num,"is not an Armstrong number")
Output:
>>> Enter a number: 121
 121 is not an Armstrong number
>>>

3.6 Write a Python Program to Find LCM of two numbers
def lcm(x, y):

 if x > y:
 greater = x
 else:
 greater = y
 while(True):
 if((greater % x == 0) and (greater % y == 0)):
 lcm = greater
 break
 greater += 1
 return lcm
num1 = int(input("Enter first number: "))
num2 = int(input("Enter second number: "))
print("The L.C.M. of", num1,"and", num2,"is", lcm(num1, num2))
Output:

>>> Enter first number: 10
 Enter second number: 15
 The L.C.M. of 10 and 15 is 30
>>>

3.7 Write a Python Program to Add Two Matrices

X = [[12,7,3],
 [4 ,5,6],
 [7 ,8,9]]

Y = [[5,8,1],
 [6,7,3],
 [4,5,9]]

result = [[0,0,0],
 [0,0,0],
 [0,0,0]]

Unit III Page 3.22

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

iterate through rows
for i in range(len(X)):

 # iterate through columns
 for j in range(len(X[0])):
 result[i][j] = X[i][j] + Y[i][j]

for r in result:
 print(r)

Output:

>>>
[17, 15, 4]
[10, 12, 9]
[11, 13, 18]
>>>

3.8 Write a Python Program to Transpose a Matrix

X = [[12,7],
 [4 ,5],
 [3 ,8]]

result = [[0,0,0],
 [0,0,0]] # iterate through rows

for i in range(len(X)):
 # iterate through columns
 for j in range(len(X[0])):
 result[j][i] = X[i][j]

for r in result:
 print(r)

Output:

>>>
[12, 4, 3]
[7, 5, 8]
>>>

3.9 Python Program to Multiply Two Matrices

3x3 matrix
X = [[12,7,3],

 [4 ,5,6],
 [7 ,8,9]]

3x4 matrix
Y = [[5,8,1,2],

 [6,7,3,0],
 [4,5,9,1]]

result is 3x4
result = [[0,0,0,0],

 [0,0,0,0],
 [0,0,0,0]]

iterate through rows of X

Unit III Page 3.23

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

for i in range(len(X)):
 # iterate through column Y
 for j in range(len(Y[0])):
 # iterate through rows of Y
 for k in range(len(Y)):
 result[i][j] += X[i][k] * Y[k][j]

for r in result:

print(r)

Output:

>>> [114, 160, 60, 27]
 [74, 97, 73, 14]
 [119, 157, 112, 23]

3.10 Write a Python Program to Check Whether a String is Palindrome or Not

 my_str = 'madame'

my_str = my_str.casefold() # it suitable for case less comparison

rev_str = reversed(my_str) # reverse the string

if list(my_str) == list(rev_str): # check the string is equal to its reverse

print("It is palindrome")

else:

 print("It is not palindrome")

Output:

>>>

 It is not palindrome

3.11 Write a Python Program to count the number of each vowel in a string.

vowels = 'aeiou' # string of vowels

ip_str = 'Hello, have you tried our turorial section yet?' # change this value

ip_str = input("Enter a string: ")

ip_str = ip_str.casefold() # make it suitable for caseless comparisions

count = {}.fromkeys(vowels,0) # make a dictionary with each vowel a key and value 0

for char in ip_str: # count the vowels

 if char in count:

 count[char] += 1

print(count)

Output:

>>>{'o': 5, 'i': 3, 'a': 2, 'e': 5, 'u': 3}

Unit III Page 3.24

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

WORKSHEETS

NOTE: Always get an Input from the User

3.1. Write a python program for Sum of squares of first n natural numbers

12+22+32+………+n2

3.2. Write a python program to find two numbers which are divisible by 13

Unit III Page 3.25

Program:

Output:

Program:

Output:

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

3.3. Write a python program to find Factors of Number

25 = 1, 5, 25

3.4. Write a python program to print even length words in a string

str=”This is a python program” This is python

Unit III Page 3.26

Program:

Output:

Program:

Output:

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

3.5. Write a python program to accept the strings which contains all vowels

Input : ABeeIghiObhkUul  Output : Accepted

3.6. Write a python program using slicing rotate a string

Input : s = "qwertyu" , d = 2

Output : Left rotation : "ertyuqw" , Right rotation : "yuqwert"

Unit III Page 3.27

Program:

Output:

Program:

Output:

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

3.7. Write a python program Find words which are greater than given length k

Input : str = "string is easy in python" , k = 3

Output : string easy python

3.8. Write a python program to split and join a string

Input : ['Python', 'is', 'Easy']

Output : Python-is-Easy

Unit III Page 3.28

Program:

Output:

Program:

Output:

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

TWO MARKS

1. Define Boolean expression with example.

A boolean expression is an expression that is either true or false. The values true and false

are called Boolean values.

Eg :

>>> 5 == 6

>>> False

True and False are special values that belongs to the type bool; they are not strings.

2. What are the different types of operators?

 Arithmetic Operator (+, -, *, /, %, **, //)

 Relational operator (== , !=, <>, < , > , <=, >=)

 Assignment Operator (=, += , *= , - =, /=, %= ,**=)

 Logical Operator (AND, OR, NOT)

 Membership Operator (in, not in)

 Bitwise Operator (& (and), | (or) , ^ (binary Xor), ~(binary 1’s complement , << (binary

left shift), >> (binary right shift))

 Identity(is, is not)

3. Explain modulus operator with example.

The modulus operator works on integers and yields the remainder when the first operand is

divided by the second. In Python, the modulus operator is a percent sign (%). The syntax is the

same as for other operators:

Eg:

>>> remainder = 7 % 3

>>> print remainder 1

So 7 divided by 3 is 2 with 1 left over.

4. Explain relational operators.

The == operator is one of the relational operators; the others are:

x! = y # x is not equal to y

x > y # x is greater than y

x < y # x is less than y

x >= y # x is greater than or equal to y

Unit III Page 3.29

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

x <= y # x is less than or equal to y

5. Explain Logical operators(University question)

There are three logical operators: and, or, and not. For example, x > 0 and x < 10 is true

only if x is greater than 0 and less than 10. n%2 == 0 or n%3 == 0 is true if either of the conditions

is true, that is, if the number is divisible by 2 or 3. Finally, the not operator negates a Boolean

expression, so not(x > y) is true if x > y is false, that is, if x is less than or equal to y. Non-zero

number is said to be true in Boolean expressions.

6. What is conditional execution?

The ability to check the condition and change the behavior of the program accordingly is

called conditional execution. Example:

 If statement:

The simplest form of if statement is:

Syntax:

if statement:

Eg:

if x > 0:

print 'x is positive'

The boolean expression after ‘if’ is called the condition. If it is true, then the indented

statement gets executed. If not, nothing happens.

7. What is alternative execution?

A second form of if statement is alternative execution, that is, if …else, where there are

two possibilities and the condition determines which one to execute.

Eg:

if x%2 == 0:

print 'x is even'

else:

print 'x is odd'

8. What are chained conditionals?

Unit III Page 3.30

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

Sometimes there are more than two possibilities and we need more than two branches. One

way to express a computation like that is a chained conditional:

Eg:

if x < y:

print 'x is less than y'

elif x > y:

print 'x is greater than y'

else:

print 'x and y are equal'

elif is an abbreviation of “else if.” Again, exactly one branch will be executed. There is no

limit on the number of elif statements. If there is an else clause, it has to be at the end, but there

doesn’t have to be one.

9. Explain while loop with example. Eg:

def countdown(n):

while n > 0:

print n

n = n-1

print 'Blastoff!'

More formally, here is the flow of execution for a while statement:

1. Evaluate the condition, yielding True or False.

2. If the condition is false, exit the while statement and continue execution at the next

statement.

3. If the condition is true, execute the body and then go back to step 1

10. Explain ‘for loop’ with example.

The general form of a for statement is

Syntax:

for variable in sequence:

code block

Eg:

x = 4

for i in range(0, x):

print i

11. What is a break statement?

Unit III Page 3.31

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

When a break statement is encountered inside a loop, the loop is immediately terminated

and the program control resumes at the next statement following the loop.

Eg:

while True:

line = raw_input('>')

if line == 'done':

break

print line

print'Done!'

12. What is a continue statement?

The continue statement works somewhat like a break statement. Instead of forcing

termination, it forces the next iteration of the loop to take place, skipping any code in between.

Eg:

for num in range(2,10):

if num%2==0;

print “Found an even number”, num

continue

print “Found a number”, num

13.Compare return value and composition.

Return Value:

Return gives back or replies to the caller of the function. The return statement causes our

function to exit and hand over back a value to its caller.

Eg:

def area(radius):

temp = math.pi * radius**2 return temp

Composition:

Calling one function from another is called composition.

Eg:

def circle_area(xc, yc, xp, yp):

radius = distance(xc, yc, xp, yp) result = area(radius)

return result

14.What is recursion?

Unit III Page 3.32

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

The process in which a function calls itself directly or indirectly is called recursion and the

corresponding function is called as recursive function.

Eg:

def factorial(n):

if n == 1:

return 1

else:

return n * factorial(n-1)

15. Explain global and local scope.

The scope of a variable refers to the places that we can see or access a variable. If we

define a variable on the top of the script or module, the variable is called global variable. The

variables that are defined inside a class or function is called local variable.

Eg:

def my_local():

a=10

print(“This is local variable”)

Eg:

a=10

def my_global():

print(“This is global variable”)

16.Compare string and string slices.

A string is a sequence of character.

Eg: fruit = ‘banana’

String Slices :

A segment of a string is called string slice, selecting a slice is similar to selecting a

character. Eg: >>> s ='Monty Python'

>>> print s[0:5] Monty

>>> print s[6:12] Python

17. Define string immutability.

Python strings are immutable. ‘a’ is not a string. It is a variable with string value. We can’t

mutate the string but can change what value of the variable to a new string.

18.Mention a few string functions.

Unit III Page 3.33

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

s.captilize() – Capitalizes first character of string s.count(sub) – Count number of

occurrences of sub in string

s.lower() – converts a string to lower case

s.split() – returns a list of words in string

19. What are string methods?

A method is similar to a function—it takes arguments and returns a value—but the syntax

is different. For example, the method upper takes a string and returns a new string with all

uppercase letters. Instead of the function syntax upper(word), it uses the method syntax

word.upper().

>>> word = 'banana'

>>> new_word = word.upper()

>>> print new_word

BANANA

20. Explain about string module.

The string module contains number of useful constants and classes, as well as some

deprecated legacy functions that are also available as methods on strings.

Eg: import string

string.upper(text)  converts to upper case

string.lower(text)  converts to lower case

21. What is the purpose of pass statement?

Using a pass statement is an explicit way of telling the interpreter to do nothing.

Eg:

def bar():

pass

If the function bar() is called, it does absolutely nothing.

Unit III Page 3.34

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

UNIT IV LISTS, TUPLES, DICTIONARIES

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list

parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods;

advanced list processing - list comprehension; Illustrative programs: simple sorting, histogram,

Students marks statement, Retail bill preparation.

4.1 LISTS

Define List

A list is an ordered set of values, where each value is identified by an index. The values in

a list are called its elements or items. The items can be of different types (int, float, string). To

create a new list, the simplest way is to enclose the elements in square bracket []. Lists are

mutable which means the items in the list can be add or removed later.

Example:

>>>[] #empty list

>>>[1,2,3] #list of integers

>>>[‘physics’,’chemistry’,’python’] #list of strings

>>>[1,’hello’,3.4] #list with mixed datatypes

>>>list1=[‘a’,’b,’c’’d’]

>>>print(list1)

List can have another list as an item. This is called nested list.

Mylist=[‘mouse’,[8,6,5], 3.2]

List are mutable.

 Lists are mutable which means the items in the list can be added or removed later.

>>>mark=[98,87,94]

>>>mark[2]=100

>>>print(mark) #Prints [98,87,100]

To access the elements in a list

The syntax for accessing an element is same as string. The square brackets are used to

access the elements. The index value within the square brackets should be given.

>>>list1=[] #Empty list

>>>list2=[1,2,3,4,5,6,7,8]

>>>list3=[‘Hello’,3.5,’abc’,4]

print(list3[1]) → 3.5

Unit IV Rohini College of Engineering and technology Page 4.1

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

List Length:

The function len returns the length of a list, which is equal to the number of elements.

len(list2) → 8

len(list3) → 4

List Membership:

The memberrship operator “in” and “not in” can also be used in a list to check whether

the element is present in the list or not.

Ex:

list3=[‘Hello’,3.5,’abc’,4]

‘Hello’ in list3 → returns True

4.1.1 LIST OPERATIONS:

1. + Operator which concatenates two lists.

>>>list2=[1,2,3,4,5,6,7,8]

>>>list3=[‘Hello’,3.5,’abc’,4]

>>>print(list2+list3)

Output

 1,2,3,4,5,6,7,8, ‘Hello’,3.5,’abc’,4

2. * Operator multiples the list to the specific numbers

>>>list2=[1,2,3,4,5,6,7,8]

>>>list2*2

Output

 1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8

4.1.2 LIST SLICE

A subsequence of a sequence is called a slice and the operation that extracts a subsequence

is called slicing. For slicing we use square brackets []. Two integer values splitted by (:).

Syntax:

Ex:

>>>a=[‘a’,’b’,’c’,’d’,’e’]

List a= ‘a’ ‘b’ ‘c’ ‘d’ ‘e’

Index from Left 0 1 2 3 4

Index from Right -5 -4 -3 -2 -1

Unit IV Rohini College of Engineering and technology Page 4.2

List_Name[Starting_Value : Ending_Value]

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

>>>print(a[:])  ['a', 'b', 'c', 'd', 'e'] #Prints ALL

>>> print(a[1:])  ['b', 'c', 'd', 'e'] #Print from 1st Position to Last Position

>>> print(a[1:3])  ['b', 'c'] #Print from 1st Position to Last – 1 Position

>>> print(a[:-1])  ['a', 'b', 'c', 'd'] #Print from Backwards except -1th Position

>>> print(a[1:-1])  ['b', 'c', 'd'] #Print from 1st Position till -1th Position

4.1.3 LIST METHODS (or) TYPES OF FUNCTIONS IN LIST

Consider the values of list a and list b be

>>>a=[‘apple’,’mango’,’lime’]

>>>b=[‘grape’]

S.No Name Syntax Description Example

1. append() listname.append() The method append() will add

the item to the end of a list

a.append(‘orange’)

2. insert() listname.insert(index,it

em)

This method inserts an item at a

particular place and two

arguments (index,item)

a.insert(1,’banana’)

3. extend() listname.extend(item1,

item2)

This method is used to combine

two list with the items in the

argument.

a.extend(‘grape’)

(or)

a.extend(b)

4. remove() listname.remove(item) This method will remove an

item in the list.

a.remove(’apple’)

5. pop() listname.pop(index) This method returns the item by

the index position and removes

it.

a.pop(1)

>>>mango

6. index() listname.index(item) This method will return index

value of list and takes index

value as argument.

a.index(‘lime’)

>>>2

7. copy() dest_list=listname.cop

y()

This method is used to copy a

list to another list.

c=a.copy()

8. reverse() listname.reverse() This method is used to reverse a.reverse()

Unit IV Rohini College of Engineering and technology Page 4.3

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

the items in a list.

9. count() listname.count(item) This method is used to count
the duplicate items in the list
which takes the item as
arguments.

a.count(‘lime’)

>>>1

10. sort() listname.sort() This method is used to arrange

the list from ascending to

descending alphabetically.

a.sort()

>>>a=[‘apple’,

‘lime’, ‘mango’]

11. clear() listname.clear() This method is used to clear all

the values in the list.

a.clear() -->[]

4.1.4 LIST LOOP:

A loop is to access all the elements in a list.

>>>a=[‘apple’,’mango’,’lime’,’orange’]

>>>print(a) → [‘apple’,’mango’,’lime’,’orange’] # displays all at a time

>>>print(a[0]) → ‘apple’

i) for var in a:

print(a) #displays all at a time

Output:

The loop goes on 4 times and print all values

 ‘apple’,’mango’,’lime’,’orange’

‘apple’,’mango’,’lime’,’orange’

‘apple’,’mango’,’lime’,’orange’

‘apple’,’mango’,’lime’,’orange’

ii) for var in a:

print(var) #displays a item at a time

Output:

The loop goes on 4 times and print items one by one.

‘apple’

’mango’

‘lime’

’orange’

iii) >>>i=0

Unit IV Rohini College of Engineering and technology Page 4.4

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

 >>> for var in a:

print(“I like”,a[i])

i=i+1

Output:

The value of i makes the loop to goes on 4 times and print items one by one.

‘apple’

’mango’

‘lime’

’orange’

1. Write a python program to print the items in the list using while loop.

>>>a=[‘apple’,’mango’,’lime’,’orange’]

>>>i=0

>>>while len(a)>i:

print(“I like”,a[i])

i=i+1

Output:

The value of i makes the loop to goes on 4 times and print items one by one.

‘apple’

’mango’

‘lime’

’orange’

4.1.5 LIST ARE MUTABLE:

Unlike String, List is mutable (changeable) which means we can change the elements at

any point.

Ex:

>>>a=[‘apple’,’mango’,’lime’,’orange’]

>>>a[0]=’grape’

>>>print(a) → ’grape’, ’mango’,’lime’,’orange’

4.1.6 LIST ALIASING:

Since variables refer to objects, if we assign one variable to another, both variables refer to

same objects.(One or more variable can refer the same object)

>>>a=[1,2,3]

Unit IV Rohini College of Engineering and technology Page 4.5

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

>>>b=a

>>>a is b # Displays True

4.1.7 LIST CLONING:

If we want to modify a list and also keep copy of the original we can use cloning to copy

the list and make that as a reference.

Ex:

a=[1,2,3]

b=a[:]

print(b)  [1,2,3]

4.1.8 LIST PARAMETER:

Passing a list as an argument actually passes a reference to the list, not the copy of the list.

We can also pass a list as an argument to the function.

Ex:

>>> def mul(a_list): #a_list is a list passing as a parameter

for index,value in enumerate(a_list):

a_list[index]=2*value

print(a_list)

>>> a_list=[1,2,3,4,5]

>>> mul(a_list)

Output:

[2, 4, 6, 8, 10]

4.2 TUPLE

Tuples are sequence of values much like the list. The values stored in the tuple can be of

any type and they are indexed by integers.

The main difference between list and tuple is Tuple is immutable. Tuple is represented using ‘()’

Syntax:

Ex:

>>> tuple1=(‘1’,’2’,’3’,’5’)

>>>tuple2=(‘a’,’b’,’c’)

>>>tuple3=’3’,’apple’,’100’

Unit IV Rohini College of Engineering and technology Page 4.6

tuple_name=(items)

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

TUPLES ARE IMMUTABLE:

The values of tuple cannot be changed.

>>> tuple1=(‘1’,’2’,’3’,’5’)

tuple1[1]=’4’ #It Shows Error

Tuples can be immutable but if you want to add an item we can add it by

t1=(‘a’,’b’)

t1=(‘A’,)+t1[1:]  t1=(‘A’,’b)

The disadvantage in this method is we can only add the items from the beginning.

4.2.1 TUPLE ASSIGNMENT

Tuple Assignment means assigning a tuple value into another tuple.

Ex:

 t=(‘Hello’,’hi’)

>>>m,n=t

>>>print(m)  Hello

>>>print(n)  hi

>>>print(t)  Hello,hi

In order to interchange the values of the two tuples The following method is used.

>>>a=(‘1’,’4’)

>>>b=(‘10’,’15’)

>>>a,b=b,a

>>>print(a,b)

((‘10’,’15’), (‘1’,’4’))

COMPARING TUPLES

The comparison operator works with tuple and other sequence. It will check the elements

of one tuple to another tuple. If they are equal it return true. If they are not equal it returns false.

>>>t1=(‘1’,’2’,’3’,’4’,’5’)

>>>t2=(‘a’,’b’,’c’)

>>>t1<t2 #It returns false

4.2.2 TUPLE AS RETURN VALUE

In a function a tuple can return multiple values where a normal function can return single

value at a time.

Unit IV Rohini College of Engineering and technology Page 4.7

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

Example-1:

Using a built-in function divmod which return quotient and remainder at the same time.

>>>t=divmod(7,3)

>>>print(t)  (2,1)

>>>quot,rem=divmod(7,3)

>>>print(quot)  2

>>>print(rem) 1

Example-2:

def swap(a,b,c):

return(c,b,a)

a=100

b=200

c=300

>>>print(“Before Swapping”,a,b,c)

>>>print(“After Swapping”,swap(a,b,c))

Output:

Before Swapping 100,200,300

After Swapping 300,200,100

4.3 DICTIONARIES

Dictionaries is an unordered collection of items. Dictionaries are a kind of hash table. The

value of a dictionary can be accessed by a key. Dictionaries are enclosed by curly braces ‘{ }’ and

values can be accessed using square braces ‘[]’

Syntax:

A Key can be any Immutable type like String, Number, Tuple. A value can be any

datatype. The values can be repeated and the keys should not be repeated.

Ex:

>>>dict1={}

>>>dict2={1:10,2:20,3:30}

>>>dict3={‘A’:’apple’,’B’:’200’}

Unit IV Rohini College of Engineering and technology Page 4.8

dict_name= {key: value}

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

>>>dict4={(1,2,3):’A’,(4,5):’B’}

>>>dict5={[1,2,3]:’A’,[4,5]:’B’} #Error, Only Immutable types can be assigned in Keys

4.3.1ACCESS, UPDATE, ADD, DELETE ELEMENTS IN DICTIONARY:

Accessing Values in Dictionary

To access dictionary elements, you can use the familiar square brackets along with the key

to obtain its value.

Ex:

>>>d={‘name’:’xyz’,’age’:23}

>>>d[‘name’] ’xyz’ # since ’name’ is a String datatype, it should be represented within quotes

>>>d[name]  shows error

By get()method

>>>d.get(‘name’)  ‘xyz’

Update Values in Dictionary

You can update a dictionary by adding a new entry or a key-value pair, modifying an

existing entry.

Ex:

>>> d={‘name’:’xyz’,’age’:23}

>>>print(d)  {‘ name’:’xyz’,’age’:23}

>>>d[‘age’=24] #modifying existing element

>>>print(d)  {‘ name’:’xyz’,’age’:23}

By update method

>>>d1={‘place’:’abc’}

>>>d.update(d1)

print(d)  {‘place’:’abc’,‘ name’:’xyz’,’age’:23}

Adding Values in Dictionary

>>>d[‘gender’]=’m’ #Adding new entry

>>> print(d)  {‘gender’:’m’, ‘place’:’abc’,‘ name’:’xyz’,’age’:23}

Deleting or Removing Values in Dictionary

You can either remove individual dictionary elements or clear the entire contents of a

dictionary.

>>>del d[‘name’] {‘gender’:’m’, ‘place’:’abc’,’age’:23}

>>>d.clear() # remove all entries in dictionary

>>>del d #delete entire dictionary

Unit IV Rohini College of Engineering and technology Page 4.9

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

4.3.2 METHODS ON DICTIONARIES:

Consider the value of Dictionary d and d1 as follows:
d={‘a’:1,’b’:2,’c’:3,’d’:4}
d1={‘e’:5,’f’:6}

S.No Name Syntax Description Example

1. len() len(dictonary) Gives the total length of the
dictionary.

len(d)  4

2. keys() dictionary.keys() Return the dictionary's
keys.

>>> d.keys()
['a', 'c', 'b', 'd']

3. values() dictionary.values() Return the dictionary's
Values

>>> d.values()
[1, 3, 2, 4]

4. items() dictionary.items() Return the dictionary's
Keys and Values

>>> d.items()
[('a', 1), ('c', 3), ('b',
2), ('d', 4)]

5. key in dict key in dict Returns True if the Key is
in Dictionary, else returns
false.

>>> 'a' in d
True

6. key not in
dict

key not in dict Returns True if the Key is
not in Dictionary, else
returns false.

>>> 'e' not in d
True

7. has_key
(key)

dictionary.has_key(key) Checks whether the
dictionary has the specified
key.

>>> d.has_key('a')
True

8. get() dictionary.get(key) Get the value and Return
the value of key.

>>> d.get('b')
2

9. update() Dest_dictionary.update(
Source_dict)

Update the dictionary with
the key from existing keys.

>>>d.update(d1)
>>> print(d)
{'a': 1, 'c': 3, 'b': 2,
'e': 5, 'd': 4, 'f': 6}

10. cmp() cmp(dictionary1,
dictionary2)

Compares elements of both
dictionary. Returns 0 if the
elements are same, Else
returns 1.

>>> cmp(d,d1)
1

11 copy() new_dict =
original_dict.copy()

Return a copy of the
dictionary.

>>> d2=d1.copy()
>>> print(d2)
{'e': 5, 'f': 6}

12. pop() dictionary.pop(‘key’) Remove the item with key >>> d.pop('f')

Unit IV Rohini College of Engineering and technology Page
4.10

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

and return its value 6

13. popitems() dictionary.popitem() Remove and return an item
with its key and value.

>>> d.popitem()
('a', 1)

14. clear() dictionary.clear() Remove all items form the
dictionary.

d.clear()

4.4 LIST COMPREHENSION:

List comprehension is an elegant way to define and create list in Python. These lists have

often the qualities of sets. It consists of brackets containing an expression followed by a for clause,

then zero or more for or if clauses.

Ex-1:

>>>x = [i for i in range(10)]
>>>print x
Output:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Ex-2:

>>>squares = []
>>>for x in range(10):

squares.append(x**2)
 print (squares)
>>>squares = [x**2 for x in range(10)] # List comprehensions to get the same result:
>>>print (squares)

Output:
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Unit IV Rohini College of Engineering and technology Page
4.11

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

ILLUSTRATIVE EXAMPLES

Note- Always get an Input from the USER.

1.Write a Python Program to find Largest, Smallest, Second Largest, Second Smallest in a

List without using min() & max() function.

>>>def find_len(list1):

 length = len(list1)

 list1.sort()

 print("Largest element is:", list1[length-1])

 print("Smallest element is:", list1[0])

 print("Second Largest element is:", list1[length-2])

 print("Second Smallest element is:", list1[1])

 >>>list1=[12, 45, 2, 41, 31, 10, 8, 6, 4]

>>>Largest = find_len(list1)

Output:

Largest element is: 45

Smallest element is: 2

Second Largest element is: 41

Second Smallest element is: 4

2. Find the output of the following program

Program 2.1:

>>>subject= ['Physics', 'Chemistry', 'Computer']
>>>mark=[98,87,94]
>>>empty=[]
>>> print(subject, mark, empty)

Output:

['Physics', 'Chemistry', 'Computer'], [98, 87, 94], []

Program 2.2:

>>>mark=[98,87,94]
>>> mark[2]=100
>>> print(mark)

Output:

 [98, 87, 100]

Unit IV Rohini College of Engineering and technology Page
4.12

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

Program 2.3:

>>> subject= ['Physics', 'Chemistry', 'Computer']
>>> 'Chemistry' in subject
Output:

True

Program 2.4:

>>> subject= ['Physics', 'Chemistry', 'Computer']
>>> for s in subject:

print(s)
Output:

Physics
Chemistry
Computer

Program 2.5:

>>> for i in range(len(mark)):
mark[i] = mark[i] * 2

>>> print(mark)

Output:

[196, 174, 200]

Unit IV Rohini College of Engineering and technology Page
4.13

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

WORKSHEETS

NOTE: Always get an Input from the User

4.1. Write a python program to interchange first and last elements in a list

Input : [1, 2, 3] Output : [3, 2, 1]

4.2. Write a python program to swap two elements in a list

Input : List = [1, 2, 3, 4, 5], pos1 = 2, pos2 = 5

Output : [1, 5, 3, 4, 2]

Unit IV Rohini College of Engineering and technology Page
4.14

Program:

Output:

Program:

Output:

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

4.3. Write a python program to find length of list without len()

4.4. Write a python program to check if element exists in list

Unit IV Rohini College of Engineering and technology Page
4.15

Program:

Output:

Program:

Output:

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

4.5. Write a python program for Reversing a List

4.6. Write a python program Count occurrences of an element in a list

Unit IV Rohini College of Engineering and technology Page
4.16

Program:

Output:

Program:

Output:

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

4.7. Write a python program to print even numbers in a list

4.8. Write a python program to print duplicates from a list of integers

Unit IV Rohini College of Engineering and technology Page
4.17

Program:

Output:

Program:

Output:

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

TWO MARKS

1. What is a list?

A list is an ordered set of values, where each value is identified by an index. The values

that make up a list are called its elements. Lists are similar to strings, which are ordered sets of

characters, except that the elements of a list can have any type.

2. Solve a)[0] * 4 and b) [1, 2, 3] * 3.

>>> [0] * 4 [0, 0, 0, 0]

>>> [1, 2, 3] * 3 [1, 2, 3, 1, 2, 3, 1, 2, 3]

3.Let list = [’a’, ’b’, ’c’, ’d’, ’e’, ’f’]. Find a) list[1:3] b) t[:4] c) t[3:] .

>>> list = [’a’, ’b’, ’c’, ’d’, ’e’, ’f’]

>>> list[1:3] [’b’, ’c’]

>>> list[:4] [’a’, ’b’, ’c’, ’d’]

>>> list[3:] [’d’, ’e’, ’f’]

4. Mention any 5 list methods.

append() ,extend () ,sort(), pop(),index(),insert and remove()

5. State the difference between lists and dictionary.

List is a mutable type meaning that it can be modified whereas dictionary is immutable and

is a key value store. Dictionary is not ordered and it requires that the keys are hashable whereas

list can store a sequence of objects in a certain order.

6. What is List mutability in Python? Give an example.

Python represents all its data as objects. Some of these objects like lists and dictionaries

are mutable, i.e., their content can be changed without changing their identity. Other objects like

integers, floats, strings and tuples are objects that cannot be changed. Example:

>>> numbers = [17, 123]

>>> numbers[1] = 5

>>> print numbers [17, 5]

Unit IV Rohini College of Engineering and technology Page
4.18

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

7. What is aliasing in list? Give an example.

An object with more than one reference has more than one name, then the object is said to

be aliased. Example: If a refers to an object and we assign b = a, then both variables refer to the

same object:

>>> a = [1, 2, 3]

>>> b = a

>>> b is a True

8. Define cloning in list.

In order to modify a list and also keep a copy of the original, it is required to make a copy

of the list itself, not just the reference. This process is called cloning, to avoid the ambiguity of the

word “copy”.

9. Explain List parameters with an example.

Passing a list as an argument actually passes a reference to the list, not a copy of the list.

For example, the function head takes a list as an argument and returns the first element:

def head(list):

return list[0]

output:

>>> numbers = [1, 2, 3]

>>> head(numbers)

10. Write a program in Python to delete first element from a list.

 def deleteHead(list): del list[0]

Here’s how deleteHead is used:

>>> numbers = [1, 2, 3]

>>> deleteHead(numbers)

>>> print numbers [2, 3]

Unit IV Rohini College of Engineering and technology Page
4.19

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

11. Write a program in Python returns a list that contains all but the first element of the

given list.

def tail(list): return list[1:]

Here’s how tail is used:

>>> numbers = [1, 2, 3]

>>> rest = tail(numbers)

>>> print rest [2, 3]

12. What is the benefit of using tuple assignment in Python?

It is often useful to swap the values of two variables. With conventional assignments a

temporary variable would be used. For example, to swap a and b:

>>> temp = a

>>> a = b

>>> b = temp

>>> a, b = b, a

13.Define key-value pairs.

The elements of a dictionary appear in a comma-separated list. Each entry contains an

index and a value separated by a colon. In a dictionary, the indices are called keys, so the elements

are called key-value pairs.

14. Define dictionary with an example.

A dictionary is an associative array (also known as hashes). Any key of the dictionary is

associated (or mapped) to a value. The values of a dictionary can be any Python data type. So

dictionaries are unordered key-value-pairs.

Example:

>>> eng2sp = {} # empty dictionary

>>> eng2sp[’one’] = ’uno’

>>> eng2sp[’two’] = ’dos’

15. How to return tuples as values?

A function can only return one value, but if the value is a tuple, the effect is the same as

returning multiple values. For example, if we want to divide two integers and compute the

Unit IV Rohini College of Engineering and technology Page
4.20

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

quotient and remainder, it is inefficient to compute x/y and then x%y. It is better to compute them

both at the same time.

>>> t = divmod(7, 3)

>>> print t (2, 1)

16. List two dictionary operations.

 Del -removes key-value pairs from a dictionary

 Len - returns the number of key-value pairs

17.Define dictionary methods with an example.

A method is similar to a function—it takes arguments and returns a value— but the syntax

is different. For example, the keys method takes a dictionary and returns a list of the keys that

appear, but instead of the function syntax keys(eng2sp), method syntax eng2sp.keys() is used.

>>> eng2sp.keys() [’one’, ’three’, ’two’]

18.Define List Comprehension.

List comprehensions apply an arbitrary expression to items in an iterable rather than

applying function. It provides a compact way of mapping a list into another list by applying a

function to each of the elements of the list.

 19.Write a Python program to swap two variables.

x = 5

y = 10

temp = x

x = y

y = temp

print('The value of x after swapping: {}'.format(x))

print('The value of y after swapping: {}'.format(y))

20.Write the syntax for list comprehension.

The list comprehension starts with a '[' and ']', to help us remember that the result is going

to be a list. The basic syntax is [expression for item in list if conditional].

Unit IV Rohini College of Engineering and technology Page
4.21

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

UNIT V FILES, MODULES, PACKAGES

Files and exception: text files, reading and writing files, format operator; command line

arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs:

word count, copy file. Voter’s age validation, Marks range validation (0-100)

5.1 - FILES AND EXCEPTION

5.1.1 FILES
A File is a collection of data or information which has a name, called filename. All the

information is stored in the computer using a file. The file is a named location on disk to store

related information. It is used to store data in volatile memory. There are many different types of

files.

 Data File
 Text File
 Program File
 Directory File

Text File:
A text file is a sequence of characters stored on a permanent medium like a hard drive,

flash memory, or CD-ROM. Text files are identified with the .txt file extension.

Reading and Writing to Text Files

Python provides inbuilt functions for creating, writing and reading files. There are two

types of files that can be handled in python, normal text files and binary files (written in binary

language,0s and 1s).

Text files: In this type of file, each line of text is terminated with a special character called

EOL (End of Line), which is the new line character (“\n”) in python by default.

Binary files: In this type of file, there is no terminator for a line and the data is stored after

converting it into machine understandable binary language.

In order to perform some operations on files we have to follow below steps

Opening

Reading or writing

Closing

5.1.2 FILE OPERATIONS

Unit V Rohini College of Engineering and Technology Page 5.1

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

When the user want to do some operations in the file there is a sequence of steps that

should be followed.

i. Open the File
ii. Read or Write data in the file

iii. Close the File
i .Open the File

Python has a built-in function open() to open a file. This function returns a file object and

has two arguments which are file name & opening mode. The opening modes are reading,

writing or appending.

Syntax:

where file_object is the variable to add the object and the mode tells the interpreter which

way the file will be used.

Ex:

f=open(“text.txt”)

f=open(“E:/Python/text.txt”, ‘r’)

f=open(“E:/Python/text.txt”, ‘w’)

FILE OPENING MODE

S.No Mode Description

1. “r” Opening a file for reading(default mode)

2. “w” Opening a file for writing

3. “x” Opening a file for exclusive operations

4. “a” Opening a file for appending at the end of the file

5. “b” Opening a file in binary mode

6. “t” Opening a file in text mode

7. “+” Opening a file for updating and it comes with one operation or two
operations.

ii. Read or Write data in the file

There are two methods to access the data in the file.

1. read()

2. write()

5.1 Write a Python Program to write a file and access a file

Unit V Rohini College of Engineering and Technology Page 5.2

file_object=open(“filename”, “mode”)

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

f=open("F:/Python/test.txt","w+")

f.write("Python Programming is Interesting")

f.seek(0)

print(f.read())

f.close()

There are several opening modes apart from the main opening modes.

S.No Modes Description

1. rb Opens a file for reading only in binary format.

2. r+ Opens a file for both reading and writing.

3. rb+ Opens a file for both reading and writing in binary format.

4. wb Opens a file for writing only in binary format.

5. w+ Opens a file for both writing and reading in binary format.

6. wb+ Opens a file for both writing and reading in binary format.

7. a+ Opens a file for both appending and reading.

1. read() Method

This method reads a string from an open file.

Syntax:

Ex:
f=open("F:/Python/test.txt","r")
print(f.read())
print(f.read(2))
f.close()

2.write() Method

This method writes a string from an open file.

Syntax:

Unit V Rohini College of Engineering and Technology Page 5.3

file_object.read()

file_object.write(“String”)

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

Ex:
f=open("F:/Python/test.txt","w+")
print(f.write(“This is my first file”))
f.seek(0)
print(f.read())
f.close()

iii. Close the File
To close a file object we will use close() method. The file gets closed and cannot be used

again for reading and writing.
Syntax:

Ex:
f=open("F:/Python/test.txt","r")
print(f.read())
f.close()

How to read a text file?
1. File Operation
2. Opening Modes
3. Read Functions

There are two functions to read a file line by line, then there are two methods
 readline()
 readlines()

1.readline()
Every time a user runs the method, it will return a string of characters that

contains a single line of information from the file.

Syntax:

Ex:

Consider the file test.txt contain these three lines

This is the First Line in the file

This is the Second Line in the file

This is the Third Line in the file

Now the Python source code is

f=open("F:/Python/test.txt","r")

print(f.readline())

f.close()

Unit V Rohini College of Engineering and Technology Page 5.4

file_object.close()

file_object.readline()

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

Output:

This is the First Line in the file #Returns the first line

2.readlines()

This method is used to return a list containing all the lines separated by the special

character (\n).

Syntax:

Ex:

Consider the same file

Now the Python source code is

f=open("F:/Python/test.txt","r")

print(f.readline())

f.close()

Output:

['This is the First Line in the file\n', 'This is the Second Line in the file\n', 'This is

the Third Line in the file']

5.1.3 LOOPING OVER A FILE OBJECT

5.2. Write a python program to read a function without using read() function.

>>> f=open("test.txt","r")

>>>for line in f:

print(line)

>>>f.close()

5.3. Write a python program to access a file using with statement.

Syntax:

Ex:

with open(“test.txt”) as f:

for line in f:

print(line)

Unit V Rohini College of Engineering and Technology Page 5.5

file_object.readlines()

with open(“filename”) as file:

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

5.1.4 FILE MANIPULATIONS

File manipulation means change or access the content in the file.

1. File Positions

2. Renaming and Delete a File

3. Directories in Python

1. File Positions

There are two methods to access the positions of the file.

1. tell()

2.seek()

i) tell() method

This method is used to tell the current position within a file. It starts from the

beginning of the file and this method followed by read() and write() method.

Syntax:

Ex:

>>> f=open("F:/Python/test.txt","r")
>>>print(f.tell()) #0th poisition
>>>print(f.read())
>>>print(f.tell()) #Last Position
>>>f.close()

Output:
0
This is the First Line in the file
This is the Second Line in the file
73

ii) seek() method

This method is used to change the current file position.

Syntax:

seek() method set the file’s current position at the offset. The default argument of offset is 0. The
offset represents the number of the bytes to be moved.

The from argument represents three values.
0  represents the beginning of the file
1 represents the current position as reference
2 represents the end of the file

Unit V Rohini College of Engineering and Technology Page 5.6

file_object.tell()

file_object.seek(offset, from)

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

Ex:

>>> f=open("F:/Python/test.txt","r")
>>>print(f.tell()) #0th poisition
>>>print(f.read())
>>>f.seek(0,0)
>>>f.seek(0,1)
>>>f.seek(0,2)
>>>f.close()

2. Renaming and Delete a File

Two file processing operations are there, they are

i. rename() method

ii. remove() method

i) rename() method

The rename() method takes two argument, the current filename and new filename.

Syntax:

Ex:

>>>import os

>>>os.rename(“test.txt”,”new.txt ”)

ii) remove() method

The remove() method is used to delete the file. The argument contains file name.

Syntax:

Ex:

>>>import os

>>>os.rename(“new.txt ”)

3. Directories in Python

All files are contained within various directories. The os module has several methods to

create, remove and change directories.

Unit V Rohini College of Engineering and Technology Page 5.7

os.rename(current_filename, new_filename)

os.remove(filename)

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

S.No Name Syntax Description Example

1. mkdir() os.mkdir(“new_dir”) This method is used to create
a directory

os.mkdir(“test”)

2. chdir() os.chdir(“new_dir”) This method is used to
change a directory

os.chdir(“new_dir”)

3. getcwd() os.getcwd() This method is used to
display current directory

os.getcwd()

4. rmdir() rmdir(‘dir_name’) This method is used to
remove a directory

os.rmdir(‘new_dir’)

5.1.5 FORMAT OPERATOR
The argument of write has to be a string, so if we want to put other values in a file, we

have to convert them to strings. The easiest way to do that is with str:

>>> f=open('stringsample.txt','w')

>>> f.write(5) #TypeError

>>> f.write(str(5))

An alternative is to use the format operator, %. The first operand is the format string,

which contains one or more format sequences, which specify how the second operand is

formatted. The result is a string.

Example:

>>>var=8

>>>print("The Value is : %d"%var)

Output:

The Value is : 8

Some of the format strings are.

Sl No Conversion Meaning
1 d Signed integer decimal.
2 i Signed integer decimal
3 o Unsigned octal.
4 u Unsigned decimal.
5 x Unsigned hexadecimal (lowercase).
6 X Unsigned hexadecimal (uppercase).
7 e Floating point exponential format (lowercase).
8 E Floating point exponential format (uppercase).
9 f Floating point decimal format.
10 F Floating point decimal format.

Unit V Rohini College of Engineering and Technology Page 5.8

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

5.1.6 COMMAND LINE ARGUMENTS
It is possible to pass some values from the command line to python programs when they

are executed. These values are called command line arguments and it can be used to control

program from outside instead of hard coding.

The command line arguments are handled using sys module. We can access command-

line arguments via the sys.argv This serves two purposes −

 sys.argv is the list of command-line arguments.

 len(sys.argv) is the number of command-line arguments.

Here sys.argv[0] is the program name.

Example 1

Consider the following script command.py

>>>import sys

>>>program_name = sys.argv[0]

>>>arguments = sys.argv[1:]

>>>count = len(arguments)

>>>print(program_name)

>>>print(arguments)

>>>print(count)

Output:

>>>C:\Python30>python.exe command.py Hello World

command.py Hello World 11

Unit V Rohini College of Engineering and Technology Page 5.9

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

5.2 - ERRORS AND EXCEPTIONS:

5.2.1 - ERRORS

Errors or mistakes in a program are often referred to as bugs. The process of finding and

eliminating the errors is called debugging. Errors can be classified into three major groups:

i. Syntax Error

ii. Runtime Error

iii. Logical Error

i) Syntax Error

Python will find these kinds of errors when it tries to parse your program, and exit with

an error message without running anything. Syntax errors are mistakes in the use of the Python

Language, and are analogous to spelling or grammar mistakes in a language like English.

Common Python Syntax Errors include:

 Leaving out a Keyword

 Putting a keyword in a wrong place

 Misspelling a Keyword

 Incorrect Indent

 Unnecessary Spaces

 Empty Spaces

Ex:

>>>my function(x,y):
return x+y

>>>else:
print(“Hello”)

>>>if mark>=50
print(“Passed”)

>>>else mark:
print(“Not Passed”)

ii) Runtime Error

If a program is syntactically correct that is free from syntax errors, however the program

exits unexpectedly it is due to runtime error. When a program comes to halt because of runtime

error, then it has crashed.

Common Python Runtime Errors include:

 Division by Zero

 Performing an operation on different data type

Unit V Rohini College of Engineering and Technology Page 5.10

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

 Using an identifier which has not been defined

 Accessing a list element which doesn’t exist

 Trying to access a file which doesn’t exist

Ex:

>>>a=10
>>>b=0
>>>c=a/b

iii) Logical Error

Logical Errors are the most difficult one to fix. They occur when the program runs

without crashing but it produces an incorrect result. The error is occurred by a mistake in

program logic.

 Common Python Logical Errors include:

 Using the wrong variable name

 Indenting a block to the wrong level

 Using Integer division instead of float division

 Getting Operator Precedence wrong (Priority)

5.2.1 – HANDLING EXCEPTION

 Define Exception
 How to handle Exception?
 Types of Exception

o Built-in Exception

o User Defined Exception

 Assertion

Exception

An Exception is an event which occurs during the execution of a program that disrupts

the normal flow of the program’s instructions. If a python script encounters a situation it cannot

cope up, it raises an exception.

Unit V Rohini College of Engineering and Technology Page 5.11

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

5.2.2 HOW TO HANDLE EXCEPTION?

There are four blocks which help to handle the exception. They are

i. try block
ii. except statement

iii. else block
iv. finally block

i) try block

In the try block a programmer will write the suspicious code that may raise an exception.

One can defend their program from a run time error by placing the codes inside the try block.

Syntax:

ii) except statement

Except statement should be followed by the try block. A single try block can have

multiple except statement. The except statement which handles the exception. Multiple except

statements require multiple exception names to handle the exception separately.

Syntax:

iii) else block

If there is no exception in the program the else block will get executed.

Syntax:

iv) finally block:

A finally block will always execute whether an exception happens or not the block will

always execute.

 Syntax:

Unit V Rohini College of Engineering and Technology Page 5.12

try:

 #The operations here

except Exception 1:

 #Handle Exception 1
except Exception 2:

 #Handle Exception 2

else:

 #If no Exception, it will execute

finally:

 #Always Execute

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

The flow as follows

 Syntax:

Ex:

5.4 Write a Python program to write a file with Exception Handling

try:
 f=open(“test.txt”, ‘w+’)
 f=write(“My First File”)
 f.seek(0)
 print(f.read())
except IOError:
 print(“File not Found”)
else:
 print(“File not Found”)
 f.close()
finally:
 print(“Close a file”)
Ex:

5.5 Write a python program to read a file which raises an exception.

Assume test.txt is not created in the computer and the following program is executed
which raises an Exception.
try:
 f=open(“test.txt”, ‘w+’)
 f=write(“My First File”)
 f.seek(0)
 print(f.read())
except IOError:
 print(“File not Found”)
else:

Unit V Rohini College of Engineering and Technology Page 5.13

try:

 #The operations here
except Exception 1:

 #Handle Exception 1
except Exception 2:

 #Handle Exception 2
else:

 #If no Exception, it will execute
finally:

 #Always Execute

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

 print(“File not Found”)
 f.close()
finally:
 print(“Close a file”)

Except clause with no Exception

An except statement without the exception name, the python interpreter will consider as
default ‘Exception’ and it will catch all exceptions.
Syntax

Except clause with multiple Exception

An except statement can have multiple exceptions. We call it by exception name.

Syntax

Ex:

5.6 Write a python program to read a file with multiple exceptions.

try:
 f=open(“test.txt”, ‘w+’)
 f=write(“My First File”)
 print(f.read())
except (IOError, ValueError, ZeroDivisionError):
 print(“File not Found”)
else:
 print(“File not Found”)
 f.close()

Unit V Rohini College of Engineering and Technology Page 5.14

try:

 #The operations here
except:
 #Handles Exception
else:

 #If no Exception, it will execute
finally:

 #Always Execute

try:

 #The operations here
except (Exception 1, Exception 2):
 #Handles Exception
else:

 #If no Exception, it will execute
finally:

 #Always Execute

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

finally:
 print(“Close a file”)

Argument of an Exception

An Exception can have an argument which is a value that gives additional information

the problem. The content of an argument will vary by the exception.

Syntax

Raising an Exception:

You can raise exceptions in several ways by using raise statement.

Syntax

Ex:

>>>def fun(level):
if level<10:

raise “Invalid Level”, level
>>>fun(5) #raise an Exception
>>>fun(11)

5.2.3 TYPES OF EXCEPTION:

There are two types of Exception:

i. Built-in Exception
ii. User Defined Exception

i) Built-in Exception

There are some built-in exceptions which should not be changed.

The Syntax for all Built-in Exception

except Exception_Name

Unit V Rohini College of Engineering and Technology Page 5.15

try:

 #The operations here
except Exception Type, Argument:
 #Handles Exception with Argument
else:

 #If no Exception, it will execute
finally:

 #Always Execute

raise Exception, Argument:

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

S.No Exception Name Description
1. Exception It is the Base class for all Exceptions
2. ArithmeticError It is the Base class for all Errors that occur on numeric calculations.
3. ZeroDivisionError Raised when a number is divided by zero

4. IOError
Raised when an Input or Output operation fails such as open()
function. When a file is not exist in the folder

5. TypeError
Raised when operation or function is invalid for a specified data
type.

6. ValueError
Raised when built-in function for a data type has valid arguments
and it has invalid values.

7. RuntimeError Raised when a generated error does not fall into any category.

8. KeyboardInterrupt
Raised when the user interrupts program execution by pressing
Ctrl+C

9. FloatingPointError Raised when floating calculation Fails.
10. AssertionError Raised in case of failure of assert statement.

11. OverFlowError
Raised when a calculation exceeds maximum limit for a numeric
types.

12. StandardError
Base class for all built-in exception except ‘StopIteration and
SystemExit’

13. StopIteration Raised when next() method of an iteration does not exist

14. SystemExit Raised by the sys.exit() function
15. SyntaxError Raised when there is an error in Python Syntax
16. IndentationError Raised when Indentation is not specified properly

ii) User Defined Exception

In Python a user can create their own exception by deriving classes from standard

Exceptions. There are two steps to create a user defined exception.

Step-1

 A User Defined Exception should be derived from standard Built-in Exceptions.

Step-2

After referring base class the user defined exception can be used in the program

Ex:

class NetworkError(RuntimeError):
def __init__ (self,arg):

self.args=arg
try:
 raise NetworkError(“Bad host name”)
except NetworkError,e:
 print(e.args)

Unit V Rohini College of Engineering and Technology Page 5.16

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

5.2.4 ASSERTION

An assertion is a sanity check which can turn on (or) turn off when the program is in

testing mode.

The assertion can be used by assert keyword. It will check whether the input is valid and

after the operation it will check for valid output.

 Syntax:

Ex:

>>>def add(x):

assert(x<0)

return(x)

>>>add(10)

5.3 MODULES

A module allows you to logically organize the python code. Grouping related code into a

module makes the code easy to use. A module is a file consisting python code. A module can

define functions, classes and variables. A module can also include runnable code.

Ex

The Python code for a module support normally resides in a file named support.py.
support.py
 >>>def print_func(par):

print "Hello : ", par
return

We can invoke a module by two statements
i. import statement

ii. from…import statement

i) The import Statement

You can use any Python source file as a module by executing an import statement in

some other Python source file.

Syntax:

Unit V Rohini College of Engineering and Technology Page 5.17

assert(Expression)

import module

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

Ex

import support # Import module support

support.print_func("xyz") # Now we can call the function in that module as

Output:

Hello : Zara

ii) The from...import Statement

Python's from statement lets you import specific attributes from a module into the current

namespace.

Syntax:

The from...import * Statement

It is also possible to import all names from a module.

Syntax:

5.4 PACKAGES

A package is a hierarchical file directory structure that defines a single Python

application environment that consists of modules and subpackages and sub-subpackages, and so

on.

Consider a file Pots.py available in Phone directory. This file has following line of source code −

>>>def Pots():
print "I'm Pots Phone"

Similar way, we have another two files having different functions with the same name as above

 Phone/Isdn.py file having function Isdn()

 Phone/G3.py file having function G3()

We can import by

>>>import Phone

>>>Phone.Pots()

>>>Phone.Isdn()

>>>Phone.G3()

Unit V Rohini College of Engineering and Technology Page 5.18

from module_name import function_name

from module_name import *

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

Output:

I'm Pots Phone

I'm 3G Phone

I'm ISDN Phone

Unit V Rohini College of Engineering and Technology Page 5.19

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

TWO MARKS

1. What is a text file?

A text file is a file that contains printable characters and whitespace, organized in to lines

separated by newline characters.

2. Write a python program that writes “Hello world” into a file.

 f =open("ex88.txt",'w')

f.write("hello world")

f.close()

3. Write a python program that counts the number of words in a file.

f=open("test.txt","r")

content =f.readline(20)

words =content.split()

print(words)

4. What are the two arguments taken by the open() function?

The open function takes two arguments : name of the file and the mode of operation.

Example: f = open("test.dat","w")

5. What is a file object?

A file object allows us to use, access and manipulate all the user accessible files. It

maintains the state about the file it has opened.

6. What information is displayed if we print a file object in the given program?

 f= open("test.txt","w")

print f

The name of the file, mode and the location of the object will be displayed.

7. What is an exception?

Whenever a runtime error occurs, it creates an exception. The program stops execution

and prints an error message. For example, dividing by zero creates an exception:

print 55/0

ZeroDivisionError: integer division or modulo

Unit V Rohini College of Engineering and Technology Page 5.20

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

8. What are the error messages that are displayed for the following exceptions?

a. Accessing a non-existent list item  IndexError: list index out of range

b. Accessing a key that isn’t in the dictionary  KeyError: what

c. Trying to open a non-existent file  IOError: [Errno 2] No such file or directory:

'filename'

9. What are the two parts in an error message?

The error message has two parts: the type of error before the colon, and specific about the

error after the colon.

10. How do you handle the exception inside a program when you try to open a non-existent

file?

filename = raw_input('Enter a file name: ')

try:

f = open (filename, "r")

except IOError:

print 'There is no file named', filename

11. How does try and execute work?

The try statement executes the statements in the first block. If no exception occurs, then

except statement is ignored. If an exception of type IOError occurs, it executes the statements in

the except branch and then continues.

12. What is the function of raise statement? What are its two arguments?

The raise statement is used to raise an exception when the program detects an error. It

takes two arguments: the exception type and specific information about the error.

13. What is a pickle?

Pickling saves an object to a file for later retrieval. The pickle module helps to translate

almost any type of object to a string suitable for storage in a database and then translate the

strings back in to objects.

14. What are the two methods used in pickling?

The two methods used in pickling are pickle.dump() and pickle.load(). To store a data

structure, dump method is used and to load the data structures that are dumped , load method is

used.

Unit V Rohini College of Engineering and Technology Page 5.21

EnggTree.com

Downloaded from EnggTree.com

GE3151 - Problem Solving And Python Programming

15. What is the use of the format operator?

The format operator % takes a format string and a tuple of expressions and yields a string

that includes the expressions, formatted according to the format string.

16. What are modules?

A module is simply a file that defines one or more related functions grouped together. To

reuse the functions of a given module, we need to import the module. Syntax: import

<modulename>

17. What is a package?

Packages are namespaces that contain multiple packages and modules themselves. They

are simply directories.

Syntax: from <mypackage> import <modulename>

18. What is the special file that each package in Python must contain?

Each package in Python must contain a special file called _init__.py

19. How do you delete a file in Python?

The remove() method is used to delete the files by supplying the name of the file to be

deleted as argument.

Syntax: os.remove(filename)

20. How do you use command line arguments to give input to the program?

Python sys module provides access to any command-line arguments via sys.argv.

sys.argv is the list of command-line arguments. len(sys.argv) is the number of command-line

arguments.

Unit V Rohini College of Engineering and Technology Page 5.22

EnggTree.com

Downloaded from EnggTree.com

