

NOTES OF LESSON

GE3151- PROBLEM SOLVING AND

PYTHON PROGRAMMING

EnggTree.com

Downloaded from EnggTree.com

2

UNIT I ALGORITHMIC PROBLEM SOLVING

INTRODUCTION

PROBLEM SOLVING
Problem solving is the systematic approach to define the problem and creating number of

solutions.
The problem solving process starts with the problem specifications and ends with a

correct program.
PROBLEM SOLVING TECHNIQUES

Problem solving technique is a set of techniques that helps in providing logic for solving a
problem.

Problem solving can be expressed in the form of
1. Algorithms.
2. Flowcharts.
3. Pseudo codes.
4. Programs

1.ALGORITHM

It is defined as a sequence of instructions that describe a method for solving a problem.
In other words it is a step by step procedure for solving a problem

• Should be written in simple English
• Each and every instruction should be precise and unambiguous.
• Instructions in an algorithm should not be repeated infinitely.
• Algorithm should conclude after a finite number of steps.
• Should have an end point
• Derived results should be obtained only after the algorithm terminates.

Qualities of a good algorithm

The following are the primary factors that are often used to judge the quality of the
algorithms.

Time – To execute a program, the computer system takes some amount of time. The lesser
is the time required, the better is the algorithm.

Memory – To execute a program, computer system takes some amount of memory space.
The lesser is the memory required, the better is the algorithm.

Accuracy – Multiple algorithms may provide suitable or correct solutions to a given
problem, some of these may provide more accurate results than others, and such algorithms may be
suitable

Building Blocks of Algorithm
As algorithm is a part of the blue-print or plan for the computer program. An algorithm is

constructed using following blocks.

• Statements
• States

• Control flow
• Function

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

3

Statements
Statements are simple sentences written in algorithm for specific purpose. Statements may

consists of assignment statements, input/output statements, comment statements
Example:

• Read the value of ‘a’ //This is input statement
• Calculate c=a+b //This is assignment statement
• Print the value of c // This is output statement

Comment statements are given after // symbol, which is used to tell the purpose of the line.

States
An algorithm is deterministic automation for accomplishing a goal which, given an initial

state, will terminate in a defined end-state.
An algorithm will definitely have start state and end state.

Control Flow
Control flow which is also stated as flow of control, determines what section of code is to

run in program at a given time. There are three types of flows, they are
1. Sequential control flow
2. Selection or Conditional control flow
3. Looping or repetition control flow

Sequential control flow:
The name suggests the sequential control structure is used to perform the action one after

another. Only one step is executed once. The logic is top to bottom approach.
Example
Description: To find the sum of two numbers.
1. Start
2. Read the value of ‘a’
3. Read the value of ‘b’
4. Calculate sum=a+b
5. Print the sum of two number
6. Stop

Selection or Conditional control flow
Selection flow allows the program to make choice between two alternate paths based on

condition. It is also called as decision structure
Basic structure:

IFCONDITION is TRUE then
perform some action

ELSE IF CONDITION is FALSE then
perform some action

The conditional control flow is explained with the example of finding greatest of two
numbers.

Example
Description: finding the greater number
1. Start
2. Read a

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

4

3. Read b
4. If a>b then

4.1. Print a is greater
else

4.2. Print b is greater
5. Stop

Repetition control flow
Repetition control flow means that one or more steps are performed repeatedly until some

condition is reached. This logic is used for producing loops in program logic when one one more
instructions may need to be executed several times or depending on condition.

Basic Structure:
Repeat untilCONDITIONis true

Statements
Example

Description: to print the values from 1 to n
1. Start
2. Read the value of ‘n’
3. Initialize i as 1
4. Repeat step 4.1 until i< n

4.1. Print i
5. Stop

Function
A function is a block of organized, reusable code that is used to perform a single, related

action. Function is also named as methods, sub-routines.
Elements of functions:
1. Name for declaration of function
2. Body consisting local declaration and statements
3. Formal parameter
4. Optional result type.
Basic Syntax

function_name(parameters)
function statements

end function

Algorithm for addition of two numbers using function
Main function()

Step 1: Start
Step 2:Call the function add()
Step 3: Stop

sub function add()
Step1:Functionstart

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

5

Step2:Geta,bValues
Step 3: add c=a+b
Step 4: Printc
Step 5: Return

2.NOTATIONS OF AN ALGORITHM
Algorithm can be expressed in many different notations, including Natural Language,

Pseudo code, flowcharts and programming languages. Natural language tends to be verbose
and ambiguous. Pseudocode and flowcharts are represented through structured human language.

A notation is a system of characters, expressions, graphics or symbols designs used among
each others in problem solving to represent technical facts, created to facilitate the best result for a
program
Pseudocode

Pseudocode is an informal high-level description of the operating principle of a
computer program or algorithm. It uses the basic structure of a normal programming language,
but is intended for human reading rather than machine reading.

It is text based detail design tool. Pseudo means false and code refers to instructions
written in programming language.

Pseudocode cannot be compiled nor executed, and there are no real formatting or syntax
rules. The pseudocode is written in normal English language which cannot be understood by the
computer.

Example:
Pseudocode: To find sum of two numbers
READ num1,num2
sum=num1+num2
PRINT sum

Basic rules to write pseudocode:
1. Only one statement per line.

Statements represents single action is written on same line. For example to read the
input, all the inputs must be read using single statement.

2. Capitalized initial keywords
The keywords should be written in capital letters. Eg: READ, WRITE, IF, ELSE,
ENDIF, WHILE, REPEAT, UNTIL
Example:

Pseudocode: Find the total and average of three subjects
RAED name, department, mark1, mark2, mark3
Total=mark1+mark2+mark3
Average=Total/3
WRITE name, department,mark1, mark2, mark3

3. Indent to show hierarchy
Indentation is a process of showing the boundaries of the structure.

4. End multi-line structures
Each structure must be ended properly, which provides more clarity.
Example:

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

6

Pseudocode: Find greatest of two numbers
READ a, b

IF a>b then
PRINT a is greater

ELSE
PRINT b is greater

ENDIF
5. Keep statements language independent.

Pesudocode must never written or use any syntax of any programming language.

Advantages of Pseudocode
• Can be done easily on a word processor

• Easily modified
• Implements structured concepts well
• It can be written easily

• It can be read and understood easily
• Converting pseudocode to programming language is easy as compared with

flowchart
Disadvantages of Pseudocode

• It is not visual

• There is no standardized style or format
Flowchart

A graphical representation of an algorithm. Flowcharts is a diagram made up of boxes,
diamonds, and other shapes, connected by arrows.

Each shape represents a step in process and arrows show the order in which they occur.
Table 1: Flowchart Symbols

S.No Name of
symbol

Symbol Type Description

1. Terminal
Symbol

Oval Represent the start and
stop of the program.

2. Input/ Output
symbol

Parallelogram Denotes either input or
output operation.

3. Process symbol Rectangle Denotes the process to be
carried

4. Decision symbol Diamond Represents decision
making and branching

5. Flow lines Arrow lines Represents the sequence
of steps and direction of
flow. Used to connect
symbols.

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

7

6. Connector Circle A connector symbol is
represented by a circle
and a letter or digit is
placed in the circle to
specify the link. This
symbol is used to
connect flowcharts.

Rules for drawing flowchart
1. In drawing a proper flowchart, all necessary requirements should be listed out in logical

order.
2. The flow chart should be clear, neat and easy to follow. There should not be any room

for ambiguity in understanding the flowchart.
3. The usual directions of the flow of a procedure or system is from left to right or top to

bottom.
Only one flow line should come out from a process symbol.

4. Only one flow line should enter a decision symbol, but two or three flow lines, one for
each possible answer, cap leave the decision symbol.

5. Only one flow line is used in conjunction with terminal symbol.

6. If flowchart becomes complex, it is better to use connector symbols to reduce the
number of flow lines.

7. Ensure that flowchart has logical start and stop.

Advantages of Flowchart
Communication:

Flowcharts are better way of communicating the logic of the system.
Effective Analysis

With the help of flowchart, a problem can be analyzed in more effective way.
Proper Documentation

Flowcharts are used for good program documentation, which is needed for various
purposes.
Efficient Coding

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

8

The flowcharts act as a guide or blue print during the system analysis and program
development phase.
Systematic Testing and Debugging

The flowchart helps in testing and debugging the program
Efficient Program Maintenance

The maintenance of operating program becomes easy with the help of flowchart. It
helps the programmer to put efforts more efficiently on that part.

Disadvantages of Flowchart
Complex Logic: Sometimes, the program logic is quite complicated. In that case flowchart
becomes complex and difficult to use.
Alteration and Modification: If alterations are required the flowchart may require re-
drawing completely.
Reproduction: As the flowchart symbols cannot be typed, reproduction becomes
problematic.

Control Structures using flowcharts and Pseudocode
Sequence Structure

Pseudocode Flow Chart
General Structure

Process 1
….

Process 2
…

Process 3

Example

READ a
READ b
Result c=a+b
PRINT c

Process 1

Process 3

Process 2

Start

a=10,b=20

c=a+b

print c

Stop

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

9

Conditional Structure
• Conditional structure is used to check the condition. It will be having two outputs only (True or False)
• IF and IF…ELSE are the conditional structures used in Python language.

• CASE is the structure used to select multi way selection control. It is not supported in Python.

Pseudocode Flow Chart
General Structure
IF condition THEN

Process 1
ENDIF

Example
READ a
READ b
IF a>b THEN
PRINT a is greater

IF… ELSE
IF…THEN…ELSE is the structure used to specify, if the condition is true, then execute Process1,

else, that is condition is false then execute Process2

Pseudocode Flow Chart
General Structure
IF condition THEN

Process 1
ELSE

Process 2
ENDIF

Example

NoProcess 1

if(condition)
Yes

Start

a=10,b=20

Stop

Print a is greater

if (a>b)Yes

No

NoProcess 1

if(condition)Yes

Process 2

Process 2

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

10

READ a
READ b
IF a>b THEN
PRINT a is greater

Iteration or Looping Structure
• Looping is generally used with WHILE or DO...WHILE or FOR loop.
• WHILE and FOR is entry checked loop

• DO…WHILE is exit checked loop, so the loop will be executed at least once.

Pseudocode Flow Chart
General Structure
WHILE condition

Body of the loop
ENDWHILE

Example

Start

a=10,b=20

Stop

Print a is greater

if (a>b)Yes

No

Print b is greater

Yes

if(condition)
No

Body of the loop

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

11

o In python DO…WHILE is not supported.
o If the loop condition is true then the loop gets into infinite loop, which may lead to system

crash

Programming Language
• A programming language is a vocabulary and set of grammatical rules for instructing a computer

or computing device to perform specific tasks. In other word it is set of instructions for the
computer to solve the problem.

• Programming Language is a formal language with set of instruction, to the computer to solve a
problem. The program will accept the data to perform computation.

Program= Algorithm +Data
Need for Programming Languages

• Programming languages are also used to organize the computation
• Using Programming language we can solve different problems

• To improve the efficiency of the programs.
Types of Programming Language

In general Programming languages are classified into three types. They are
• Low – level or Machine Language

• Intermediate or Assembly Language
• High – level Programming language

Machine Language:
Machine language is the lowest-level programming language (except for computers that utilize

programmable microcode). Machine languages are the only languages understood by computers. It is also
called as low level language.

Example code:100110011
111001100

Assembly Language:
An assembly language contains the same instructions as a machine language, but the instructions

and variables have names instead of being just numbers. An assembler language consists of mnemonics,
mnemonics that corresponds unique machine instruction.

Example code: start
addx,y
subx,y

INITIALIZE a=1
WHILE a<10 THEN

PRINT a
a=a+1

ENDWHILE

Start

a=1

Stop

if (a<10)No

Yes

Print a

a=a+1

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

12

High – level Language:
A high-level language (HLL) is a programming language such as C, FORTRAN, or Pascal that

enables a programmer to write programs that are more or less independent of a particular type of
computer. Such languages are considered high-level because they are closer to human languages and
further from machine languages. Ultimately, programs written in a high-level language must be translated
into machine language by a compiler or interpreter.

Example code: print(“Hello World!”)
High level programming languages are further divided as mentioned below.

Language Type Example
Interpreted Programming Language Python, BASIC, Lisp

Functional Programming Language Clean, Curry, F#
Compiled Programming Language C++,Java, Ada, ALGOL
Procedural Programming Language C,Matlab, CList
Scripting Programming Language PHP,Apple Script, Javascript
Markup Programming Language HTML,SGML,XML
Logical Programming Language Prolog, Fril
Concurrent Programming Language ABCL, Concurrent PASCAL
Object Oriented Programming Language C++,Ada, Java, Python

Interpreted Programming Language:
Interpreter is a program that executes instructions written in a high-level language.
An interpreter reads the source code one instruction or one line at a time, converts this line into

machine code and executes it.

Compiled Programming Languages
Compile is to transform a program written in a high-level programming language from source

code into object code. This can be done by using a tool called compiler.
A compiler reads the whole source code and translates it into a complete machine code program to

perform the required tasks which is output as a new file.

Figure : Interpreter

Figure: Compiler

12

High – level Language:
A high-level language (HLL) is a programming language such as C, FORTRAN, or Pascal that

enables a programmer to write programs that are more or less independent of a particular type of
computer. Such languages are considered high-level because they are closer to human languages and
further from machine languages. Ultimately, programs written in a high-level language must be translated
into machine language by a compiler or interpreter.

Example code: print(“Hello World!”)
High level programming languages are further divided as mentioned below.

Language Type Example
Interpreted Programming Language Python, BASIC, Lisp

Functional Programming Language Clean, Curry, F#
Compiled Programming Language C++,Java, Ada, ALGOL
Procedural Programming Language C,Matlab, CList
Scripting Programming Language PHP,Apple Script, Javascript
Markup Programming Language HTML,SGML,XML
Logical Programming Language Prolog, Fril
Concurrent Programming Language ABCL, Concurrent PASCAL
Object Oriented Programming Language C++,Ada, Java, Python

Interpreted Programming Language:
Interpreter is a program that executes instructions written in a high-level language.
An interpreter reads the source code one instruction or one line at a time, converts this line into

machine code and executes it.

Compiled Programming Languages
Compile is to transform a program written in a high-level programming language from source

code into object code. This can be done by using a tool called compiler.
A compiler reads the whole source code and translates it into a complete machine code program to

perform the required tasks which is output as a new file.

Figure : Interpreter

Figure: Compiler

12

High – level Language:
A high-level language (HLL) is a programming language such as C, FORTRAN, or Pascal that

enables a programmer to write programs that are more or less independent of a particular type of
computer. Such languages are considered high-level because they are closer to human languages and
further from machine languages. Ultimately, programs written in a high-level language must be translated
into machine language by a compiler or interpreter.

Example code: print(“Hello World!”)
High level programming languages are further divided as mentioned below.

Language Type Example
Interpreted Programming Language Python, BASIC, Lisp

Functional Programming Language Clean, Curry, F#
Compiled Programming Language C++,Java, Ada, ALGOL
Procedural Programming Language C,Matlab, CList
Scripting Programming Language PHP,Apple Script, Javascript
Markup Programming Language HTML,SGML,XML
Logical Programming Language Prolog, Fril
Concurrent Programming Language ABCL, Concurrent PASCAL
Object Oriented Programming Language C++,Ada, Java, Python

Interpreted Programming Language:
Interpreter is a program that executes instructions written in a high-level language.
An interpreter reads the source code one instruction or one line at a time, converts this line into

machine code and executes it.

Compiled Programming Languages
Compile is to transform a program written in a high-level programming language from source

code into object code. This can be done by using a tool called compiler.
A compiler reads the whole source code and translates it into a complete machine code program to

perform the required tasks which is output as a new file.

Figure : Interpreter

Figure: Compiler

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

13

Interpreted vs. Compiled Programming Language
Interpreted Programming Language Compile Programming Language
Translates one statement at a time Scans entire program and translates it as whole

into machine code
It takes less amount of time to analyze the
source code but the overall execution time is
slower

It takes large amount of time to analyze the
source code but the overall execution time is
comparatively faster

No intermediate object code is generated,
hence are memory efficient

Generates intermediate object code which
further requires linking, hence requires more
memory

Continues translating the program until first
error is met, in which case it stops. Hence
debugging is easy.

It generates the error message only after
scanning the whole program. Hence debugging
is comparatively hard.

Eg: Python, Ruby Eg: C,C++,Java

3.ALGORITHMIC PROBLEM SOLVING:

Algorithmic problem solving is solving problem that require the formulation of an
algorithm for the solution.

Understanding the Problem
 It is the process of finding the input of the problem that the algorithm solves.
 It is very important to specify exactly the set of inputs the algorithm needs to handle.
 A correct algorithm is not one that works most of the time, but one that works

Correctly for all legitimate inputs.

13

Interpreted vs. Compiled Programming Language
Interpreted Programming Language Compile Programming Language
Translates one statement at a time Scans entire program and translates it as whole

into machine code
It takes less amount of time to analyze the
source code but the overall execution time is
slower

It takes large amount of time to analyze the
source code but the overall execution time is
comparatively faster

No intermediate object code is generated,
hence are memory efficient

Generates intermediate object code which
further requires linking, hence requires more
memory

Continues translating the program until first
error is met, in which case it stops. Hence
debugging is easy.

It generates the error message only after
scanning the whole program. Hence debugging
is comparatively hard.

Eg: Python, Ruby Eg: C,C++,Java

3.ALGORITHMIC PROBLEM SOLVING:

Algorithmic problem solving is solving problem that require the formulation of an
algorithm for the solution.

Understanding the Problem
 It is the process of finding the input of the problem that the algorithm solves.
 It is very important to specify exactly the set of inputs the algorithm needs to handle.
 A correct algorithm is not one that works most of the time, but one that works

Correctly for all legitimate inputs.

13

Interpreted vs. Compiled Programming Language
Interpreted Programming Language Compile Programming Language
Translates one statement at a time Scans entire program and translates it as whole

into machine code
It takes less amount of time to analyze the
source code but the overall execution time is
slower

It takes large amount of time to analyze the
source code but the overall execution time is
comparatively faster

No intermediate object code is generated,
hence are memory efficient

Generates intermediate object code which
further requires linking, hence requires more
memory

Continues translating the program until first
error is met, in which case it stops. Hence
debugging is easy.

It generates the error message only after
scanning the whole program. Hence debugging
is comparatively hard.

Eg: Python, Ruby Eg: C,C++,Java

3.ALGORITHMIC PROBLEM SOLVING:

Algorithmic problem solving is solving problem that require the formulation of an
algorithm for the solution.

Understanding the Problem
 It is the process of finding the input of the problem that the algorithm solves.
 It is very important to specify exactly the set of inputs the algorithm needs to handle.
 A correct algorithm is not one that works most of the time, but one that works

Correctly for all legitimate inputs.

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

14

Ascertaining the Capabilities of the Computational Device

If the instructions are executed one after another, it is called sequential algorithm

Choosing between Exact and Approximate Problem Solving
• The next principal decision is to choose between solving the problem exactly or solving it

approximately.
• Based on this, the algorithms are classified as exact algorithm and approximation

algorithm.
• Data structure plays a vital role in designing and analysis the algorithms.
• Some of the algorithm design techniques also depend on the structuring data specifying a

problem’s instance
• Algorithm+ Data structure=programs.

Algorithm Design Techniques
• An algorithm design technique (or “strategy” or “paradigm”) is a general approach to solving

problems algorithmically that is applicable to a variety of problems from different areas of
computing.

• Learning these techniques is of utmost importance for the following reasons.
• First, they provide guidance for designing algorithms for new problems,

Second, algorithms are the cornerstone of computer science.

Methods of Specifying an Algorithm
• Pseudocode is a mixture of a natural language and programming language-like constructs.

Pseudocode is usually more precise than natural language, and its usage often yields more succinct
algorithm descriptions.In the earlier days of computing, the dominant vehicle for specifying
algorithms was a flowchart, a method of expressing an algorithm by a collection of connected
geometric shapes containing descriptions of the algorithm’s steps.

• Programming language can be fed into an electronic computer directly. Instead, it needs to be
converted into a computer program written in a particular computer language. We can look at such
a program as yet another way of specifying the algorithm, although it is preferable to consider it as
the algorithm’s implementation.

• Once an algorithm has been specified, you have to prove its correctness. That is, you have to
prove that the algorithm yields a required result for every legitimate input in a finite amount of
time.

• A common technique for proving correctness is to use mathematical induction because an
algorithm’s iterations provide a natural sequence of steps needed for such proofs.

• It might be worth mentioning that although tracing the algorithm’s performance for a few specific
inputs can be a very worthwhile activity, it cannot prove the algorithm’s correctness conclusively.
But in order to show that an algorithm is incorrect, you need just one instance of its input for
which the algorithm fails.

Analyzing an Algorithm

1. Efficiency.
Time efficiency: indicating how fast the algorithm runs,
Space efficiency: indicating how much extra memory it uses

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

15

2. simplicity.
 An algorithm should be precisely defined and investigated with mathematical

expressions.
 Simpler algorithms are easier to understand and easier to program.
 Simple algorithms usually contain fewer bugs.

Coding an Algorithm
 Most algorithms are destined to be ultimately implemented as computer programs.

Programming an algorithm presents both a peril and an opportunity.
 A working program provides an additional opportunity in allowing an empirical analysis

of the underlying algorithm. Such an analysis is based on timing the program on several
inputs and then analyzing the results obtained.

4.Simple strategies for developing algorithm:
They are two commonly used strategies used in developing algorithm

1. Iteration
2. Recursion

Iteration
• The iteration is when a loop repeatedly executes till the controlling condition becomes false

• The iteration is applied to the set of instructions which we want to get repeatedly executed.
• Iteration includes initialization, condition, and execution of statement within loop and update

(increments and decrements) the control variable.
A sequence of statements is executed until a specified condition is true is called iterations.

1. for loop

2. While loop
Syntax for For: Example: Print n natural numbers

FOR(start-value to end-value) DO
statement

... ENDFOR

BEGIN
GET n
INITIALIZE i=1
FOR (i<=n) DO

PRINT i
i=i+

1
ENDFOR
END

Syntax for While: Example: Print n natural numbers

WHILE (condition) DO
statement
...

ENDWHILE

BEGIN
GET n
INITIALIZE i=1
WHILE(i<=n) DO

PRINT i
i=i+1

ENDWHILE
END

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

16

Recursions:
 A function that calls itself is known as recursion.
 Recursion is a process by which a function calls itself repeatedly until some specified condition has

beensatisfied.

Algorithm for factorial of n numbers using recursion:

Main function:
Step1: Start
Step2: Get n
Step3: call factorial(n)
Step4: print fact
Step5: Stop

Sub function factorial(n):
Step1: if(n==1) then fact=1 return fact
Step2: else fact=n*factorial(n-1) and return fact

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

17

FLOW CHART

Pseudo code for factorial using recursion:

Main function:

BEGIN
GET n
CALL
factorial(n)
PRINT fact
BIN

Sub function factorial(n):

IF(n==1) THEN
fact=1
RETURN fact

ELSE
RETURN fact=n*factorial(n-1)

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

18

5. ILLUSTRATIVE PROBLEMS
1. Guess an integer in a range
Algorithm:

Step1: Start
Step 2: Declare n, guess
Step 3: Compute guess=input
Step 4: Read guess
Step 5: If guess>n, then

Print your guess is too high
Else

Step6:If guess<n, then
Print your guess is too low

Else
Step 7:If guess==n,then

Print Good job
Else

Nope
Step 6: Stop

Pseudocode:
BEGIN
COMPUTE guess=input
READ guess,
IF guess>n
PRINT Guess is high
ELSE
IF guess<n
PRINT Guess is low
ELSE
IF guess=n
PRINT Good job

ELSE
Nope
END

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

19

Flowchart:

Read n

Read
Guess number

Guess=input

If Guess>n

If Guess<n

If Guess==n

nope

Your guess is
too high

Your guess
is too low

Good job

Stop

Start

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

20

2.Find minimum in a list
Algorithm:

Step 1: Start
Step 2: Read n
Step 3:Initialize i=0
Step 4: If i<n, then goto step 4.1, 4.2 else goto step 5
Step4.1: Read a[i]
Step 4.2: i=i+1 goto step 4
Step 5: Compute min=a[0]
Step 6: Initialize i=1
Step 7: If i<n, then go to step 8 else goto step 10
Step 8: If a[i]<min, then goto step 8.1,8.2 else goto 8.2
Step 8.1: min=a[i]
Step 8.2: i=i+1 goto 7
Step 9: Print min
Step 10: Stop

Pseudocode:
BEGIN
READ n
FOR i=0 to n, then
READ a[i]
INCREMENT i
END FOR
COMPUTE min=a[0]
FOR i=1 to n, then
IF a[i]<min, then
CALCULATE min=a[i]
INCREMENT i
ELSE
INCREMENT i
END IF-ELSE
END FOR
PRINT min
END

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

21

Flowchart:

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

22

3. Insert a card in a list of sorted cards

Algorithm:
Step 1: Start
Step 2: Read n
Step 3:Initialize i=0
Step 4: If i<n, then goto step 4.1, 4.2 else goto step 5
Step4.1: Read a[i]
Step 4.2: i=i+1 goto step 4
Step 5: Read item
Step 6: Calculate i=n-1
Step 7: If i>=0 and item<a[i], then go to step 7.1, 7.2 else goto step 8
Step 7.1: a[i+1]=a[i]
Step 7.2: i=i-1 goto step 7
Step 8: Compute a[i+1]=item
Step 9: Compute n=n+1
Step 10: If i<n, then goto step 10.1, 10.2 else goto step 11
Step10.1: Print a[i]
Step10.2: i=i+1 goto step 10
Step 11: Stop

Pseudocode:
BEGIN
READ n
FOR i=0 to n, then
READ a[i]
INCREMENT i
END FOR
READ item
FOR i=n-1 to 0 and item<a[i], then
CALCULATE a[i+1]=a[i]
DECREMENT i
END FOR
COMPUTE a[i+1]=a[i]
COMPUTE n=n+1
FOR i=0 to n, then
PRINT a[i]
INCREMENT i
END FOR
END

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

23

Flowchart:

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

24

4.Tower of Hanoi
Tower of Hanoi, is a mathematical puzzle which consists of three towers (pegs) and more

than one rings.
Tower of Hanoi is one of the best example for recursive problem solving.

Pre-condition:
These rings are of different sizes and stacked upon in an ascending order, i.e. the smaller

one sits over the larger one. There are other variations of the puzzle where the number of disks
increase, but the tower count remains the same.

Post-condition:
All the disk should be moved to the last pole and placed only in ascending order as shown

below.

Rules
The mission is to move all the disks to some another tower without violating the sequence

of arrangement. A few rules to be followed for Tower of Hanoi are
• Only one disk can be moved among the towers at any given time.
• Only the "top" disk can be removed.
• No large disk can sit over a small disk.

Tower of Hanoi puzzle with n disks can be solved in minimum 2n−1 steps. This presentation
shows that a puzzle with 3 disks has taken 23 - 1 = 7 steps.
Algorithm
To write an algorithm for Tower of Hanoi, first we need to learn how to solve this problem with
lesser amount of disks, say → 1 or 2. We mark three towers with name, source, aux (only to help
moving the disks) and destination.
Input: one disk

If we have only one disk, then it can easily be moved from source to destination peg.
Input: two disks
If we have 2 disks −

• First, we move the smaller (top) disk to aux peg.
• Then, we move the larger (bottom) disk to destination peg.
• And finally, we move the smaller disk from aux to destination peg.

Input: more than two disks
• So now, we are in a position to design an algorithm for Tower of Hanoi with more than

two disks. We divide the stack of disks in two parts. The largest disk (nth disk) is in one
part and all other (n-1) disks are in the second part.

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

25

• Our ultimate aim is to move disk n from source to destination and then put all other (n1)
disks onto it. We can imagine to apply the same in a recursive way for all given set of
disks.

• The steps to follow are –
Step 1 − Move n-1 disks from source to aux
Step 2 − Move nth disk from source to dest
Step 3 − Move n-1 disks from aux to dest

A recursive algorithm for Tower of Hanoi can be driven as follows –
START
Procedure Hanoi(disk, source, dest, aux)
IF disk == 1, THEN

move disk from source to dest
ELSE

Hanoi(disk - 1, source, aux, dest) // Step 1
move disk from source to dest // Step 2
Hanoi(disk - 1, aux, dest, source) // Step 3

END IF
END Procedure
STOP

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

26

FLOW CHART Start

Enter disk i.e number
of disks

Call the function
Hanoi(n,A,C,B)

If disk==1?

Print move disk from
A to C

Call function Hanoi with
disk-1,A,B,C

Print move disk
from A to C

Call function Hanoi
with disk-1,C,A,B

Return

Stop

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

27

5. Draw a flow chart to find greatest among three numbers.(AU 2018)

6. Draw a flow chart to find sum of n numbers(AU 2018)

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

28

2 MARKS

1. What is an algorithm?
An algorithm is a finite number of clearly described, unambiguous do able steps that

can be systematically followed to produce a desired results for given input in the given amount
of time. In other word, an algorithm is a step by step procedure to solve a problem with finite
number of steps.

2. What is Pseudo code?
Pseudocode is an informal high-level description of the operating principle of a

computer program or algorithm. Pseudo means false and code refers to instructions
written in programming language.

3. What is Problem Solving?
Problem solving is the systematic approach to define the problem and creating

number of solutions. The problem solving process starts with the problem specifications
and ends with a correct program.

4. Distinguish between algorithm and program.

Algorithm Program
1. Systematic logical approach which is a

well-defined, step-by-step procedure that
allows a computer to solve a problem.

It is exact code written for
problem following all the rules of the

programming language.

2. An algorithm is a finite number of clearly
described, unambiguous do able steps that
can be systematically followed to produce
a desired results for given input in the
given amount of time.

The program will accept the data to
perform computation.

Program=Algorithm + Data

5. Define Flow chart.
A graphical representation of an algorithm. Flow charts is a diagram made up of

boxes, diamonds, and other shapes, connected by arrows.

6. Write an algorithm to accept two numbers, compute the sum and print the result.
Step 1: Start
Step 2: Declare variables num1,num2 and sum,
Step 3: Read values num 1 and num2.
Step 4: Add and assign the result to sum.

Sum←num1+num2
Step 5: Display sum

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

29

7. Differentiate between iteration and recursion.

S.No Iteration Recursion
1. Iteration is a process of executing

certain set of instructions repeatedly,
without calling the self function.

Iteration is a process of
executing certain set of
instructions repeatedly, by
calling the self function
repeatedly.

2. Iterative methods are more efficient
because of better execution speed.

Recursive methods are less
efficient.

3. It is simple to implement. Recursive methods are complex
to implement.

8. What is Programming language? With example.
Programming Language is a formal language with set of instruction, to the

computer to solve a problem. Java, C, C++, Python, PHP.

9. What are the steps for developing algorithms.
• Problem definition
• Development of a model
• Specification of Algorithm
• Designing an Algorithm
• Checking the correctness of Algorithm
• Analysis of Algorithm
• Implementation of Algorithm
• Program testing
• Documentation Preparation

10. What are the Guidelines for writing pseudo code?

• Write one statement per line
• Capitalize initial keyword
• Indent to hierarchy
• End multiline structure
• Keep statements language independent.

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

30

11.Draw a flow chart to find whether the given number is leap year or not.

Start

Read year

If
(year%4==0)

Print ‘Leap year’ Print ‘Not Leap year’

Stop

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

31

UNIT II
DATA, EXPRESSIONS, STATEMENTS

Python interpreter and interactive mode; values and types: int, float, boolean, string, and list; variables,
expressions, statements, tuple assignment, precedence of operators, comments; Modules and functions,
function definition and use, flow of execution, parameters and arguments; Illustrative programs: exchange
the values of two variables, circulate the values of n variables, distance between two points.

1.
Python is a general-purpose interpreted, interactive, object-oriented, and high-level

programming language.
It was created by Guido van Rossum during 1985- 1990.

Python got its name from “Monty Python’s flying circus”. Python was released in the year 2000.

• Python is interpreted: Python is processed at runtime by the interpreter. You do not need to
compile your program before executing it.

• Python is Interactive: You can actually sit at a Python prompt and interact with the interpreter
directly to write your programs.

• Python is Object-Oriented: Python supports Object-Oriented style or technique of programming
that encapsulates code within objects.

• Python is a Beginner's Language: Python is a great language for the beginner-
Level programmers and supports the development of a wide range of applications.

Python Features:
• Easy-to-learn: Python is clearly defined and easily readable. The structure of the program is very

simple. It uses few keywords.
• Easy-to-maintain: Python's source code is fairly easy-to-maintain.

• Portable: Python can run on a wide variety of hardware platforms and has the same interface on all
platforms.

• Interpreted: Python is processed at runtime by the interpreter. So, there is no need to compile a
program before executing it. You can simply run the program.

• Extensible: Programmers can embed python within their C,C++,JavaScript
, ActiveX, etc.

• Free and Open Source: Anyone can freely distribute it, read the source code, and edit it.

• High Level Language: When writing programs, programmers concentrate on solutions of the
current problem, no need to worry about the low level details.

• Scalable: Python provides a better structure and support for large programs than shell scripting.

Applications:
Bit Torrent file sharing
Google search engine, YouTube
 Intel, Cisco, HP,IBM
 i–Robot
NASA

Face book, Drop box

INTRODUCTION TO PYTHON:

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

32

Python interpreter:

Interpreter: To execute a program in a high-level language by translating it one line ata time.
Compiler: To translate a program written in a high-level language into a low-level language all at once, in
preparation for later execution.

Compiler Interpreter

Compiler Takes Entire program as input Interpreter Takes Single instruction as input

Intermediate Object Code is Generated No Intermediate is
Generated

Object Code

Conditional Control Statements are
Executes faster

Conditional Control
Executes slower

Statements are

Memory Requirement is More(Since Object
Code is Generated)

Memory Requirement is Less

Program need not be compiled every time Every time higher level program is
converted into lower level program

Errors are displayed after entire program is checked Errors are displayed for every instruction
interpreted (if any)

Example : C Compiler Example : PYTHON

Modes of python interpreter:
Python Interpreter is a program that reads and executes Python code. It uses 2 modes of Execution.1. Interactive mode2. Script mode

Interactive mode:
 Interactive Mode, as the name suggests, allows us to interact with OS.
 When we type Python statement, interpreter displays the result(s) immediately.

Advantages:
 Python, in interactive mode, is good enough to learn, experiment or explore.
 Working in interactive mode is convenient for beginners and for testing small pieces of code.

Drawback:
 We cannot save the statements and have to retype all the statements once again to re-run them.

In interactive mode, you type Python programs and the interpreter displays the result:
>>> 1 + 1
2
The chevron, >>>, is the prompt the interpreter uses to indicate that it is ready for you to enter code. If you
type 1 + 1, the interpreter replies 2.
>>> print ('Hello, World!')
Hello, World!

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

33

This is an example of a print statement. It displays a result on the screen. In this case, the result is the words.

Script mode:
In script mode, we type python program in a file and then use interpreter to execute the content of the
file.
Scripts can be saved to disk for future use. Python scripts have the
extension .py, meaning that the filename ends with.py
Save the code with filename.py and run the interpreter in script mode to execute the script.

Interactive mode Script mode

A way of using the Python interpreter by

typing commands and expressions at the prompt.

A way of using the Python interpreter to read and
execute statements in a script.

Can’t save and edit the code Can save and edit the code

If we want to experiment with the code,
we can use interactive mode.

If we are very clear about the code, we can
use script mode.

we cannot save the statements for further use and we
have to retype all the statements to re-run them.

we can save the statements for further use and we no
need to retype all the statements to re-run them.

We can see the results immediately. We can’t see the code immediately.

Integrated Development Learning Environment(IDLE):

Is a graphical user interface which is completely written in Python.
It is bundled with the default implementation of the python language and also comes with optional
part of the Python packaging.

Features of IDLE:
Multi-window text editor with syntax highlighting.

EnggTree.com

Downloaded from EnggTree.com

https://en.wikipedia.org/wiki/Syntax_highlighting
http://learnengineering.in

34

Auto completion with smart indentation.
Python shell to display output with syntax highlighting.

2.VALUES AND DATATYPES

Value:
Value can be any letter, number or string.
Eg, Values are 2, 42.0, and 'Hello, World!'. (These values belong to different datatypes.)

Data type:
Every value in Python has a data type.
It is a set of values, and the allowable operations on those values.

Python has four standard data types:

Numbers:
 Number data type stores Numerical Values.
 This data type is immutable [i.e. values/items cannot be changed].
 Python supports integers, floating point numbers and complex numbers. They are defined as,

Sequence:
 A sequence is an ordered collection of items, indexed by positive integers.
 It is a combination of mutable (value can be changed) and immutable (values cannot be changed)

datatypes.

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

35

 There are three types of sequence data type available in Python, they are
1. Strings
2. Lists
3. Tuples

Strings:
 A String in Python consists of a series or sequence of characters - letters, numbers, and special

characters.
 Strings are marked by quotes:

• Single quotes(' ') E.g., 'This a string in single quotes'

• double quotes(" ") E.g., "'This a string in double quotes'"

• triple quotes(""" """)E.g., """This is a paragraph. It is made up of multiple
lines and sentences."""

 Individual character in a string is accessed using a subscript(index).
 Characters can be accessed using indexing and slicing operations .Strings are
Immutable i.e the contents of the string cannot be changed after it is created.

Indexing:

• Positive indexing helps in accessing the string from the beginning

• Negative subscript helps in accessing the string from the end.

• Subscript 0 or –ven(where n is length of the string) displays the first element.
Example: A[0] or A[-5] will display “H”

• Subscript 1 or –ve (n-1) displays the second element.
Example: A[1] or A[-4] will display “E”

Operations on string:i. Indexingii. Slicingiii. Concatenationiv. Repetitionsv. Membership

Creating a string >>> s="good morning" Creating the list with elements of different
data types.

Indexing >>>print(s[2])
o
>>>print(s[6])
O

 Accessing
position0

 Accessing
position2

the

the

item

item

in

in

the

the

Slicing(ending
position -1)

>>>print(s[2:])
od morning

- Displaying items from 2ndtill
last.

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

36

Slice operator is used
to extract part of a
data
type

>>>print(s[:4])
Good

- Displaying items from 1
st

position till 3rd.

Concatenation >>>print(s+"friends")
good morning friends

-Adding and printing the
characters of two strings.

Repetition >>>print(s*2)
good morning
good morning

Creates new strings,
concatenating multiple copies of
the same string

in, not in (membership
operator)

>>> s="good morning"
>>>"m" in s True

>>> "a" not in s
True

Using membership operators to check a
particular character is in string or not.
Returns true if present.

Lists
 List is an ordered sequence of items. Values in the list are called elements /items.
 It can be written as a list of comma-separated items (values) between square brackets[].
 Items in the lists can be of different datatypes.

Operations on list:
Indexing
Slicing

Concatenation
Repetitions
Updation, Insertion, Deletion

Creating a list >>>list1=["python", 7.79, 101,
"hello”]
>>>list2=["god",6.78,9]

Creating the list with
elements of different data
types.

Indexing >>>print(list1[0]) python
>>>list1[2]
101

 Accessing the item in the
position0
 Accessing the item in the

position2

Slicing(ending
position -1)
Slice operator is used
to extract part of a
string, or some part of a
list
Python

>>>print(list1[1:3])
[7.79, 101]
>>>print(list1[1:]) [7.79, 101,
'hello']

- Displaying items from 1st
till2nd.- Displaying items from 1st

position till last.

Concatenation >>>print(list1+list2)
['python', 7.79, 101, 'hello', 'god',

-Adding and printing the
items of two lists.

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

37

6.78, 9]
Repetition >>>list2*3

['god', 6.78, 9, 'god', 6.78, 9, 'god',
6.78, 9]

Creates new strings, concatenating
multiple

copies of the same string

Updating the list >>>list1[2]=45
>>>print(list1)
[‘python’, 7.79, 45, ‘hello’]

Updating the list using index value

Inserting an element >>>list1.insert(2,"program")
>>> print(list1)
['python', 7.79, 'program', 45,
'hello']

Inserting an element in 2ndposition

Removing an element >>>list1.remove(45)
>>> print(list1)
['python', 7.79, 'program', 'hello']

Removing an element by
giving the element directly

Tuple:
 A tuple is same as list, except that the set of elements is enclosed in parentheses

instead of square brackets.
 A tuple is an immutable list.i.e. once a tuple has been created, you can't add elements to a tuple or

remove elements from the tuple.
 Benefit of Tuple:
 Tuples are faster than lists.
 If the user wants to protect the data from accidental changes, tuple can be used.
 Tuples can be used as keys in dictionaries, while lists can't.

Basic Operations:
Creating a tuple >>>t=("python", 7.79, 101,

"hello”)
Creating the tuple with elements
of different data types.

Indexing >>>print(t[0]) python
>>>t[2]
101

 Accessing the item in the
position0
 Accessing the item in the

position2

Slicing(ending
position -1)

>>>print(t[1:3])
(7.79, 101)

 Displaying items from1st
till2nd.

Concatenation >>>t+("ram", 67)
('python', 7.79, 101, 'hello', 'ram',
67)

 Adding tuple elements at

the end of another tuple elements

Repetition >>>print(t*2)
('python', 7.79, 101, 'hello',
'python', 7.79, 101, 'hello')

 Creates new strings,

concatenating multiple copies of the

same string

Altering the tuple data type leads to error. Following error occurs when user tries to do.

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

38

Mapping
-This data type is unordered and mutable.
-Dictionaries fall under Mappings.

Dictionaries:
 Lists are ordered sets of objects, whereas dictionaries are unorderedsets.
 Dictionary is created by using curly brackets. i,e.{}
 Dictionaries are accessed via keys and not via their position.
 A dictionary is an associative array (also known as hashes). Any key of the dictionary is associated

(or mapped) to a value.
 The values of a dictionary can be any Python data type. So dictionaries are unordered key-value-

pairs(The association of a key and a value is called a key- value pair)
Dictionaries don't support the sequence operation of the sequence data types like strings, tuples and lists.

Creating a
dictionary

>>> food = {"ham":"yes", "egg" :
"yes", "rate":450 }
>>>print(food)
{'rate': 450, 'egg': 'yes', 'ham':
'yes'}

Creating
elements
types.

the
of

dictionary
different

with
data

Indexing >>>>print(food["rate"])
450

Accessing the item with keys.

Slicing(ending
position -1)

>>>print(t[1:3])
(7.79, 101)

Displaying items from 1st till 2nd.

If you try to access a key which doesn't exist, you will get an error message:
>>>words = {"house" : "Haus", "cat":"Katze"}
>>>words["car"]
Traceback (most recent call last): File
"<stdin>", line 1, in <module>KeyError: 'car'

Data type Compile time Run time
int a=10 a=int(input(“enter a”))
float a=10.5 a=float(input(“enter a”))
string a=”panimalar” a=input(“enter a string”)
list a=[20,30,40,50] a=list(input(“enter a list”))
tuple a=(20,30,40,50) a=tuple(input(“enter a tuple”))

>>>t[0]="a"Trace back (most recent call last):File "<stdin>", line 1, in <module>Type Error: 'tuple' object does not support item assignment
EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

39

3.Variables,Keywords Expressions, Statements, Comments, Docstring ,Lines And Indentation,
Quotation In Python, Tuple Assignment:

VARIABLES:
 A variable allows us to store a value by assigning it to a name, which can be used later.
 Named memory locations to store values.
 Programmers generally choose names for their variables that are meaningful.
 It can be of any length. No space is allowed.
 We don't need to declare a variable before using it. In Python, we simply assign a value to a variable

and it will exist.

Assigning value to variable:
Value should be given on the right side of assignment operator(=) and variable on left side.

Assigning a single value to several variables simultaneously:

>>> a=b=c=100
Assigning multiple values to multiple variables:

KEYWORDS:

 Keywords are the reserved words in Python.
 We cannot use a keyword as name, function name or any other identifier.
 They are used to define the syntax and structure of the Python language.
 Keywords are case sensitive.

IDENTIFIERS:
Identifier is the name given to entities like class, functions, variables etc. in Python.

 Identifiers can be a combination of letters in lowercase (a to z) or uppercase (A to
Z) or digits (0 to 9) or an underscore (_).

>>>counter =45print (counter)

>>>a,b,c=2,4,"ram"

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

40

 all are valid example.
 An identifier cannot start with a digit.
 Keywords cannot be used as identifiers.
 Cannot use special symbols like!, @, #, $, % etc. in our identifier.
 Identifier can be of any length.

Example:
Names like myClass, var_1, and this_is_a_long_variable

Valid declarations Invalid declarations
Num Number 1
Num num1
Num1 addition of program
_NUM 1Num
NUM_temp2 Num.no
IF if
Else else

STATEMENTS AND EXPRESSIONS:

Statements:
-Instructions that a Python interpreter can executes are called statements.
-A statement is a unit of code like creating a variable or displaying avalue.

>>> n = 17
>>>print (n)

Here, The first line is an assignment statement that gives a value to n. The second line is
a print statement that displays the value of n.

Expressions:
-An expression is a combination of values, variables, and operators.- A value all by itself is considered an expression, and also a variable.- So the following are all legal expressions:

>>> 42
42
>>> a=2
>>>a+3+2 7
>>> z=("hi"+"friend")
>>>print(z) hifriend

INPUT AND OUTPUT

INPUT: Input is data entered by user (end user) in the program. In python, input
() function is available for input.

Syntax for input() is:variable = input (“data”)

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

41

Example:

#python accepts string as default data type. Conversion is required for type.

OUTPUT: Output can be displayed to the user using Print statement .

Example:

COMMENTS:

A hash sign (#) is the beginning of a comment.
Anything written after # in a line is ignored by interpreter.
Eg: percentage = (minute * 100)/60 # calculating percentage of an hour
Python does not have multiple-line commenting feature. You have to comment each line
individually as follows:

Example:
This is a comment.
This is a comment, too.
I said that already.

DOCSTRING:
Docstring is short for documentation string.
It is a string that occurs as the first statement in a module, function, class, or method definition. We
must write what a function/class does in the docstring.
Triple quotes are used while writing docstrings.

Syntax:
functionname__doc.__ Example:

LINES AND INDENTATION:
Most of the programming languages like C, C++, Java use braces { } to define a block of code. But,
python uses indentation.
Blocks of code are denoted by line indentation.
It is a space given to the block of codes for class and function definitions or flow control.

def double(num):"""Function to double thevalue"""return2*num>>>print (double.__doc__)Function to double the value

>>> print ("Hello")Hello
Syntax:print (expression/constant/variable)
>>>y=int(input("enter the number"))enter the number 3
>>> x=input("enter the name:")enter the name: george

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

42

Example:

QUOTATION INPYTHON:
Python accepts single ('), double (") and triple (''' or """) quotes to denote string literals. Anything that is
represented using quotations are considered as string.

Single quotes(' ') Eg, 'This a string in single quotes'
double quotes(" ") Eg, "'This a string in double quotes'"
triple quotes(""" """) Eg, This is a paragraph. It is made up of multiple lines and
sentences."""

TUPLE ASSIGNMENT

An assignment to all of the elements in a tuple using a single assignment statement.
Python has a very powerful tuple assignment feature that allows a tuple of variables on the left of an
assignment to be assigned values from a tuple on the right of the assignment.
The left side is a tuple of variables; the right side is a tuple of values.
Each value is assigned to its respective variable.
All the expressions on the right side are evaluated before any of the assignments. This feature makes
tuple assignment quite versatile.
Naturally, the number of variables on the left and the number of values on the right have to be the
same.

Example:
-It is useful to swap the values of two variables. With conventional assignment statements, we have to use a
temporary variable. For example, to swap a and b:

Swap two numbers Output:

a=2;b=3
print(a,b) (2, 3)
temp = a (3, 2)
a = b >>>
b = temp
print(a,b)

>>>(a, b, c, d) = (1, 2, 3)ValueError: need more than 3 values to unpack

a=3b=1if a>b:print("a is greater")else:print("b is greater")

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

43

-Tuple assignment solves this problem neatly:

-One way to think of tuple assignment is as tuple packing/unpacking.
In tuple packing, the values on the left are ‘packed’ together in a tuple:

-In tuple unpacking, the values in a tuple on the right are ‘unpacked ‘into the variables/names on the
right:

-The right side can be any kind of sequence (string, list,tuple)
Example:
-To split an email address in to user name and a domain

>>>mailid='god@abc.org'
>>>name,domain=mailid.split('@')
>>>print name god
>>> print (domain) abc.org

4.OPERATORS:

Operators are the constructs which can manipulate the value of operands.
Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is called operator
Types of Operators:

-Python language supports the following types of operators

• Arithmetic Operators

• Comparison (Relational)Operators

• Assignment Operators

• Logical Operators

• Bitwise Operators

• Membership Operators

• Identity Operators

(a, b) = (b, a)
>>>b = ("George",25,"20000") # tuplepacking

>>>(name, age, salary)=b # tupleunpacking
>>>name'George'
>>>age25
>>>salary'20000'

tuple packing>>>b = ("George", 25, "20000")

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

44

Arithmetic operators:
They are used to perform mathematical operations like addition, subtraction, multiplication etc.

Assume, a=10 and b=5

Operator Description Example

+ Addition Adds values on either side of the operator. a + b = 30

- Subtraction Subtracts
operand.

right hand operand from left hand a – b = -10

* Multiplication Multiplies values on either side of the operator a * b = 200

/ Division Divides left hand operand by right hand operand b / a = 2

% Modulus Divides left hand operand by right hand operand and returns
remainder

b % a = 0

** Exponent Performs
operators

exponential (power) calculation on a**b =10 to the
power 20

// Floor Division - The division of operands where the result is the
quotient in which the digits after the decimal point are removed

5//2=2

Examples
a=10
b=5
print("a+b=",a+b)
print("a-b=",a-b)
print("a*b=",a*b)
print("a/b=",a/b)
print("a%b=",a%b)
print("a//b=",a//b)
print("a**b=",a**b)

Output:
a+b=15
a-b= 5
a*b= 50
a/b= 2.0
a%b=0
a//b=2
a**b= 100000

Comparison (Relational)Operators:
• Comparison operators are used to compare values.

• It either returns True or False according to the condition. Assume, a=10 and b=5

Operator Description Example

== If the values of two operands are equal, then the condition (a == b) is

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

45

becomes true. not true.

!= If values of two operands are not equal, then condition becomes true. (a!=b) is
true

> If the value of left operand is greater than the value of right operand, then
condition becomes true.

(a > b) is not
true.

< If the value of left operand is less than the value of right operand, then
condition becomes true.

(a < b) is true.

>= If the value of left operand is greater than or equal to the value of right
operand, then condition becomes true.

(a >= b) is not
true.

<= If the value of left operand is less than or equal to the value of right
operand, then condition becomes true.

(a <= b) is
true.

Example
a=10
b=5
print("a>b=>",a>b)
print("a>b=>",a<b)
print("a==b=>",a==b)
print("a!=b=>",a!=b)
print("a>=b=>",a<=b)
print("a>=b=>",a>=b)

Output: a>b=>
True a>b=>
False a==b=>
False a!=b=>
True a>=b=>
False a>=b=>
True

Assignment Operators:
-Assignment operators are used in Python to assign values to variables.

Operator Description Example

= Assigns values from right side operands to left side operand c = a + b
assigns value
of a + b into c

+= Add AND It adds right operand to the left operand and assign the result to
leftoperand

c += a is
equivalent to c
= c + a

-= Subtract
AND

It subtracts right operand from the left operand and assign the result
to left operand

c -= a is
equivalent to c
= c -a

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

46

*=
AND

Multiply It multiplies right operand with the left operand and assign the
result to left operand

c *= a is
equivalent to c
= c *a

/=
AND

Divide It divides left operand with the right operand and assign the result
to left operand

c /= a is
equivalent to c
= c /ac
/= a is
equivalent to c
= c /a

%=
AND

Modulus It takes modulus using two operands and assign the result to left
operand

c %= a is
equivalent to c
= c % a

**= Exponent
AND

Performs exponential (power) calculation on
operators and assign value to the left operand

c **= a is
equivalent to c
= c ** a

//= Floor
Division

It performs floor division on operators and assign value to the left
operand

c //= a is
equivalent to c
= c // a

Example
a =21
b =10
c = 0
c = a + b
print("Line 1 - Value of c is ",c)
c += a
print("Line 2 - Value of c is ", c)
c *= a
print("Line 3 - Value of c is ",c)
c /= a
print("Line 4 - Value of c is ", c)
c = 2
c %=a
print("Line 5 - Value of c is ",c)
c **= a
print("Line 6 - Value of c is ",c)
c //= a
print ("Line 7 - Value of c is ", c)

Output
Line 1 - Value of c is 31
Line 2 - Value of c is 52
Line 3 - Value of c is 1092
Line 4 - Value of c is 52.0
Line 5 - Value of c is2
Line 6 - Value of c is 2097152
Line 7 - Value of c is99864

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

47

Logical Operators:
-Logical operators are the and, or, not operators.

Example
a = True
b = False
print('a and b is', a and b)
print('a or b is' ,a or b)
print('not a is', not a)

Output
x and y is False
x or y is True
not x is False

Bitwise Operators:

• A bitwise operation operates on one or more bit patterns at the level of individual bits
Example: Let x = 10 (0000 1010 in binary)and

y = 4 (0000 0100 in binary)

Example
a = 60 # 60 = 0011 1100

Output
Line 1 - Value of c is 12

b = 13
c = 0
c = a & b;

13 = 0000 1101

12 = 0000 1100

Line 2 - Value of c is 61
Line 3 - Value of c is 49
Line 4 - Value of c is-61

print "Line 1 - Value of c is ", c
c = a|b; # 61 = 00111101
print "Line 2 - Value of c is ", c
c = a^b; # 49 = 00110001
print "Line 3 - Value of c is ", c
c =~a; # -61 = 11000011

Line 5 - Value of c is 240
Line 6 - Value of c is 15

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

48

print "Line 4 - Value of c is ", c
c = a<<2; # 240 = 11110000
print "Line 5 - Value of c is ", c
c = a>>2; # 15 = 00001111
print "Line 6 - Value of c is ", c

Membership Operators:

 Evaluates to find a value or a variable is in the specified sequence of string, list, tuple, dictionary or
not.

 Let, x=[5,3,6,4,1]. To check particular item in list or not, in and not in operators areused.

Example:
x=[5,3,6,4,1]
>>>5 in x
True
>>>5 not in x
False

Identity Operators:
• They are used to check if two values (or variables) are located on the same partof the

memory.

Example
x =5
y =5
x2 = 'Hello'
y2= 'Hello'
print(x1 is not y1)
print(x2 is y2)

Output
False
True

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

49

5.OPERATOR PRECEDENCE:

When an expression contains more than one operator, the order of evaluation
depends on the order of operations.

Operator Description

** Exponentiation (raise to the power)

~ + - Complement, unary plus and minus (method names for the
last two are +@ and -@)

* / % // Multiply, divide, modulo and floor division

+ - Addition and subtraction

>><< Right and left bitwise shift

& Bitwise 'AND'

^ | Bitwise exclusive `OR' and regular `OR'

<= <>>= Comparison operators

<> == != Equality operators

= %= /= //= -= += *= **= Assignment operators

is is not Identity operators

in not in Membership operators

not or and Logical operators

-For mathematical operators, Python follows mathematical convention.
-The acronym PEMDAS (Parentheses, Exponentiation, Multiplication, Division, Addition, Subtraction) is a
useful way to remember the rules:

• Parentheses have the highest precedence and can be used to force an expression to evaluate in the
order you want. Since expressions in parentheses are evaluated first, 2 * (3-1)is 4, and (1+1)**(5-2)
is8.

• You can also use parentheses to make an expression easier to read,asin(minute
* 100) / 60, even if it doesn’t change the result.

• Exponentiation has the next highest precedence, so 1 + 2**3 is 9, not 27, and2
*3**2 is 18, not 36.

• Multiplication and Division have higher precedence than Addition and Subtraction. So 2*3-1 is 5,
not 4, and 6+4/2 is 8, not5.

• Operators with the same precedence are evaluated from left to right (except exponentiation).

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

50

Examples:

a=9-12/3+3*2-1
a=?
a=9-4+3*2-1
a=9-4+6-1
a=5+6-1 a=11-
1 a=10

A=2*3+4%5-3/2+6
A=6+4%5-3/2+6
A=6+4-3/2+6 A=6+4-
1+6
A=10-1+6
A=9+6 A=15

find m=?
m=-43||8&&0||-2 m=-
43||0||-2 m=1||-2
m=1

6.Functions, Function Definition And Use, Function call, Flow Of Execution, Function Prototypes,
Parameters And Arguments, Return statement, Arguments types, Modules

FUNCTIONS:
 Function is a sub program which consists of set of instructions used to perform a specific task.

A large program is divided into basic building blocks called function.

Need For Function:
• When the program is too complex and large they are divided into parts. Each part is separately

coded and combined into single program. Each subprogram is called as function.
• Debugging, Testing and maintenance becomes easy when the program is divided into

subprograms.
• Functions are used to avoid rewriting same code again and again in a program.
• Function provides code re-usability
• The length of the program is reduced.

Types of function:
Functions can be classified into two categories:i) user defined functionii) Built in function

i) Built in functions
• Built in functions are the functions that are already created and stored inpython.
• These built in functions are always available for usage and accessed by a programmer. It cannot be

modified.

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

51

Built in function Description

>>>max(3,4) 4 # returns largest element

>>>min(3,4) 3 # returns smallest element

>>>len("hello") 5 #returns length of an object

>>>range(2,8,1) [2,
3, 4, 5, 6, 7]

#returns range of given values

>>>round(7.8) 8.0 #returns rounded integer of the given number

>>>chr(5)
\x05'

#returns a character (a string) from an integer

>>>float(5)
5.0

#returns float number from string or integer

>>>int(5.0) 5 # returns integer from string or float

>>>pow(3,5) 243 #returns power of given number

>>>type(5.6)
<type 'float'>

#returns data type of object to which it belongs

>>>t=tuple([4,6.0,7])
(4, 6.0, 7)

to create tuple of items from list

>>>print("good morning")
Good morning

displays the given object

>>>input("enter name:")
enter name : George

reads and returns the given string

ii) User Defined Functions:
• User defined functions are the functions that programmers create for their requirement anduse.
• These functions can then be combined to form module which can be used in other programs by

importing them.
• Advantages of user defined functions:

• Programmers working on large project can divide the workload by making different functions.
• If repeated code occurs in a program, function can be used to include those codes and execute

when needed by calling that function.

Function definition: (Sub program)

• def keyword is used to define a function.
• Give the function name after def keyword followed by parentheses in which arguments are given.

• End with colon (:)
• Inside the function add the program statements to be executed
• End with or without return statement

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

52

Syntax:
def fun_name(Parameter1,Parameter2…Parameter n): statement1

statement2…
statement n return[expression]

Example:
def my_add(a,b):

c=a+b
return c

Function Calling: (Main Function)

 Once we have defined a function, we can call it from another function, program or even the
Pythonprompt.

 To call a function we simply type the function name with appropriate arguments.
Example:

x=5
y=4
my_add(x,y)

Flow of Execution:

• The order in which statements are executed is called the flow of execution
• Execution always begins at the first statement of the program.
• Statements are executed one at a time, in order, from top to bottom.
• Function definitions do not alter the flow of execution of the program, but remember that statements

inside the function are not executed until the function is called.
• Function calls are like a bypass in the flow of execution. Instead of going to the next statement, the

flow jumps to the first line of the called function, executes all the statements there, and then comes
back to pick up where it left off.

Note: When you read a program, don’t read from top to bottom. Instead, follow the flow of execution. This
means that you will read the def statements as you are scanning from top to bottom, but you should skip the
statements of the function definition until you reach a point where that function is called.

Function Prototypes:i. Function without arguments and without return typeii. Function with arguments and without return typeiii. Function without arguments and with return typeiv. Function with arguments and with return type

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

53

i) Function without arguments and without return type
o In this type no argument is passed through the function call and no output is return to main

function
o The sub function will read the input values perform the operation and print the result in the

same block
ii) Function with arguments and without return type

o Arguments are passed through the function call but output is not return to the main function
iii) Function without arguments and with return type

o In this type no argument is passed through the function call but output is return to the main
function.

iv)Function with arguments and with return type
o In this type arguments are passed through the function call and output is return to the main

function
Without Return Type

Without argument With argument

def add():
a=int(input("enter a"))
b=int(input("enter b"))
c=a+b
print(c)

add()

def add(a,b):
c=a+b
print(c)

a=int(input("enter a"))
b=int(input("enter b"))
add(a,b)

OUTPUT: OUTPUT:
enter a5 enter a5
enter b 10 enter b 10
15 15

With return type
Without argument With argument

def add(): def add(a,b):
c=a+b
return c

a=int(input("enter a"))
b=int(input("enter b"))
c=add(a,b)
print(c)

a=int(input("enter a"))
b=int(input("enterb"))
c=a+b
return c

c=add()

print(c)

OUTPUT: OUTPUT:
enter a5 enter a5
enter b 10 enter b 10
15 15

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

54

Parameters And Arguments:

Parameters:
• Parameters are the value(s) provided in the parenthesis when we write function header.

• These are the values required by function to work.

• If there is more than one value required, all of them will be listed in parameter list separated by
comma.

• Example: defmy_add(a,b):
Arguments :

• Arguments are the value(s) provided in function call/invoke statement.

• List of arguments should be supplied in same way as parameters are listed.
• Bounding of parameters to arguments is done 1:1, and so there should be same number and type of

arguments as mentioned in parameter list.
• Example:my_add(x,y)

RETURN STATEMENT:

• The return statement is used to exit a function and go back to the place from where it was called.

• If the return statement has no arguments, then it will not return any values. But exits from function.
Syntax:
return[expression]

Example:
def my_add(a,b):

c=a+b
return c
x=5
y=4
print(my_add(x,y))
Output:
9

ARGUMENT TYPES:
1. Required Arguments
2. Keyword Arguments
3. Default Arguments
4. Variable length Arguments

Required Arguments :The number of arguments in the function call should match exactly with
the function definition.

defmy_details(name, age):
print("Name: ", name)

print("Age ", age)
return

my_details("george",56)

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

55

Output:

Keyword Arguments:
Python interpreter is able to use the keywords provided to match the values with parameters even though

if they are arranged in out of order.

Output:

DefaultArguments:
Assumes a default value if a value is not provided in the function call for that argument.
defmy_details(name, age=40):

print("Name: ", name)
print("Age ", age) return

my_details(name="george")

Output:

Variable lengthArguments
If we want to specify more arguments than specified while defining the function, variable length

arguments are used. It is denoted by * symbol before parameter.

def my_details(*name):
print(*name)

my_details("rajan","rahul","micheal", ärjun")

Output:

7.MODULES:
 A module is a file containing Python definitions ,functions, statements and instructions.
 Standard library of Python is extended as modules.
 To use these modules in a program, programmer needs to import the module.

rajanrahulmichealärjun

Name:georgeAge40

Name:georgeAge56

Name:georgeAge56
def my_details(name, age):print("Name: ", name)print("Age ", age)returnmy_details(age=56,name="george")

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

56

 Once we import a module, we can reference or use to any of its functions or variables in our code.
• There is large number of standard modules also available in python.
• Standard modules can be imported the same way as we import our user- defined

modules.
• Every module contains many functions.
• To access one of the function , you have to specify the name of the module and the name

of the function separated by dot .This format is called dot notation.
Syntax:
import
module_namemodule_name.function_name(variable)

Importing Builtin Module: Importing User Defined Module:
import math x=math.sqrt(25)
print(x)

import calx=cal.add(5,4)
print(x)

Built-in python modules are,
1.math– mathematical functions:
some of the functions in math module is,

math.ceil(x) - Return the ceiling of x, the smallest integer greater

56

 Once we import a module, we can reference or use to any of its functions or variables in our code.
• There is large number of standard modules also available in python.
• Standard modules can be imported the same way as we import our user- defined

modules.
• Every module contains many functions.
• To access one of the function , you have to specify the name of the module and the name

of the function separated by dot .This format is called dot notation.
Syntax:
import
module_namemodule_name.function_name(variable)

Importing Builtin Module: Importing User Defined Module:
import math x=math.sqrt(25)
print(x)

import calx=cal.add(5,4)
print(x)

Built-in python modules are,
1.math– mathematical functions:
some of the functions in math module is,

math.ceil(x) - Return the ceiling of x, the smallest integer greater

56

 Once we import a module, we can reference or use to any of its functions or variables in our code.
• There is large number of standard modules also available in python.
• Standard modules can be imported the same way as we import our user- defined

modules.
• Every module contains many functions.
• To access one of the function , you have to specify the name of the module and the name

of the function separated by dot .This format is called dot notation.
Syntax:
import
module_namemodule_name.function_name(variable)

Importing Builtin Module: Importing User Defined Module:
import math x=math.sqrt(25)
print(x)

import calx=cal.add(5,4)
print(x)

Built-in python modules are,
1.math– mathematical functions:
some of the functions in math module is,

math.ceil(x) - Return the ceiling of x, the smallest integer greater

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

57

than or equal to x
math. floor(x) - Return the floor of x, the largest integer less than or equal to x.
math. factorial(x)-Return x factorial.
math.gcd(x,y)-Return the greatest common divisor of the integers a and b
math.sqrt(x)- Return the square root of x
math.pi - The mathematical constant π = 3.141592
math.e – returns The mathematical constant e = 2.718281

2 .random-Generate pseudo-random numbers
random.randrange(stop) random.randrange(start, stop[,
step]) random.uniform(a, b)
-Return a random floating point number

Program for SWAPPING(Exchanging)of
values

Output

a = int(input("Enter a value "))
b = int(input("Enter b value"))
c = a
a = b
b =c
print("a=",a,"b=",b,)

Enter a value 5
Enter b value 8
a=8
b=5

Program to find distance between twopoints Output

import math
x1=int(input("enter x1"))

y1=int(input("enter y1"))
x2=int(input("enter x2"))
y2=int(input("enter y2"))
distance =math.sqrt((x2-x1)**2)+((y2- y1)**2)
print(distance)

enter x17
enter y16
enter x25
enter y27
2.5

Program to circulate n numbers Output:
a=list(input("enter the list")) enter the list '1234'

print(a) ['1', '2', '3', '4']
for i in range(1,len(a),1): ['2', '3', '4', '1']

print(a[i:]+a[:i]) ['3', '4', '1', '2']

['4', '1', '2', '3']

8.ILLUSTRATIVE PROGRAMS

57

than or equal to x
math. floor(x) - Return the floor of x, the largest integer less than or equal to x.
math. factorial(x)-Return x factorial.
math.gcd(x,y)-Return the greatest common divisor of the integers a and b
math.sqrt(x)- Return the square root of x
math.pi - The mathematical constant π = 3.141592
math.e – returns The mathematical constant e = 2.718281

2 .random-Generate pseudo-random numbers
random.randrange(stop) random.randrange(start, stop[,
step]) random.uniform(a, b)
-Return a random floating point number

Program for SWAPPING(Exchanging)of
values

Output

a = int(input("Enter a value "))
b = int(input("Enter b value"))
c = a
a = b
b =c
print("a=",a,"b=",b,)

Enter a value 5
Enter b value 8
a=8
b=5

Program to find distance between twopoints Output

import math
x1=int(input("enter x1"))

y1=int(input("enter y1"))
x2=int(input("enter x2"))
y2=int(input("enter y2"))
distance =math.sqrt((x2-x1)**2)+((y2- y1)**2)
print(distance)

enter x17
enter y16
enter x25
enter y27
2.5

Program to circulate n numbers Output:
a=list(input("enter the list")) enter the list '1234'

print(a) ['1', '2', '3', '4']
for i in range(1,len(a),1): ['2', '3', '4', '1']

print(a[i:]+a[:i]) ['3', '4', '1', '2']

['4', '1', '2', '3']

8.ILLUSTRATIVE PROGRAMS

57

than or equal to x
math. floor(x) - Return the floor of x, the largest integer less than or equal to x.
math. factorial(x)-Return x factorial.
math.gcd(x,y)-Return the greatest common divisor of the integers a and b
math.sqrt(x)- Return the square root of x
math.pi - The mathematical constant π = 3.141592
math.e – returns The mathematical constant e = 2.718281

2 .random-Generate pseudo-random numbers
random.randrange(stop) random.randrange(start, stop[,
step]) random.uniform(a, b)
-Return a random floating point number

Program for SWAPPING(Exchanging)of
values

Output

a = int(input("Enter a value "))
b = int(input("Enter b value"))
c = a
a = b
b =c
print("a=",a,"b=",b,)

Enter a value 5
Enter b value 8
a=8
b=5

Program to find distance between twopoints Output

import math
x1=int(input("enter x1"))

y1=int(input("enter y1"))
x2=int(input("enter x2"))
y2=int(input("enter y2"))
distance =math.sqrt((x2-x1)**2)+((y2- y1)**2)
print(distance)

enter x17
enter y16
enter x25
enter y27
2.5

Program to circulate n numbers Output:
a=list(input("enter the list")) enter the list '1234'

print(a) ['1', '2', '3', '4']
for i in range(1,len(a),1): ['2', '3', '4', '1']

print(a[i:]+a[:i]) ['3', '4', '1', '2']

['4', '1', '2', '3']

8.ILLUSTRATIVE PROGRAMS

EnggTree.com

Downloaded from EnggTree.com

https://docs.python.org/3/library/random.html
http://learnengineering.in

58

2marks:
1. What is Python?

Python is a general-purpose interpreted, interactive, object-oriented, and high-
level programming language.

2. Enlist some features of python.
 Easy-to-learn.
 Easy-to-maintain.
 Portable
 Interpreted
 Extensible
 Free and Open Source
 High Level Language

3. What is IDLE?

Integrated Development Learning Environment (IDLE) is a graphical user interface which
is completely written in Python. It is bundled with the default implementation of the python language and
also comes with optional part of the Python packaging.

4. Differentiate between interactive and script mode.

Interactive mode Script mode

A way of using the Python interpreter by
typing commands and expressions at the
prompt.

A way of using the Python interpreter to read and
execute statements in a script.

Cant save and edit the code Can save and edit the code
we cannot save the statements for further
use and we have to retype
all the statements to re-run them.

we can save the statements for further use and we
no need to retype
all the statements to re-run them.

We can see the results immediately. We cant see the code immediately.

5. What are keywords? Give examples.
 Keywords are the reserved words in Python.
 We cannot use a keyword as variable name, function name or any other identifier.
 They are used to define the syntax and structure of the Python language.
 Keywords are case sensitive.

EnggTree.com

Downloaded from EnggTree.com

https://www.programiz.com/python-programming/variables-datatypes
https://www.programiz.com/python-programming/function
http://learnengineering.in

59

6. What is a tuple?
 A tuple is same as list, except that the set of elements is enclosed in parentheses

instead of square brackets.
 A tuple is an immutable list.i.e. once a tuple has been created, you can't add elements to a tuple or

remove elements from the tuple.

7. Outline the logic to swap the contents of two identifiers without using third variable.
Swap two numbers Output:

a=2;b=3
print(a,b) (2, 3)
a = a+b (3, 2)
b= a-b >>>
a= a-b
print(a,b)

8. State about logical operators available in python with example.
Logical operators are “ and, or, not” operators.

Example Output

a = True a and b is False
b = False a or b is True
print('a and b is',a and b) not a is False
print('a or b is',a or b)
print('not a is',not a)

9. What are the needs used for Function?
• When the program is too complex and large they are divided into parts. Each part is

separately coded and combined into single program. Each subprogram is called as function.
• Debugging, Testing and maintenance becomes easy when the program is divided into

subprograms.
• Functions are used to avoid rewriting same code again and again in a program.
• Function provides code re-usability
• The length of the program is reduced.

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

60

10. What is return statement?
The return statement is used to exit a function and go back to the place from

where it was called. If the return statement has no arguments, then it will not return any
values. But exits from function.

11. What are the types of arguments?

• Required Arguments
• Keyword Arguments
• Default Arguments
• Variable length Arguments

12. Define a module.
A module is a file containing Python definitions, functions, statements and

instructions. Standard library of Python is extended as modules. To use these
modules in a program, programmer needs to import the module.

13. What is meant by interpreter?
An interpreter is a computer program that executes instructions written in a programming language. It

can either execute the source code directly or translate the source code in a first step into a more efficient
representation and executes this code.

14. What is a local variable?
A variable defined inside a function. A local variable can only be used inside its function.

15. What is meant by traceback?
A list of the functions that tells us what program file the error occurred in, and what line, and what

functions were executing at the time. It also shows the line of code that caused the error.

Syntax:
return[expression]

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

61

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

61

UNIT III
CONTROL FLOW, FUNCTIONS

Conditionals: Boolean values and operators, conditional (if), alternative (if-else),chained conditional (if-elif-
else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, scope:
local and global, composition ,recursion; Strings: string slices, immutability, string functions and methods,
string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum the array of
numbers, linear search, binary search.\

1) Conditional Statements

• Conditional if
• Alternative if… else
• Chained if…elif…else
• Nested if….else

Conditional (if):

conditional (if) is used to test a condition, if the condition is true the statements inside if will be
executed.
syntax:

Flowchart:

Program to provide bonus mark if the category is output
sports
m=eval(input(“enter ur mark out of 100”)) enter ur mark out of 100
c=input(“enter ur categery G/S”) 85
if(c==”S”): enter ur categery G/S

m=m+5 S
print(“mark is”,m) mark is 90

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

62

Alternative (if-else):

In the alternative the condition must be true or false. In this else statement can be combined with if
statement. The else statement contains the block of code that executes when the condition is false. If the
condition is true statements inside the if get executed otherwise else part gets executed. The alternatives are
called branches, because they are branches in the flow of execution.
syntax:

Flowchart:

Examples:
1. odd or even number
2. positive or negative number
3. leap year or not

Odd or even number Output
n=eval(input("enter a number")) enter a number4
if(n%2==0): even number

print("even number")
else:

print("odd number")

positive or negative number Output
n=eval(input("enter a number")) enter a number8
if(n>=0): positive number

print("positive number")

else:
print("negative number")

leap year or not Output
y=eval(input("enter a year")) enter a year2000
if(y%4==0): leap year

print("leap year")
else:

print("not leap year")

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

63

Chained conditionals (if-elif-else)

• The elif is short for else if.

• This is used to check more than one condition.

• If the condition1 is False, it checks the condition2 of the elif block. If all the conditions are

False, then the else part is executed.

• Among the several if...elif...else part, only one part is executed according to the condition.

The if block can have only one else block. But it can have multiple elif blocks.

 The way to express a computation like that is a chained conditional.

syntax:

Flowchart:

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

64

Example:
1. student mark system
2. traffic light system

student mark system Output
mark=eval(input("enter ur mark:")) enter ur mark:78
if(mark>=90): grade:B

print("grade:S")

elif(mark>=80):
print("grade:A")

elif(mark>=70):

print("grade:B")
elif(mark>=50):

print("grade:C")
else:

print("fail")

traffic light system Output
colour=input("enter colour of light:") enter colour of light:green
if(colour=="green"): GO

print("GO")
elif(colour=="yellow"):

print("GET READY")
else:

print("STOP")

Nested conditionals
One conditional can also be nested within another. Any number of condition can be nested inside

one another. In this, if the condition is true it checks another if condition1. If both the conditions are true
statement1 get executed otherwise statement2 get execute. if the condition is false statement3 gets
executed

Syntax

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

65

Flowchart:

Example:
1. greatest of three numbers
2. positive negative or zero

greatest of three numbers output

a=eval(input(“enter the value of a”)) enter the value of a 9

b=eval(input(“enter the value of b”)) enter the value of a 1

c=eval(input(“enter the value of c”)) enter the value of a 8

if(a>b): the greatest no is 9

if(a>c):

print(“the greatest no is”,a)
else:

print(“the greatest no is”,c)

else:
if(b>c):

print(“the greatest no is”,b)

else:
print(“the greatest no is”,c)

positive negative or zero output
n=eval(input("enter the value of n:")) enter the value of n:-9
if(n==0): the number is negative

print("the number is zero")
else:

if(n>0):
print("the number is positive")

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

66

else:
print("the number is negative")

2.Iteration Or Control Statements.

• state
• while
• for
• break

• continue
• pass

State:

Transition from one process to another process under specified condition with in a time is called
state.
While loop:

While loop statement in Python is used to repeatedly executes set of statement as long as a given
condition is true.
In while loop, test expression is checked first. The body of the loop is entered only if the test
expression is True. After one iteration, the test expression is checked again. This process continues
until the test expression evaluates to False.
In Python, the body of the while loop is determined through indentation.

The statements inside the while start with indentation and the first unintended line marks the end.

Syntax:

Flow chart:

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

67

Examples:
1. program to find sum of n numbers:
2. program to find factorial of a number
3. program to find sum of digits of a number:
4. Program to Reverse the given number:
5. Program to find number is Armstrong number or not
6. Program to check the number is palindrome or not

Sum of n numbers: output
n=eval(input("enter n")) enter n
i=1 10
sum=0 55

while(i<=n):
sum=sum+i

i=i+1
print(sum)

Factorial of a numbers: output
n=eval(input("enter n")) enter n
i=1 5
fact=1 120

while(i<=n):
fact=fact*i
i=i+1

print(fact)

Sum of digits of a number: output
n=eval(input("enter a number")) enter a number
sum=0 123

while(n>0): 6
a=n%10
sum=sum+a
n=n//10

print(sum)

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

68

Reverse the given number: output
n=eval(input("enter a number")) enter a number
sum=0 123
while(n>0): 321

a=n%10

sum=sum*10+a
n=n//10

print(sum)

Armstrong number or not output
n=eval(input("enter a number")) enter a number153
org=n The given number is Armstrong number
sum=0
while(n>0):

a=n%10
sum=sum+a*a*a
n=n//10

if(sum==org):
print("The given number is Armstrong

number")
else:

print("The given number is not
Armstrong number")

Palindrome or not output
n=eval(input("enter a number")) enter a number121
org=n The given no is palindrome
sum=0
while(n>0):

a=n%10
sum=sum*10+a

n=n//10
if(sum==org):

print("The given no is palindrome")

else:
print("The given no is not palindrome")

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

69

For loop:

for in range:
We can generate a sequence of numbers using range() function. range(10) will
generate numbers from 0 to 9 (10 numbers).

In range function have to define the start, stop and step size
as range(start,stop,step size). step size defaults to 1 if not provided.

syntax

Flowchart:

For in sequence

• The for loop in Python is used to iterate over a sequence (list, tuple, string). Iterating over a
sequence is called traversal. Loop continues until we reach the last element in the sequence.

• The body of for loop is separated from the rest of the code using indentation.

Sequence can be a list, strings or tuples

s.no sequences example output
R

1. For loop in string for i in "Ramu": A

print(i) M

U

EnggTree.com

Downloaded from EnggTree.com

https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/tuple
https://www.programiz.com/python-programming/string
http://learnengineering.in

70

2

2. For loop in list for i in [2,3,5,6,9]: 3

print(i) 5

6

9

for i in (2,3,1): 2

3. For loop in tuple print(i) 3

1

Examples:

1. Program to print Fibonacci series.

2. check the no is prime or not

Fibonacci series output
a=0 Enter the number of terms: 6
b=1 Fibonacci Series:
n=eval(input("Enter the number of terms: ")) 0 1
print("Fibonacci Series: ") 1

print(a,b) 2
for i in range(1,n,1): 3

c=a+b 5
print(c) 8
a=b

b=c

check the no is prime or not output
n=eval(input("enter a number")) enter a no:7
for i in range(2,n): The num is a prime number.

if(n%i==0):

print("The num is not a prime")
break

else:

print("The num is a prime number.")

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

71

3.Loop Control Structures
BREAK

• Break statements can alter the flow of a loop.
• It terminates the current
• loop and executes the remaining statement outside the loop.
• If the loop has else statement, that will also gets terminated and come out of the loop completely.

Syntax:
break

Flowchart

example Output
for i in "welcome": w

if(i=="c"): e

break l
print(i)

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

72

CONTINUE

It terminates the current iteration and transfer the control to the next iteration in the loop.
Syntax: Continue

Flowchart

Example: Output
for i in "welcome": w

if(i=="c"): e
continue l

print(i) o
m
e

PASS

• It is used when a statement is required syntactically but you don’t want any code to execute.
• It is a null statement, nothing happens when it is executed.

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

73

Syntax:
pass

break

Example Output
for i in “welcome”: w

if (i == “c”): e
pass l

print(i) c
o
m

e

Difference between break and continue

break continue

It terminates the current loop and It terminates the current iteration and

executes the remaining statement outside transfer the control to the next iteration in

the loop. the loop.

syntax: syntax:

break continue

for i in "welcome": for i in "welcome":

if(i=="c"): if(i=="c"):

break continue

print(i) print(i)

w w

e e

l l

o

m

e

else statement in loops:

else in for loop:
• If else statement is used in for loop, the else statement is executed when the loop has reached the

limit.
• The statements inside for loop and statements inside else will also execute.

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

74

example output
for i in range(1,6): 1

print(i) 2

else: 3

print("the number greater than 6") 4

5 the number greater than 6

else in while loop:
If else statement is used within while loop , the else part will be executed when the condition become
false.
The statements inside for loop and statements inside else will also execute.

Program output
i=1 1

while(i<=5): 2

print(i) 3

i=i+1 4

else: 5

print("the number greater than 5") the number greater than 5

4) Fruitful Function

• Fruitful function
• Void function
• Return values
• Parameters
• Local and global scope
• Function composition
• Recursion

A function that returns a value is called fruitful function.
Example:

Root=sqrt (25)

Example:
def add():

a=10
b=20
c=a+b
return c

c=add()
print(c)

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

75

Void Function
A function that perform action but don’t return any value.

Example:
print(“Hello”)

Example:
def add():

a=10
b=20
c=a+b
print(c)

add()

Return values:
return keywords are used to return the values from the function.
example:
return a – return 1 variable
return a,b– return 2 variables
return a+b– return expression
return 8– return value
PARAMETERS / ARGUMENTS(refer 2nd unit)

Local and Global Scope

Global Scope

• The scope of a variable refers to the places that you can see or access a variable.
• A variable with global scope can be used anywhere in the program.
• It can be created by defining a variable outside the function.

Example output
a=50

def add():
Global Variable

b=20 70

c=a+b

print© Local Variable

def sub():
b=30
c=a-b 20

print©
print(a) 50

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

76

Local Scope A variable with local scope can be used only within the function .

Example output
def add():

b=20

c=a+b 70
Local Variable

print©

def sub():
b=30 20

c=a-b
Local Variable

print©
print(a) error

print(b) error

Function Composition:

Function Composition is the ability to call one function from within another function

It is a way of combining functions such that the result of each function is passed as the argument of
the next function.
In other words the output of one function is given as the input of another function is known as
function composition.

find sum and average using function output
composition
def sum(a,b): enter a:4

sum=a+b enter b:8
return sum the avg is 6.0

def avg(sum):
avg=sum/2

return avg
a=eval(input("enter a:"))
b=eval(input("enter b:"))
sum=sum(a,b)
avg=avg(sum)
print("the avg is",avg)

Recursion

A function calling itself till it reaches the base value - stop point of function call. Example:
factorial of a given number using recursion

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

77

Factorial of n Output
def fact(n): enter no. to find fact:5

if(n==1): Fact is 120
return 1

else:

return n*fact(n-1)

n=eval(input("enter no. to find
fact:"))
fact=fact(n)

print("Fact is",fact)
Explanation

Examples:
1. sum of n numbers using recursion
2. exponential of a number using recursion

Sum of n numbers Output
def sum(n): enter no. to find sum:10

if(n==1): Fact is 55

return 1
else:

return n*sum(n-1)

n=eval(input("enter no. to find sum: "))

sum=sum(n)
print("Fact is",sum)

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

78

5)Explain about Strings and its operation:

String is defined as sequence of characters represented in quotation marks
(either single quotes (‘) or double quotes (“).
An individual character in a string is accessed using a index.
The index should always be an integer (positive or negative).
A index starts from 0 to n-1.
Strings are immutable i.e. the contents of the string cannot be changed after it is created.
Python will get the input at run time by default as a string.
Python does not support character data type. A string of size 1 can be treated as characters.

1. single quotes (' ')
2. double quotes (" ")
3. triple quotes(“”” “”””)

Operations on string:
1. Indexing
2. Slicing
3. Concatenation
4. Repetitions
5. Member ship

>>>a=”HELLO” Positive indexing helps in accessing

indexing >>>print(a[0]) the string from the beginning

>>>H Negative subscript helps in accessing
>>>print(a[-1]) the string from the end.

>>>O

Print[0:4] – HELL The Slice[start : stop] operator extracts

Slicing: Print[:3] – HEL sub string from the strings.

Print[0:]- HELLO A segment of a string is called a slice.

a=”save” The + operator joins the text on both

Concatenation b=”earth” sides of the operator.

>>>print(a+b)

Save earth

a=”panimalar ” The * operator repeats the string on the

Repetitions: >>>print(3*a) left hand side times the value on right

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

79

panimalarpanimalar

hand side.

panimalar

Membership: >>> s="good morning" Using membership operators to check a

>>>"m" in s particular character is in string or not.

True Returns true if present

>>> "a" not in s

True

String slices:

• A part of a string is called string slices.

• The process of extracting a sub string from a string is called slicing.

Print[0:4] – HELL The Slice[n : m] operator extracts sub
Slicing:

Print[:3] – HEL string from the strings.

a=”HELLO” Print[0:]- HELLO A segment of a string is called a slice.

Immutability:

Python strings are “immutable” as they cannot be changed after they are created.
Therefore [] operator cannot be used on the left side of an assignment.

operations Example output
element assignment a="PYTHON" TypeError: 'str' object does

a[0]='x' not support element
assignment

element deletion a=”PYTHON” TypeError: 'str' object
del a[0] doesn't support element

deletion

delete a string a=”PYTHON” NameError: name 'my_string'
del a

print(a)
is not defined

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

80

string built in functions and methods:
A method is a function that “belongs to” an object.

Syntax to access the method

Stringname.method()

a=”happy birthday”
here, a is the string name.

syntax example description
1 a.capitalize() >>> a.capitalize() capitalize only the first letter

' Happy birthday’ in a string

2 a.upper() >>> a.upper() change string to upper case
'HAPPY BIRTHDAY’

3 a.lower() >>> a.lower() change string to lower case
' happy birthday’

4 a.title() >>> a.title() change string to title case i.e.
' Happy Birthday ' first characters of all the

words are capitalized.

5 a.swapcase() >>> a.swapcase() change lowercase characters
'HAPPY BIRTHDAY' to uppercase and vice versa

6 a.split() >>> a.split() returns a list of words
['happy', 'birthday'] separated by space

7 a.center(width,”fillchar >>>a.center(19,”*”) pads the string with the
”) '***happy birthday***' specified “fillchar” till the

length is equal to “width”
8 a.count(substring) >>> a.count('happy') returns the number of

1 occurences of substring

9 a.replace(old,new) >>>a.replace('happy', replace all old substrings
'wishyou happy') with new substrings
'wishyou happy

birthday'
10 a.join(b) >>> b="happy" returns a string concatenated

>>> a="-" with the elements of an
>>> a.join(b) iterable. (Here “a” is the
'h-a-p-p-y' iterable)

11 a.isupper() >>> a.isupper() checks whether all the case-
False based characters (letters) of

the string are uppercase.
12 a.islower() >>> a.islower() checks whether all the case-

True based characters (letters) of
the string are lowercase.

13 a.isalpha() >>> a.isalpha() checks whether the string
False consists of alphabetic

characters only.

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

81

String modules:
• A module is a file containing Python definitions, functions, statements.
• Standard library of Python is extended as modules.
• To use these modules in a program, programmer needs to import the module.
• Once we import a module, we can reference or use to any of its functions or variables in our code.
• There is large number of standard modules also available in python.
• Standard modules can be imported the same way as we import our user-defined modules.

Syntax:
import module_name

Example output
import string
print(string.punctuation) !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~

print(string.digits) 0123456789
print(string.printable) 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJ
print(string.capwords("happ KLMNOPQRSTUVWXYZ!"#$%&'()*+,-

y birthday")) ./:;<=>?@[\]^_`{|}~
print(string.hexdigits) Happy Birthday
print(string.octdigits) 0123456789abcdefABCDEF

01234567

Escape sequences in string

Escape Description example
Sequence

\n new line >>> print("hai \nhello")
hai
hello

\\ prints Backslash (\) >>> print("hai\\hello")

hai\hello

\' prints Single quote (') >>> print("'")

'

\" prints Double quote >>>print("\"")
(") "

\t prints tab sapace >>>print(“hai\thello”)
hai hello

\a ASCII Bell (BEL) >>>print(“\a”)

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

82

6) Array:

Array is a collection of similar elements. Elements in the array can be accessed by index. Index
starts with 0. Array can be handled in python by module named array.

To create array have to import array module in the program.
Syntax :

import array
Syntax to create array:

Array_name = module_name.function_name(‘datatype’,[elements])
example:

a=array.array(‘i’,[1,2,3,4])
a- array name
array- module name
i- integer datatype

Example
Program to find sum of Output

array elements

import array 10
sum=0

a=array.array('i',[1,2,3,4])
for i in a:

sum=sum+i
print(sum)

Convert list into array:
fromlist() function is used to append list to array. Here the list is act like a array.

Syntax:
arrayname.fromlist(list_name)

Example
program to convert list Output
into array

import array 35
sum=0
l=[6,7,8,9,5]
a=array.array('i',[])
a.fromlist(l)
for i in a:

sum=sum+i
print(sum)

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

83

Methods of an array

a=[2,3,4,5]

Syntax example Description

1 array(data type, array(‘i’,[2,3,4,5]) This function is used to create

value list) an array with data type and

value list specified in its

arguments.

2 append() >>>a.append(6) This method is used to add the

[2,3,4,5,6] at the end of the array.

3 insert(index,element >>>a.insert(2,10) This method is used to add the

) [2,3,10,5,6] value at the position specified in

its argument.

4 pop(index) >>>a.pop(1) This function removes the

[2,10,5,6] element at the position

mentioned in its argument, and

returns it.

5 index(element) >>>a.index(2) This function returns the index

0 of value

6 reverse() >>>a.reverse() This function reverses the

[6,5,10,2] array.

7 count() a.count() This is used to count number of

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

84

7.ILLUSTRATIVE PROGRAMS:

Square root using newtons method: Output:
def newtonsqrt(n): enter number to find Sqrt: 9

root=n/2 3.0
for i in range(10):

root=(root+n/root)/2

print(root)
n=eval(input("enter number to find Sqrt: "))

newtonsqrt(n)

GCD of two numbers output
n1=int(input("Enter a number1:")) Enter a number1:8
n2=int(input("Enter a number2:")) Enter a number2:24
for i in range(1,n1+1): 8

if(n1%i==0 and n2%i==0):
gcd=i

print(gcd)

Exponent of number Output:
def power(base,exp): Enter base: 2

if(exp==1): Enter exponential value:3
return(base) Result: 8

else:
return(base*power(base,exp-1))

base=int(input("Enter base: "))

exp=int(input("Enter exponential value:"))
result=power(base,exp)

print("Result:",result)

sum of array elements: output:
a=[2,3,4,5,6,7,8] the sum is 35
sum=0
for i in a:

sum=sum+i
print("the sum is",sum)

Linear search output
a=[20,30,40,50,60,70,89] [20, 30, 40, 50, 60, 70, 89]
print(a) enter a element to search:30

search=eval(input("enter a element to search:")) element found at 2
for i in range(0,len(a),1):

if(search==a[i]):
print("element found at",i+1)
break

else:
print("not found")

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

85

Binary search
output

a=[20, 30, 40, 50, 60, 70, 89] [20, 30, 40, 50, 60, 70, 89]
print(a) enter a element to search:30
search=eval(input("enter a element to search:")) element found at 2
start=0
stop=len(a)-1
while(start<=stop):

mid=(start+stop)//2
if(search==a[mid]):

print("element found at",mid+1)
break

elif(search<a[mid]):

stop=mid-1
else:

start=mid+1

else:
print("not found")

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

86

Two marks:
1. What is a Boolean value?

• Boolean data type have two values. They are 0 and 1.
• 0 represents False
• 1 represents True
• True and False are keyword.

Example:
>>> 3==5
False
>>> 6==6
True
>>> True+True
2
>>> False+True
1
>>> False*True
0

2. Difference between break and continue.

break continue

It terminates the current loop and It terminates the current iteration and

executes the remaining statement outside transfer the control to the next iteration in

the loop. the loop.

syntax: syntax:

break continue

for i in "welcome": for i in "welcome":

if(i=="c"): if(i=="c"):

break continue

print(i) print(i)

w w

e e

l l

o

m

e

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

87

3. Write a Python program to accept two numbers, multiply them and print the result.

number1 = int(input("Enter first number: "))
number2 = int(input("Enter second number: "))
mul = number1 * number2
print("Multiplication of given two numbers is: ", mul)

4. Write a Python program to accept two numbers, find the greatest and print the result.
number1 = int(input("Enter first number: "))
number2 = int(input("Enter second number: "))
if(number1>number2):

print('number1 is greater',number1)
else:

print('number2 is greater',number2)

5. Define recursive function.
Recursion is a way of programming or coding a problem, in which a function calls itself one

or more times in its body. Usually, it is returning the return value of this function call. If a function
definition fulfils the condition of recursion, we call this function a recursive function.

Example:

def factorial(n):
if n == 1:

return 1
else:

return n * factorial(n-1)

6. Write a program to find sum of n numbers:

n=eval(input("enter n")) enter n
i=1 10
sum=0 55

while(i<=n):
sum=sum+i

i=i+1
print(sum)

7. What is the purpose of pass statement?
Using a pass statement is an explicit way of telling the interpreter to do nothing.

• It is used when a statement is required syntactically but you don’t want any code to execute.
• It is a null statement, nothing happens when it is executed.

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

88

Syntax:
pass

break

Example Output
for i in “welcome”: w

if (i == “c”): e
pass l

print(i) c
o
m

e

8. Compare string and string slices.
A string is a sequence of character.

Eg: fruit = ‘banana’
String Slices :

A segment of a string is called string slice, selecting a slice is similar to selecting a character.
Eg: >>> s ='Monty Python'
>>> print s[0:5]
Monty
>>> print s[6:12]
Python

9. Explain global and local scope.
The scope of a variable refers to the places that we can see or access a variable. If we define a

variable on the top of the script or module, the variable is called global variable. The variables that are
defined inside a class or function is called local variable.

Eg:
def my_local():

a=10
print(“This is local variable”)

Eg:
a=10
def my_global():

print(“This is global variable”)

10. Mention a few string functions.
s.captilize() – Capitalizes first character of string
s.count(sub) – Count number of occurrences of string
s.lower() – converts a string to lower case
s.split() – returns a list of words in string

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

89

UNIT IV LISTS, TUPLES, DICTIONARIES

1. Insertion sort
Insertion sort is an elementary sorting algorithm that sorts one element at a time. Most

humans, when sorting a deck of cards, will use a strategy similar to insertion sort. The algorithm
takes an element from the list and places it in the correct location in the list. This process is repeated
until there are no more unsorted items in the list.

Example:

Program:
a=list()
n=int(input("Enter size of list"))
for i in range(n):

a.append(int(input("Enter list elements")))
print("Before sorting",a)

for i in range(1,n):
key=a[i]
j=i-1
while j>=0 and key<a[j]:

a[j+1]=a[j]
j-=1
a[j+1]=key

print("After sorting(using insertion sort)",a)

Output
Enter size of list6
Enter listelements4
Enter listelements33
Enter list elements6
Enter listelements22
Enter list elements6
Enter list elements-9
Before sorting [4, 33, 6, 22, 6, -9]
After sorting(using insertion sort) [-9, 4, 6, 6, 22, 33]

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

90

2. Selection Sort

The selection sort algorithm starts by finding the minimum value in the array and moving it to
the first position. This step is then repeated for the second lowest value, then the third, and so on until
the array is sorted.

Example

Program

a=list()

n=int(input("Enter size of list"))
for i in range(n):

a.append(int(input("Enter list elements")))
print("List before sorting",a)
for i in range(0,n):

j=i+1
for j in range(j, n):

if a[i]> a[j]:
temp=a[i]
a[i]=a[j]
a[j]=temp

print("Sorted list(using Selection Sort)=",a)

Output:
Enter size of list5
Enter list elements12
Enter list elements-5
Enter list elements4
Enter listelements48
Enter listelements98
List before sorting [12, -5, 4, 48, 98]
Sorted list(using Selection Sort)= [-5, 4, 12, 48, 98]

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

91

3. Quadratic Equation:
Formula :

ax2+bx+c = -b±√b2 – 4ac
Program 2a

import cmath
a = int(input("Enter the coefficients a:"))
b=int(input("Enter the coefficients b: "))
c = int(input("Enter the coefficients c: "))
d = b**2-4*a*c # discriminant
x1 = (-b+cmath.sqrt((b**2)-(4*(a*c))))/(2*a)
x2 = (-b-cmath.sqrt((b**2)-(4*(a*c))))/(2*a)
print ("This equation has two solutions: ", x1, " or", x2)
Output
Enter the coefficients a: 5
Enter the coefficients b: 1
Enter the coefficients c: 2
This equation has two solutions: (-0.1+0.6244997998398398j) or (-0.1-0.6244997998398398j)

Enter the coefficients a: 1
Enter the coefficients b: -5
Enter the coefficients c: 6
This equation has two solutions: (3+0j) or (2+0j)

4. Merge sort

Merge sort works as follows:

a. Divide the unsorted list into n sub lists, each containing 1 element (a list of 1 element is
considered sorted).

b. Repeatedly merge sub lists to produce new sorted sub lists until there is only 1 sub list
remaining. This will be the sorted list.

Example

EnggTree.com

Downloaded from EnggTree.com

https://en.wikipedia.org/wiki/Merge_algorithm
http://learnengineering.in

92

Program:

def merge(left, right):
result = []
i, j = 0, 0
while (i < len(left) and j<len(right)):

if left[i] < right[j]:
result.append(left[i])
i+= 1

else:
result.append(right[j])
j+= 1

result=result+left[i:]
result=result+right[j:]
return result

def mergesort(list):
if len(list) < 2:

return list
middle = len(list)//2
left = mergesort(list[:middle])
right = mergesort(list[middle:])
return merge(left, right)

a=list()
n=int(input("Enter size of list"))
for i in range(n):

a.append(int(input("Enter list elements")))
print("Unsorted list is",a)
print("Sorted list using merge sort is",a)

Output
Enter size of list5
Enter list elements21
Enter list elements1
Enter list elements-8
Enter list elements14
Enter list elements18
Unsorted list is [21, 1, -8, 14, 18]
Sorted list using merge sort is [-8, 1, 14, 18, 21]

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

93

5. LIST
o List is a sequence of values, which can be of different types. The values in list are called

"elements" or ''items''
o Each elements in list is assigned a number called "position" or "index"
o A list that contains no elements is called an empty list. They are created with empty

brackets[]
o A list within another list is nested list

Creating a list :
The simplest way to create a new list is to enclose the elements in square brackets ([])

[10,20,30,40]
[100, "python" , 8.02]

1.LIST OPERATIONS:
1.Concatenation of list
2.Repetition of list

Concatenation: the '+' operator concatenate list
>>> a = [1,2,3]
>>> b = [4,5,6]
>>> c = a+b
>>> Print (a*2) => [1,2,3,1,2,3]

Repetition: the '*' operator repeats a list a given number of times
>>> a = [1,2,3]
>>> b = [4,5,6]
>>> print (a*2)= [1,2,3,1,2,3]

2. List looping: (traversing a list)
1. Looping in a list is used to access every element in list
2."for loop" is used to traverse the elements in list

eg: mylist = ["python","problem",100,6.28]
for i in range (len (mylist)):

print (mylist [i])
3.List Slices:

A subset of elements of list is called a slice of list.
Eq: n = [1,2,3,4,5,6,7,8,9,10]

print (n[2:5])
print (n[-5])
print (n[5:])
print (n[:])

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

94

4.Aliasing and cloning:
•when more than one variables refers to the same objects or list, then it is called aliasing.

a= [5,10,50,100]
b=a
b[0] = 80
print ("original list", a) = [5,10,50,100]
print ("Aliasing list", b) = [80,5,10,50,100]

•Here both a & b refers to the same list. Thus, any change made with one object will affect other,
since they are mutable objects.
•in general, it is safer to avoid aliasing when we are working with mutable objects

5. Cloning:
•Cloning creates a new list with same values under another name. Taking any slice of list create
new list.
•Any change made with one object will not affect others. the easiest way to clone a new list is to
use "slice operators"

a = [5,10,50,100]
b= a[:]
b[0] = 80
Print (" original list", a) = [5,10,50,100]
Print (" cloning list", b) = [5,10,50,100]

List parameter:
•List can be passed as arguments to functions the list arguments are always passed by reference
only.
•Hence, if the functions modifies the list the caller also changes.

Eq: def head ():
del t[0]

>>> letters = ['a','b','c']
>>> head (letters)
>>> letters

['b','c']
In above,
The parameters 't' and the variable 'letters' or aliases for the same objects
An alternative way to write a function that creates and return a new list
Eq: def tail (t):

return t [1:]
>>> letters = ['a','b','c']
>>> result = tail (letters)
>>> result

['b','c']
In above,

The function leaves the original list unmodified and return all element in list except first element

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

95

6. TUPLES:
A tuple is a sequence of value which can be of any type and they are indexed by integers.

Values in tuple are enclosed in parentheses and separated by comma. The elements in the tuple cannot
be modified as in list (i.e) tuple are immutable objects

Creating tuple:
Tuple can be created by enclosing the element in parentheses separated by comma

t = ('a','b','c','d')
To create a tuple with a single element we have to include a final comma

>>> t = 'a',
>>> type (t)

< class 'tuple'>
Alternative way to create a tuple is the built-in function tuple which mean, it creates an empty tuple

>>> t = tuple ()
>>> t
>>> ()

Accessing element in tuple:
If the argument in sequence, the result is a tuple with the elements of sequence.

>>>t= tuple('python')
>>> t

('p','y','t','h','o','n')
t = ('a','b',100,8.02)
print (t[0]) = 'a'
print (t[1:3]) = ('b', 100 , 8.02)

Deleting and updating tuple:
Tuple are immutable, hence the elements in tuple cannot be updated / modified
But we can delete the entire tuple by using keyword 'del'

Eg 1: a = (' programming', 200, 16.54, 'c', 'd')
#Try changing an element.

a[0] = 'python' <-------- Error,modifying not possible
print (a [0])

Eg: # Deletion of tuple
a = ('a','b','c','d')

del (a) :-------- delete entire tuple
del a [1] <--------- error,deleting one element in tuple not possible

Eg: # replacing one tuple with another
a = ('a','b','c','d')
t = ('A',) + a[1:]
print (t) <------ ('a','b','c','d')

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

96

Tuple Assignment:
•Tuple assignment is often useful to swap any number of values
•the number of variables in left and right of assignment operators must be equal
•A single assignment to paralleling assign value to all elements of tuple is the major benefit of
tuple assignment

Eg: Tuple swapping in python
A= 100
B= 345
C= 450
print (" A & B:", A,"&",B)

Tuple assignments for two
variables A,B = B,A
print (" A&B after tuple assignment : ",A,"&",B)

Tuple assignment can be done for no of
variables A,B,C = C,A,B
print (" Tuple assignment for more variables:",
A,"&",B,"&",C) Output
A & B: 100 & 345
A&B after tuple assignment : 345 & 100
Tuple assignment for more variables: 450 & 345 & 100

Tuple as return value:
•Generally, function can only return one value but if the value is tuple the same as returning the
multiple value
•Function can return tuple as return value

Eg: # the value of quotient & remainder are returned as tuple
def mod_div

(x,y): quotient
= x/y remainder
= x%y
return quotient, remainder

Input the seconds & get the hours minutes &
second sec = 4234
minutes,seconds= mod_div
(sec,60)
hours,minutes=mod_div(minutes,
60)
print("%d seconds=%d hrs:: %d min:: %d
sec"%(sec,hours,minutes,seconds)) Output:
4234onds=1 hrs:: 10 min:: 34 sec

7. Histogram

def histogram(items): Output
for n in items: **

output = '' ***
times = n ******
while(times > 0): *****

output += '*'
times = times - 1

print(output)

histogram([2, 3, 6, 5])

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

97

Two marks:

1. Write a program to create list with n values
a=list()
n=int(input("Enter the size of list”))
for i in range (n):

a.append(int(input("Enter the list element")))
print("Created List=",a)
Output
Enter the size of list 5
Enter the list of element20
Enter the list of element30
Enter the list of element78
Enter the list of element12
Enter the list of element65
Created List= [20, 30, 78, 12, 65]

2. What is dictionary?
A dictionary is an unordered set of key: value pair. In a list, the indices have to be integers; in a

dictionary they can be any type. A dictionary contains a collection of indices, which are called keys, and
a collection of values. Each key is associated with a single value. The association of a key and a value is
called a key-value pair. Dictionary is created by enclosing with curly braces {}.
Eg:

>>>
dictionary={"RollNo":101,2:(1,2,3),"Name":"Ramesh",20:20.50,Loc":['Chennai']}
>>> dictionary
{'Name':'Ramesh', 'Loc':['Chennai'], 2:(1,2.3), 20: 20.0, 'RollNo': 101}

3. Write program to rotate values in the list.(counter-clock wise)
a=list()
n=int(input("Enter the number of list elements"))
for i in range (n):

a.append(int(input("Enter list element")))
rotate=int(input("Enter the rotation value(Give negative value for
counter cock-wise)"))
print("Created List=",a)
print("List rotated is",a[rotate:]+a[:rotate])

Output
Enter the number of list elements 5
Enter list element 30
Enter list element 98
Enter list element 45
Enter list element 49
Created List= [30, 98, 45, 49]
Enter the rotation value(Give negative value for counter cock-wise)-2
List rotated in counter clockwise [45, 49, 30, 98]

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

98

4. What is data structure? List out the data structures used in Python
A data structure is a particular way of organizing and storing data in a computer so that it can be

accessed and modified efficiently.
Python data structures:-

1. List
2. Tuples
3. Dictionary

5. Compare all the three data structures in Python

6. Difference between list append and list extend
1. append() is a function adds a new element to the end of a list.
2. extend() is a function takes a list as an argument and appends all of the elements.

append() extend()
>>>a=[10,20,30]

>>>b=[40,50]

>>>a.append(b)

>>>print(a)

[10,20,30,[40,50]]

>>>a=[10,20,30]

>>>b=[40,50]

>>>a.extend(b)

>>>print(a)

[10,20,30,40,50]

List Tuples Dictionary
Mutable List is mutable Tuples are immutable Keys must be

immutable. Values
may mutable

Indexing A positive integer is used
for indexing and always
starts with zero. Reverse
index is supported.

A positive integer is used
for indexing and always
starts with zero. Reverse
index is supported.

Indexing is done with ‘key’.
Index may be of any type.
Values can be accessed only
through key

Declaration List=[05,’Ashok’,450] Tuple=(‘Sun’,’Mon’) Dictionary={“Key”:”value”}

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

99

7. What is mutability? Is tuple is mutable
In object-oriented and functional programming, an immutable object (unchangeable

object) is an object whose state cannot be modified after it is created. This is in contrast to a
mutable object (changeable object), which can be modified after it is created.
Tuple is immutable.

8. Write a program to add or change elements in a dictionary.
>>> dictionary={"Roll No":101,2:(20.00,30),"Name":"Ramesh",20:200.00, "Loc":['Chennai']}
>>> dictionary
{'Name': 'Ramesh', 'Loc': ['Chennai'], 2: (20.0, 30), 20: 200.0, 'Roll No': 101}
>>> dictionary['Roll No']=105
>>> dictionary
{'Name': 'Ramesh', 'Loc': ['Chennai'], 2: (20.0, 30), 20: 200.0, 'Roll No': 105}

9. How to convert a string to list of characters and words.
>>> str1=”Hello”
>>> list1=list(str1)
>>> list1
['H', 'e', 'l', 'l', 'o']

10. What is zip operation in tuples. Give an example.
Zip is a built-in function that takes two or more sequences and returns a list of tuples

where each tuple contains one element from each sequence. This example zips a string and a list:
>>> s = 'abc'
>>> t = [0, 1, 2]
>>> zip(s, t)
<zip object at 0x7f7d0a9e7c48>

The result is a zip object that knows how to iterate through the pairs. The most common
use of zip is in a for loop:
>>> for pair in zip(s, t):

print(pair)
('a', 0)
('b', 1)
('c', 2)

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

100

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

101

UNIT V

FILES, MODULES, PACKAGES

1. FILE AND ITS OPERATION

• File is a collection of record.
• A file stores related data, information, settings or commands in secondary storage

device like magnetic disk, magnetic tape, optical disk, flash memory.

File Type

1. Text file

2. Binary file

Text file Binary file

Text file is a sequence of characters that can
be sequentially processed by a computer in
forward direction

Each line is terminated with a special
character called the E0L or end of line
character

A binary files store the data in the binary
format(i.e .0’s and 1’s)

It contains any type of data
(pdf,images,word doc,spreadsheet,zip
files,etc)

Mode in File

Module Description

r

w

a

r+

Read only

mode Write

only Appending

only

Read and write only
Differentiate write and append mode:

Write mode Append mode

• It is used to write a string in a file
• If file is not exist it creates a new file
• If file is exit in the specified name,

the existing content will overwrite in
a file by the given string

• It is used to append (add) a string
into a file

• If file is not exist it creates a new file
• It will add the string at the end of the

old file

File Operation:

 Open a file
 Reading a file
 Writing a file
 Closing a file

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

102

hello guys

A file stores related data,
information, settings or commands
in secondary storage device like
magnetic disk, magnetic tape,
optical disk, flash memory.

1. Open () function:

• Pythons built in open function to get a file object.
• The open function opens a file.
• It returns a something called a file object.
• File objects can turn methods and attributes that can be used to collect

Syntax:

file_object=open(“file_name” , ”mode”)

Example:

fp=open(“a.txt”,”r”)

Create a text file

fp=open (“text.txt”,”w”)

2. Read () function

Read functions contains different methods

• read() – return one big string
• readline() – return one line at a time
• readlines() – return a list of lines

Syntax:

file_name.read ()

Example:

fp=open(“a.txt”,”w”)

print(fp.read())

print(fp.read(6))

print (fp.readline())

print (fp.readline(3))

print (fp.readlines())

a.txt

Output

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

103

A file stores related data,
information, settings or commands
in secondary storage device like
magnetic disk, magnetic tape,
optical disk, flash memory.
this file is a.txt to
add more lines

Reading file using looping:

• Reading a line one by one in given file

fp=open(“a.txt”,”r”)

for line in fp:

print(line)

3. Write () function

This method is used to add information or content to existing file.

Syntax:

file_name.write()

Example:

fp=open(“a.txt”,”w”)

fp.write(“this file is a.txt”)

fp.write(“to add more lines”)

fp.close()

Output: a.txt

4. Close () function

It is used to close the file.

Syntax:

File name.close()

Example:

fp=open(“a.txt”,”w”)

fp.write(“this file is a.txt”)

fp.write(“to add more lines”)

fp.close()

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

104

Splitting line in a text line:

fp=open(“a.txt”,”w”)

for line in fp:

words=line.split()

print(words)

2. Write a program for one file content copy into another file:

source=open(“a.txt”,”r”)

destination=open(“b.txt”,”w”)

for line in source:

destination.write(line)

source. close()

destination.close()

Output:

Input a.txt Output b.txt
A file stores related data, information,
settings or commands in secondary storage
device like magnetic disk, magnetic tape,
optical disk, flash memory

A file stores related data, information,
settings or commands in secondary storage
device like magnetic disk, magnetic tape,
optical disk, flash memory

3. Write a program to count number of lines, words and characters in a text file:

fp = open(“a.txt”,”r”)
line =0
word = 0
character = 0
for line in fp:

words = line . split ()
line = line + 1
word = word + len(words)
character = character +len(line)

print(“Number of line”, line)
print(“Number of words”, word)
print(“Number of character”, character)

Output:

Number of line=5
Number of words=15
Number of character=47

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

105

4. ERRORS,EXCEPTION HANDLING

Errors
• Error is a mistake in python also referred as bugs .they are almost always the fault of

the programmer.
• The process of finding and eliminating errors is called debugging

Types of errors
o Syntax error or compile time error
o Run time error
o Logical error

Syntax errors
• Syntax errors are the errors which are displayed when the programmer do mistakes

when writing a program, when a program has syntax errors it will not get executed
 Leaving out a keyword
 Leaving out a symbol, such as colon, comma, brackets
 Misspelling a keyword
 Incorrect indentation

Runtime errors
• If a program is syntactically correct-that is ,free of syntax errors-it will be run by

the python interpreter
• However, the program may exit unexpectedly during execution if it encounters a

runtime error.
• When a program has runtime error it will get executed but it will not produce output

 Division by zero
 Performing an operation on incompatible types
 Using an identifier which has not been defined
 Trying to access a file which doesn’t exit

Logical errors
• Logical errors are the most difficult to fix
• They occur when the program runs without crashing but produces incorrect result
 Using the wrong variable name
 Indenting a blocks to the wrong level
 Using integer division instead of floating point division
 Getting operator precedence wrong

Exception handling

Exceptions
• An exception is an error that happens during execution of a program. When that Error

occurs
Errors in python

• IO Error-If the file cannot be opened.
• Import Error -If python cannot find the module
• Value Error -Raised when a built-in operation or function receives an argument that

has the right type but an inappropriate value

• Keyboard Interrupt -Raised when the user hits the interrupt

• EOF Error -Raised when one of the built-in functions (input() or raw_input()) hits an
end-of-file condition (EOF) without reading any data

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

106

Exception Handling Mechanism
1. try –except
2. try –multiple except
3. try –except-else
4. raise exception
5. try –except-finally

1. Try –Except Statements
• The try and except statements are used to handle runtime errors

Syntax:
try :

statements
except :

statements

The try statement works as follows:-
 First, the try clause (the statement(s) between the try and except keywords) is

executed.
 If no exception occurs, the except clause is skipped and execution of

the try statement is finished.
 If an exception occurs during execution of the try clause, the rest of the clause is

skipped. Then if its type matches the exception named after the except keyword,
the except clause is executed, and then execution continues after the try statement.

Example:
X=int(input(“Enter the value of X”))
Y=int(input(“Enter the value of Y”))
try:

result = X / (X – Y)
print(“result=”.result)

except ZeroDivisionError:
print(“Division by Zero”)

Output:1
Enter the value of X = 10
Enter the value of Y = 5
Result = 2

Output : 2
Enter the value of X = 10
Enter the value of Y = 10
Division by Zero

2. Try – Multiple except Statements
o Exception type must be different for except statements

Syntax:
try:

statements
except errors1:

statements
except errors2:

statements
except errors3:

statements

EnggTree.com

Downloaded from EnggTree.com

https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html
http://learnengineering.in

107

Example
X=int(input(“Enter the value of X”))
Y=int(input(“Enter the value of y”))
try:

sum = X + Y
divide = X / Y
print (“ Sum of %d and %d = %d”, %(X,Y,sum))
print (“ Division of %d and %d = %d”, %(X,Y,divide))

except NameError:
print(“ The input must be number”)

except ZeroDivisionError:
print(“Division by Zero”)

Output:1
Enter the value of X = 10
Enter the value of Y = 5
Sum of 10 and 5 = 15
Division of 10 and 5 = 2

Output 2:
Enter the value of X = 10
Enter the value of Y = 0
Sum of 10 and 0 = 10
Division by Zero

Output 3:
Enter the value of X = 10
Enter the value of Y = a
The input must be number

3. Try –Except-Else
o The else part will be executed only if the try block does not raise the exception.

o Python will try to process all the statements inside try block. If value error occur,
the flow of control will immediately pass to the except block and remaining
statements in try block will be skipped.

Syntax:
try:

Example

except:

else:

statements

statements

statements

X=int(input(“Enter the value of X”))
Y=int(input(“Enter the value of Y”))
try:

result = X / (X – Y)
except ZeroDivisionError:

print(“Division by Zero”)
else:

print(“result=”.result)
Output:1
Enter the value of X = 10
Enter the value of Y = 5
Result = 2

Output : 2
Enter the value of X = 10
Enter the value of Y = 10

Division by Zero

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

108

4. Raise statement
• The raise statement allows the programmer to force a specified exception to occur.

Example:
>>> raise NameError('HiThere')
Output:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: HiThere

 If you need to determine whether an exception was raised but don’t intend to handle
it, a simpler form of the raise statement allows you to re-raise the exception:

Example
try:

... raise NameError('HiThere')

... except NameError:

... print('An exception flew by!')

... raise
Output:
An exception flew by! Traceback
(most recent call last):

File "<stdin>", line 2, in <module>
NameError: HiThere

5. Try –Except-Finally
 A finally clause is always executed before leaving the try statement, whether an

exception has occurred or not.
 The finally clause is also executed “on the way out” when any other clause of the

try statement is left via a break, continue or return statement.
Syntax

try:

except:

finally:

Example

statements

statements

statements

X=int(input(“Enter the value of X”))
Y=int(input(“Enter the value of Y”))
try:

result = X / (X – Y)
except Zero DivisionError:

print(“Division by Zero”)
else:

print(“result=”.result)
finally:

print (“executing finally clause”)
Output:1
Enter the value of X = 10
Enter the value of Y = 5
Result = 2
executing finally clause

Output : 2
Enter the value of X = 10
Enter the value of Y = 10
Division by Zero
executing finally clause

EnggTree.com

Downloaded from EnggTree.com

https://docs.python.org/3/reference/simple_stmts.html
https://docs.python.org/3/reference/simple_stmts.html
https://docs.python.org/3/reference/simple_stmts.html
http://learnengineering.in

109

5. MODULES IN PYTHON

• A python module is a file that consists of python definition and statements. A module
can define functions, classes and variables.

• It allows us to logically arrange related code and makes the code easier to understand
and use.

1.Import statement:
• An import statement is used to import python module in some python source file.

Syntax: import module1 [, module2 […module]]
Example:

>>>import math
>>>print (math.pi)

3.14159265

2.Import with renaming:
The import a module by renaming it as follows,
>>>import math as a
>>>print(“The value of pi is “,a.pi)

The value of pi is 3.14159265
Writing modules:

• Any python source code file can be imported as a module into another python source
file. For example, consider the following code named as support.py, which is python
source file defining two function add(), display().

Support.py:

def add(a,b):

print(“The result is “,a+b)

return

def display(p):

print(“welcome “,p)

return

The support.py file can be imported as a module into another python source file and
its functions can be called from the new files as shown in the following code:

3. Import file name

import support #import module support

support.add(3,4) #calling add() of support module with two integers

support.add (3.5,4.7) #calling add() of support module with two real values

support.add (‘a’,’b’) #calling add() of support module with two character values

support.add (“yona”,”alex”)#calling add() of support module with two string values

support.display (‘fleming’) #calling display() of support module with a string value

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

110

Output:
The result is 7
The result is 8.2
The result is ab
The result is yonaalex
Welcome, fleming

4. from……import statement:

 It allows us to import specific attributes from a module into the current
namespace.

Syntax: from modulename import name1 [, name2[,……nameN]]

from support import add #import module support

support.add(3,4) #calling add() of support module with two integers

support.add(3.5,4.7) #calling add() of support module with two real values

support.add(‘a’,’b’) #calling add() of support module with two character values

support.add (“yona”,”alex”)#calling add() of support module with two string values

support.display (‘fleming’) #calling display() of support module with a string value

Output:

The result is 7
The result is 8.2
The result is ab
The result is yonaalex
Welcome, fleming

5.OS Module

 The OS module in python provide function for interacting with operating
system

 To access the OS module have to import the OS module in our program

import os

method example description
name Osname ‘nt’ This function gives the name

of the operating system
getcwd() Os,getcwd()

,C;\\Python34’
Return the current working
directory(CWD)of the file
used to execute the code

mkdir(folder) Os.mkdir(“python”) Create a directory(folder)
with the given name

rename(oldname,newname) Os.rename(“python”,”pspp”) Rename the directory or
folder

remove(“folder”) Os.remove(“pspp”) Remove (delete)the directory
or folder

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

111

getuid() Os.getuid() Return the current process’s
user id

environ Os.nviron Get the users environment

6.Sys Module

 Sys module provides information about constant, function and methods
 It provides access to some variables used or maintained by the interpreter

import sys

methods example description
sys.argv sys.argv

sys.argv(0)

sys.argv(1)

Provides the list of
command line arguments
passed to a python script
Provides to access the file
name
Provides to access the first
input

sys.path sys.path It provide the search path
for module

sys.path.append() sys.path.append() Provide the access to
specific path to our program

sys.platform sys.platform
‘win32’

Provide information about
the operating system
platform

sys.exit sys.exit
<built.in function exit>

Exit from python

Steps to Create the Own Module

 Here we are going to create a calc module ; our module contains four functions

i.e add(),sub(),mul(),div()

Program for calculator module output
Module name ;calc.py
def add(a,b);
print(a+b)
def sub(a,b);

print(a-b)
def mul(a,b);

print(a*b)
def div(a,b);

print(a/b)

import calculator
calculator.add(2,3)

Outcome
>>>5

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

112

6. PACKAGES IN PYTHON

 A package is a collection of python module. Module is a single python file containing
function definitions

 A package is a directory(folder)of python module containing an additional init py
file, to differentiate a package from a directory

 Packages can be nested to any depth, provided that the corresponding directories
contain their own init py file.

 init py file is a directory indicates to the python interpreter that the directory
should be treated like a python package init py is used to initialize the python
package

Steps to Create a Package

Step1: create the package directory

 Create the directory (folder)and give it your packages name
 Here the package name is calculator

Name Data modified Type
1. pycache 05-12-2017 File folder
2.calculater 08-12-2017 File folder
3. DLLs 10-12-2017 File folder

Step2: write module for calculator directory add save the module in calculator directory

 Here four module have create for calculator directory

Local Disk (C)>Python34>Calculator

add.py div.py mul.py sub.py
def add(a,b);

print(a+b)
def div(a,b);

print(a/b)
def mul(a,b);

print(a*b)
def sub(a,b);

print(a-b)

Step3: add the init .py file in the calculator directory

 A directory must contain the file named init__.py in order for python to consider it
as a package

Name Data modified Type Size
1. add 08-12-2017 File folder 1KB

2. div 08-12-2017 File folder 1KB
3. mul 08-12-2017 File folder 1KB
4. sub 08-12-2017 File folder 1KB

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

113

from * add import add
from * sub import sub
from * mul import mul
from * div import div

Add the following code in the init .py file

Local Disk (C):/Python34>Calculator

Name Data modified Type Size
1. init 08-12-2017 File folder 1KB
2. add 08-12-2017 File folder 1KB
3. div 08-12-2017 File folder 1KB
4. mul 08-12-2017 File folder 1KB
5. sub 08-12-2017 File folder 1KB

Step4: To test your package

 Import calculator package in your program and add the path of your package in your
program by using sys.path.append()
Example

import calculator
importsys
sys.path.append(“C:/Python34”)
print (calculator.add(10,5))

print (calculator.sub(10,5))
print (calculator.mul(10,5))
print (calculator.div(10,5))

Output :

>>> 15
5
50
2

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

114

Two marks:

1. Why do we go for file?
File can a persistent object in a computer. When an object or state is created and needs to be
persistent, it is saved in a non-volatile storage location, like a hard drive.

2. What are the three different mode of operations of a file?
The three mode of operations of a file are,

i. Open – to open a file to perform file operations
ii. Read – to open a file in read mode

iii. Write – to open a file in write mode

3. State difference between read and write in file operations.
Read Write
A "Read" operation occurs when a computer
program reads information from a computer
file/table (e.g. to be displayed on a screen).
The "read" operation gets
information out of a file.

A "Write" operation occurs when a computer
program adds new information, or changes
existing information in a computer file/table.

After a "read", the information from the
file/table is available to the computer program
but none of the information that was read
from the file/table is changed in
any way.

After a "write", the information from the
file/table is available to the computer program
but the information that was read from the
file/table can be changed in any
way.

4. Differentiate error and exception.
Errors
• Error is a mistake in python also referred as bugs .they are almost always the fault of the

programmer.
• The process of finding and eliminating errors is called debugging

• Types of errors

• Syntax error or compile time error

• Run time error

• Logical error
Exceptions

An exception is an error that happens during execution of a program. When that Error occurs

5. Give the methods of exception handling.
1. try –except
2. try –multiple except
3. try –except-else
4. raise exception
5. try –except-finally

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

115

6. State the syntax for try…except block
The try and except statements are used to handle runtime errors

Syntax:
try :

statements
except:

statements

7. Write a program to add some content to existing file without effecting the existing content.

file=open(“newfile.txt”,’a)
file.write(“hello”)

newfile.txt
Hello!!World!!!

newfile.txt(after updating)
Hello!!!World!!!hello

8. What is package?
• A package is a collection of python module. Module is a single python file containing function

definitions

• A package is a directory(folder)of python module containing an additional init py file, to
differentiate a package from a directory

• Packages can be nested to anydepth, provided that the corresponding directories contain their
own __init py file

9. What is module?
A python module is a file that consists of python definition and statements. A module can
define functions, classes and variables.
makes the code easier to understand and use.

10. Write the snippet to find the current working directory.
Import os
print(os.getcwd))

Output:
C:\\Users\\Mano\\Desktop

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

116

11. Give the use of format operator
The argument of write has to be a string, so if we want to put other values in a file, we
have to convert them to strings. The easiest way to do that is with str:
>>> x = 52
>>> fout.write(str(x))
An alternative is to use the format operator, %. When applied to integers, % is the
modulus operator. But when the first operand is a string, % is the format operator. The
first operand is the format string, which contains one or more format sequences,
which specify how the second operand is formatted. The result is a string. For
example, the format sequence '%d' means that the second operand should be
formatted as an integer (d stands for “decimal”):
>>> camels = 42
>>>'%d' % camels '42'
The result is the string '42', which is not to be confused with the integer value 42.

12. Write the snippet to find the absolute path of a file.
import os
os.path.abspath('w
rite.py')
Output:
'C:\\Users\\Mano\\Desktop\\write.py'

13. What is the use of os.path.isdir() function.
os.path.isdir() is a function defined in the package os. The main function of isdir(“some
input”) function is to check whether the passed parameter is directory or not. isdir()
function will only return only true or false.

14. What is the use of os.path.isfile() function.
os.path.isfile () is a function defined in the package os. The main function of isfile (“some
input”) function is to check whether the passed parameter is file or not. isfile () function
will only return only true or false.

15. What is command line argument?
sys.argv is the list of command line arguments passed to the Python program.

Argv represents all the items that come along via the command line input, it's basically
an array holding the command line arguments of our program.

EnggTree.com

Downloaded from EnggTree.com

http://learnengineering.in

