

Approved by AICTE. Engine In the Communication (Approved by AICTE. Engine In the Communication Communicatio Communication Communication Communicatio Communi

EC3351 CONTROL SYSTEMS-QUESTION BANK

UNIT I – SYSTEMS COMPONENTS AND THEIR REPRESENTATIONS

Control System: Terminology and Basic Structure-Feed forward and Feedback control theory Electrical and Mechanical Transfer Function Models-Block diagram Models-Signal flow graphs models-DC and AC servo Systems-Synchronous -Multivariable control system PART - A

r	1		
1.	Define	control system. (Nov 2016)	
	A contr	ol system manages commands, dir	ects, or regulates the behavior of other devices
	or syste	ms using control loops. A control s	system is a system, which provides the desired
	response by controlling the output		
	De	Error Actuating	
	Input (Output
	+	Error	
	-	Signal	
		Feedback	
		Feedback	
		Signal	
2.	Define	open loop and closed loop system	n. (May 2011, Nov 2011, Nov 2017)
	Open le	bop system: An open-loop system	is a type of control system in which the output
	of the s	ystem depends on the input but th	e input or the controller is independent of the
	output o	of the system. These systems do no	ot contain any feedback loop and thus are also
	known	as non-feedback system. In the pr	resence of disturbances, an open loop control
	system	will not perform the desired tas	sk because when the output changes due to
	disturba	inces, it is not followed by changes	in input to correct the output.
	Closed	loop system: The control system in	n which the output quantity has an effect on the
	input q	In closed loop system (close feed)	red output value is called closed loop control
	difforon	in closed loop system (also reed	back control system), the error signal which is
	the erro	r and bring the output of the system	n to the desired value
3	Give the	r and oming the output of the system	entiste) open loop system and closed loop
5.	system. (May 2010, Nov 2010, Dec 2014. May 2016.Nov 2015. May 2017)		
	S.No.	Open loop system	Closed loop system
	1	The output quantity has no	The output has an effect upon the input
		effect upon the input quantity.	quantity so as to maintain the desired output
			value
	2	Inaccurate and unreliable	Accurate and reliable
	3	Simple and economical	Complex and costlier
	4	The changes in output due to	The changes in output due to external
		external disturbances are not	disturbances are corrected automatically
	_	corrected automatically.	
	5	They are generally stable	Great efforts are needed to design a stable
			system.
	6	In the case of Bandwidth the	The Frequency at which the magnitude of
		frequency at which the gain falls	the closed loop gain does not fall below
	7	by 3 dB	-30B
	/	Examples:Stepper Motor,	Temperature control system, Pressure
1	What -	11aine iigin	control system, speed control system
4.	A dyont	are the advantages and disadvant	ages of open loop control systems?
	Auvanta	Open loop control is much simpler	and loss avnansiva
	•	Open 100p control is much simpler	and ress expensive
	•	Stable system	
	•		
		Waintenance is easy	

	Simple in design and construction
	Disadvantages/Demerits
	Not accurate
	• There is no compensation for any disturbances entering the system
	• Unreliable
	• Any change in input does not affect the output/ desired specification cannot be
	obtained
5.	What are the advantages and disadvantages of closed loop control systems?(May,
	Nov 2012,May 2017)
	Advantages/Merits
	More accurate
	It compensates for disturbances
	• It greatly improves the speed of its response
	• Less effective to noises which might give the system robustness
	• Automatic system can be performed.
	Disadvantages/Demerits
	• More complex and expensive
	• Reduces the gain of the system
	• If the closed loop system is not properly designed, the feedback may lead to
	instability.
	• Feedback might cause oscillatory behavior
6.	What is the principle of operation of closed loop systems
	The closed loop system compares the actual output measured by the sensor with the set
	point and produces the error signal or actuating signal. The controlled variable has to be
	kept at certain value regardless of any disturbing influences acting on the system.
7.	How are feedback control systems classified?
	(i)Negative feedback system where output and set point values are subtracted used in
	Amplifiers
	(ii) Positive feedback system where output and set point values are added used in
-	oscillators
8.	What are the characteristics of negative feedback? (May 2014)
	The characteristics of negative feedback are as follows:
	• Accuracy in tracking steady state value
	• Rejection of disturbance signals
	Low sensitivity to parameter variations
	Reduction in gain at the expense of better stability
9.	Why negative feedback is invariably preferred in a closed loop system?
	The negative feedback results in better stability in steady state and rejects any disturbance
	signals. It also has low sensitivity to parameter variations. Hence negative feedback is
10	preferred in closed loop systems.
10.	Give two advantages of closed loop control over open loop control.(May 2019)
	Advantages/Ments
	• More accurate
	• It compensates for disturbances
11	It greatly improves the speed of its response What is called feedback control system? Cive an example (May 2018)(Or)
11.	Define closed loop control system with a suitable example (New 2018)
	The feedback control system is also known as closed loop control system or Automatic
	control system. The output is feedback to the input for correction. The feedback path
	element samples the output and converts it to signal of same type of reference signal
	Example: Automatic Traffic control system
	Example. Automatic Hume control system

systems.(NOV 2019)				
S.NO	FEED FORWARD CONTROL SYSTEM	FEEDBACK CONTROL SYSTEMS.		
1.	Feedforward control does not check	Feedback control measures the		
	how the adjustments of inputs worked	output and verifies the adjustment		
	in the process. So, it is referred to	results. So, it is called as CLOSED		
	as OPEN LOOP CONTROL.	LOOP CONTROL.		
2.	Feedforward control takes corrective	Feedback control takes corrective		
	action before the disturbances entering	action only after the disturbances has		
	into the process.	affected the process and generated		
3	Feedforward control has to predict the	The feedback control reacts only to		
5.	output as it does not measure output	the process error (the deviation		
	So, it is sometimes called	between the measured output value		
	as PREDICTIVE CONTROL.	and set point). So, it is called		
		as REACTIVE CONTROL.		
4.	The feedforward control does not	The feedback control may create		
	affect the stability of the system.	instability of the system.		
5.	The feedforward control requires to	The feedback control requires less		
	measure and control more inputs.	measuring instruments and control		
		equipment's comparatively.		
6.	The variables are adjusted on the basis	The variables are adjusted on the		
	of knowledge.	basis of errors.		
Name a	a models used to represent control system	ent control systems. (May 2013)		
Dynamic models used to represent control system are				
• 1	Transfer function model which uses I a	unlace transformation with differential		
Equations which does not uses initial values				
•	 State space model which also uses differential models which uses initial values 			
Define	the Transfer function of a system and	l mention its applicability in control		
system	(Nov 2010, Nov 2013, Nov 2017)			
The Tra	nsfer function of a system is defined as the	e ratio between Laplace transform of the		
output and Laplace transform of the input when initial conditions are zero. It i		initial conditions are zero. It is used to		
analyses	s the system characteristics.	- I		
transfer function = $\frac{\text{laplace transform of the output}}{1}$		theoutput		
	laplacetransformot	the input Zero initial conditions		
State th	e properties of a linear system.			
It obeys	the principle of superposition and homoge	energy. Principle of superposition implies $\mathbf{X}_{i}(t) = \mathbf{X}_{i}(t)$		
that II a	system model has responses $Y_1(t)$, $Y_2(t)$ to	any two inputs $X_1(t)$, $X_2(t)$ respectively.		
then the	e system response to the linear combinat	Ion of these inputs $\alpha_1 X_1(t) + \alpha_2 X_2(t)$ is		
given by	y the linear combination of the individual (Sutputs, i.e., $\alpha_1 \Upsilon_1(t) + \alpha_2 \Upsilon_2(t)$ where α_1 ,		
α_2 are C	constants.	am is always directly proportional to the		
Input of	the system	en is always directly proportional to the		
What a	re the basic elements of closed loop con	trol system? (Or) What are the basic		
compor	ients of automatic control system?	(OI) what are the busic		
•]	Error detector or comparator			
•	Amplifier and Controller			
•	Plant or System to be controlled			

	Sansor or feedback system				
	Sensor or feedback system				
17.	State the laws governing mechanical rotational elements.				
	The laws governing mechanical rotational elements are Newton's law and D'Alembert's				
	principle. Newton's law states that the sum of torques acting on a body is zero. Alembert's				
	law states that the sum of all Torque acting on the inertial is equal to zero. with J as th				
	moment of Inertia, K as the torsional spring and B as the Dashpot				
18.	What are analogous	s systems?			
	The systems for which	ch the differential equations i	n physical systems have similar form	ns	
	are known as analogo	ous systems, for example elect	rical systems equivalent to mechanica	al	
	systems. There exists	s a fixed analogy between Ele	ctrical and Mechanical systems whic	ch	
	is similar under the E	Equilibrium conditions			
19.	What are the ba	sic elements used for n	nodeling mechanical translationa	al	
	system?(Nov 2016)				
	The basic elements u	sed for modeling mechanical	ranslational system which move alon	ıg	
	a straight line are Ma	ss(M), Damper (B) and Sprin	g(K)		
20.	What are the basic	elements used for modeling	nechanical rotational system?		
	The basic elements us	sed for modeling mechanical r	otational system are Moment of inerti	ia	
	(J), dashpot with rot	ational frictional coefficient (B) and torsional spring with stiffnes	SS	
	(K).				
21.	Define resistance an	d capacitance of liquid level	system. (Nov2013)		
	Resistance: It is defi	ned as the change in the level	difference necessary to cause the un	nit	
	change in flow rate.	ç	•		
	Capacitance: it is de	efined as the change in quantit	y of stored liquid necessary to cause	a	
	unit change in head (height).			
22.	Write the analogo	us elements in torque vol	tage analogy for the elements o	of	
	mechanical rotation	al system. (May 2018).			
	Mechanical Flement				
	Mechanical	Equivalent	Electrical Element		
	Mechanical system	Force - Voltage analogous	Force - Current analogous	_	
	Mechanical system components	Force - Voltage analogous	Force - Current analogous		
	Mechanical system components Mass	Force - Voltage analogous	Force - Current analogous Capacitance (C)		
	Mechanical system components Mass Damper	Force - Voltage analogous Inductance (L) Resistance (R)	Electrical Element Force - Current analogous Capacitance (C) Reciprocal of resistance (1/R)		
	Mechanical system components Mass Damper Spring	Equivalent Force - Voltage analogous Inductance (L) Resistance (R) Reciprocal of capacitant	Flectrical Element Force - Current analogous Capacitance (C) Reciprocal of resistance (1/R) ce Reciprocal of inductance (1/L)		
	Mechanical system components Mass Damper Spring	Equivalent Force - Voltage analogous Inductance (L) Resistance (R) Reciprocal of capacitane (1/C)	Force - Current analogous Capacitance (C) Reciprocal of resistance (1/R) ce Reciprocal of inductance (1/L)		
23.	Mechanical system components Mass Damper Spring What is servomecha	Force - Voltage analogous Inductance (L) Resistance (R) Reciprocal of capacitane (1/C)	Force - Current analogous Capacitance (C) Reciprocal of resistance (1/R) ce Reciprocal of inductance (1/L)		
23.	Mechanical system components Mass Damper Spring What is servomechanism	Force - Voltage analogous Inductance (L) Resistance (R) Reciprocal of capacitance (1/C) mism? n is a feedback control syste	Electrical Element Force - Current analogous Capacitance (C) Reciprocal of resistance (1/R) ce Reciprocal of inductance (1/L) m in which the output is mechanica	al	
23.	Mechanical system components Mass Damper Spring What is servomechan The servomechanism position. Servomecha	Force - Voltage analogous Inductance (L) Resistance (R) Reciprocal of capacitance (1/C) mism? n is a feedback control syste anism is a powered mechanis	Electrical Element Force - Current analogous Capacitance (C) Reciprocal of resistance (1/R) ce Reciprocal of inductance (1/L) m in which the output is mechanica m in which the output motion or force	al	
23.	MechanicalsystemcomponentsMassDamperSpringWhat is servomechanismposition. Servomechais considerably highe	Force - Voltage analogous Inductance (L) Resistance (R) Reciprocal of capacitand (1/C) mism? n is a feedback control syste anism is a powered mechanis r than the input energy. Servor	Force - Current analogous Capacitance (C) Reciprocal of resistance (1/R) ce Reciprocal of inductance (1/L) m in which the output is mechanication in which the output motion or force in the number of the output motion or force in the number of	al ce	
23.	MechanicalsystemcomponentsMassDamperSpringWhat is servomechanismposition. Servomechanismposition. Servomechanismthe considerably highethe control automatic	Force - Voltage analogous Inductance (L) Resistance (R) Reciprocal of capacitance (1/C) mism? n is a feedback control syste anism is a powered mechanism r than the input energy. Servor system. The servomechanism	Force - Current analogous Capacitance (C) Reciprocal of resistance (1/R) ce Reciprocal of inductance (1/L) m in which the output is mechanica m in which the output motion or force nechanism is particularly used to make is a feedback control system in which	al ce ce ch	
23.	MechanicalsystemcomponentsMassDamperSpringWhat is servomechanismposition. Servomechanismposition. Servomechanismis considerably highethe control automaticthe output is mechanism	Equivalent Force - Voltage analogous Inductance (L) Resistance (R) Reciprocal of capacitane (1/C) mism? n is a feedback control systemation is a powered mechanismismismismismismismismismismismismismi	Electrical Element Force - Current analogous Capacitance (C) Reciprocal of resistance (1/R) ce Reciprocal of inductance (1/L) m in which the output is mechanica m in which the output motion or force nechanism is particularly used to make is a feedback control system in whice ivatives of position (e.g. velocity &	al ce ce ch &	
23.	MechanicalsystemcomponentsMassDamperSpringWhat is servomechanismposition. Servomechanismposition. Servomechanismthe control automaticthe output is mechanismacceleration).	Force - Voltage analogous Inductance (L) Resistance (R) Reciprocal of capacitand (1/C) mism? n is a feedback control syste anism is a powered mechanism r than the input energy. Servor system. The servomechanism mical Position (or) time der	Electrical Element Force - Current analogous Capacitance (C) Reciprocal of resistance (1/R) ce Reciprocal of inductance (1/L) m in which the output is mechanica m in which the output motion or force nechanism is particularly used to make is a feedback control system in whice ivatives of position (e.g. velocity &	al al ce ce ce	
23.	MechanicalsystemcomponentsMassDamperSpringWhat is servomechanismposition. Servomechanismposition. Servomechanismis considerably highethe control automaticthe output is mechanismacceleration).What is electrical and	Force - Voltage analogous Inductance (L) Resistance (R) Reciprocal of capacitand (1/C) mism? n is a feedback control syste anism is a powered mechanism r than the input energy. Servor system. The servomechanism inical Position (or) time der	Electrical Element Force - Current analogous Capacitance (C) Reciprocal of resistance (1/R) ce Reciprocal of inductance (1/L) m in which the output is mechanica m in which the output motion or force nechanism is particularly used to mak is a feedback control system in whice ivatives of position (e.g. velocity definition)	al ce ce ch &	
23.	MechanicalsystemcomponentsMassDamperSpringWhat is servomechanismposition. Servomechanismposition. Servomechanismis considerably highethe control automaticthe output is mechanismacceleration).What is electrical andTransformer is electrical	Force - Voltage analogous Inductance (L) Resistance (R) Reciprocal of capacitand (1/C) mism? n is a feedback control syste anism is a powered mechanism r than the input energy. Servor system. The servomechanism inical Position (or) time der malogous of a gear? ical analogous of a gear. Tran	Electrical Element Force - Current analogous Capacitance (C) Reciprocal of resistance (1/R) ce Reciprocal of inductance (1/L) m in which the output is mechanica min which the output motion or force nechanism is particularly used to mak is a feedback control system in whice ivatives of position (e.g. velocity & stormer has N1 and N2 has number of	al ce ce ch &	
23.	MechanicalsystemcomponentsMassDamperSpringWhat is servomechanismposition. Servomechanismposition. Servomechanismposition. Servomechanismthe control automaticthe output is mechanismacceleration).What is electrical andTransformer is electrical andTransformer is electrical andturns whereas Gears	Force - Voltage analogous Inductance (L) Resistance (R) Reciprocal of capacitance (1/C) mism? In is a feedback control system anism is a powered mechanistic r than the input energy. Servor system. The servomechanistic inical Position (or) time der malogous of a gear? ical analogous of a gear. Tran as L_1 and L_2 as the level. N_1 a	Electrical Element Force - Current analogous Capacitance (C) Reciprocal of resistance (1/R) ce Reciprocal of inductance (1/L) m in which the output is mechanica m in which the output motion or force nechanism is particularly used to mak is a feedback control system in whice ivatives of position (e.g. velocity & sformer has N1 and N2 has number of nd N2 can be step up or step down	al ce ce ch &	
23.	MechanicalsystemcomponentsMassDamperSpringWhat is servomechanismposition. Servomechanism	Force - Voltage analogous Inductance (L) Resistance (R) Reciprocal of capacitance (1/C) mism? In is a feedback control system anism is a powered mechanism is a p	Electrical Element Force - Current analogous Capacitance (C) Reciprocal of resistance (1/R) ce Reciprocal of inductance (1/L) m in which the output is mechanical m in which the output motion or force mechanism is particularly used to make is a feedback control system in which ivatives of position (e.g. velocity definition of the system of the step up or step down ons for increasing the speed using gear	al ce cse csh & f	
23.	MechanicalsystemcomponentsMassDamperSpringWhat is servomechanismposition. Servomechanism	Force - Voltage analogous Inductance (L) Resistance (R) Reciprocal of capacitance (1/C) mism? In is a feedback control system anism is a powered mechanism r than the input energy. Servore system. The servomechanism anical Position (or) time der malogous of a gear? ical analogous of a gear. Tran as L ₁ and L ₂ as the level. N ₁ a can be the mechanical transition	Electrical ElementForce - Current analogousCapacitance (C)Reciprocal of resistance (1/R)ceReciprocal of inductance (1/L)m in which the output is mechanicam in which the output motion or forcenechanism is particularly used to makeis a feedback control system in whiceivatives of position (e.g. velocity &sformer has N1 and N2 has number ofnd N2 can be step up or step downons for increasing the speed using gear	al ce ce ch & f	
23. 24. 25.	MechanicalsystemcomponentsMassDamperSpringWhat is servomechanismposition. Servomechanism	Force - Voltage analogous Inductance (L) Resistance (R) Reciprocal of capacitane (1/C) mism? n is a feedback control syste anism is a powered mechanism r than the input energy. Servor system. The servomechanism inical Position (or) time der nalogous of a gear? ical analogous of a gear. Tran as L_1 and L_2 as the level. N_1 a can be the mechanical transition lent electrical elements for	Electrical Element Force - Current analogous Capacitance (C) Reciprocal of resistance (1/R) ce Reciprocal of inductance (1/L) m in which the output is mechanica m in which the output motion or force nechanism is particularly used to mak is a feedback control system in whice ivatives of position (e.g. velocity description) sformer has N1 and N2 has number of nd N2 can be step up or step down ons for increasing the speed using gead the moment of Inertia - damper	al ce ce ch & f	
23. 24. 25.	MechanicalsystemcomponentsMassDamperSpringWhat is servomechanismposition. Servomechanism	Force - Voltage analogous Inductance (L) Resistance (R) Reciprocal of capacitance (1/C) mism? In is a feedback control system anism is a powered mechanism is a feedback control system anism is a powered mechanism is a powered mechanism is a feedback control system anism is a powered mechanism is a feedback control system is a feedback control system is a feedback control system anism is a powered mechanism is a feedback control system anism is a powered mechanism is a feedback control system is a feedback control sy	Electrical Element Force - Current analogous Capacitance (C) Reciprocal of resistance (1/R) ce Reciprocal of inductance (1/L) m in which the output is mechanica m in which the output motion or force nechanism is particularly used to make is a feedback control system in whice ivatives of position (e.g. velocity & sformer has N1 and N2 has number of nd N2 can be step up or step down ons for increasing the speed using gead the moment of Inertia - damper (OR)	al ce cke ch f ar	
23. 24. 25.	MechanicalsystemcomponentsMassDamperSpringWhat is servomechanismposition. Servomechanismposition. Servomechanismis considerably highethe control automaticthe output is mechanismacceleration).What is electrical and Transformer is electrical and Transformer is electrical and Transformer is electrical and teethMention the equival torsional spring electrical write the Force-Vol	Force - Voltage analogous Inductance (L) Resistance (R) Reciprocal of capacitand (1/C) mism? n is a feedback control syste anism is a powered mechanism r than the input energy. Servor system. The servomechanism inical Position (or) time der nalogous of a gear? ical analogous of a gear. Tran as L ₁ and L ₂ as the level. N ₁ a can be the mechanical transition lent electrical elements for ments in mechanical system. Itage analogous of a mechanical system.	Electrical Element Force - Current analogous Capacitance (C) Reciprocal of resistance (1/R) ce Reciprocal of inductance (1/L) m in which the output is mechanica n in which the output motion or force nechanism is particularly used to make is a feedback control system in whice ivatives of position (e.g. velocity & sformer has N1 and N2 has number of nd N2 can be step up or step down ons for increasing the speed using gead the moment of Inertia - damper (OR) ical spring and dash pot.(Dec 2018)	al ce ce ch ar	
23. 24. 25.	Mechanical system components Mass Damper Spring What is servomechanism position. Servomechanism acceleration). What is electrical and Transformer is electrical and torsional spring elen Write the Force-Vol Mechanical	EquivalentForce - Voltage analogousInductance (L)Resistance (R)Reciprocal of capacitand $(1/C)$ mism?n is a feedback control systeanism is a powered mechanisar than the input energy. Servorc system. The servomechanisminical Position (or) time dernalogous of a gear?ical analogous of a gear. Tranas L1 and L2 as the level. N1 acan be the mechanical transitionenerts in mechanical system.Itage analogous of a mechanical system.systemEquivale	Electrical Element Force - Current analogous Capacitance (C) Reciprocal of resistance (1/R) ce Reciprocal of inductance (1/L) m in which the output is mechanica m in which the output motion or force nechanism is particularly used to mak is a feedback control system in whice ivatives of position (e.g. velocity & sformer has N1 and N2 has number of nd N2 can be step up or step down ons for increasing the speed using gead the moment of Inertia - damper (OR) ical spring and dash pot.(Dec 2018) nt Electrical Element	al ce ce ch & f	
23. 24. 25.	Mechanical system components Mass Damper Spring What is servomechanism position. Servomechanism	EquivalentForce - Voltage analogousInductance (L)Resistance (R)Reciprocal of capacitane(1/C)mism?n is a feedback control systeanism is a powered mechanisr than the input energy. Servoresystem. The servomechanisminical Position (or) time dermalogous of a gear?ical analogous of a gear. Tranas L_1 and L_2 as the level. N_1 acan be the mechanical transitionenerts in mechanical system.Itage analogous of a mechanical systemsystemEquivaleForce- Voltage	Electrical Element Force - Current analogous Capacitance (C) Reciprocal of resistance (1/R) ce Reciprocal of inductance (1/L) m in which the output is mechanica m in which the output motion or force nechanism is particularly used to mak is a feedback control system in whice ivatives of position (e.g. velocity & sformer has N1 and N2 has number of nd N2 can be step up or step down ons for increasing the speed using gead the moment of Inertia - damper (OR) ical spring and dash pot.(Dec 2018) nt Electrical Element e	al ce ce ch & f ar _)	
23. 24. 25.	MechanicalsystemcomponentsMassDamperSpringWhat is servomechanismposition. Servomechanismacceleration).What is electrical andTransformer is electrical andTransformer is electrical andturns whereas Gears isapproach. L1 and L2 ofteethMention the equivaltorsional spring elerWrite the Force-VolMechanicalcomponents	EquivalentForce - Voltage analogousInductance (L)Resistance (R)Reciprocal of capacitand (1/C)mism?n is a feedback control syste anism is a powered mechanism r than the input energy. Servore system. The servomechanism unical Position (or) time dernalogous of a gear?ical analogous of a gear. Tran as L1 and L2 as the level. N1 a can be the mechanical transitionendet the electrical elements for ments in mechanical system.Itage analogous of a mechanical systemsystemEquivale Force - Voltage analogous	Electrical ElementForce - Current analogousCapacitance (C)Reciprocal of resistance (1/R)ceReciprocal of inductance (1/L)m in which the output is mechanicam in which the output motion or forcenechanism is particularly used to makeis a feedback control system in whiceivatives of position (e.g. velocity &sformer has N1 and N2 has number ofnd N2 can be step up or step downons for increasing the speed using geadthe moment of Inertia - damper(OR)ical spring and dash pot.(Dec 2018)nt Electrical ElementeForce - Current analogous	al ce ce ch & f =)	

	Rotational frictional	Resistance (R)	Reciprocal of resistance (1/R)	
	coefficient of dashpot		-	l
	В			1
	Stiffness of Spring K	Reciprocal	Reciprocal of inductance (1/L)	l
		of capacitance (1/C)		
26.	What is meant by 'block	diagram of a cont	rol system? What are the ba	asic
	components of a block diagr	ram? (Nov 2011)		
	A block diagram of a system	is a pictorial represent	tation of the functions performed	i by
	each component of the system	n. The basic elements	of block diagram are Block, Bra	nch
	point and Summing point.			
27.	Write down the transfer fun	ction of the system wh	iose block diagram is shown bel	ow.
	(May 2011, Nov 2012)			
	G1(s)			
		/		
	G2(s)	\rightarrow		
	G3(s)			
	G4(s) G5(s)			
	When the gains are in series th	e net gain is its produc	t. In the above figure the gains G	$\Lambda(\mathbf{s})$
	when the gains are in series and the	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	* $C_{5}(a)$ The asia and dust is in norm	+(s)
	and G5(s) are in series and the	ir gain product is G4(s)	*GS(s). The gain product is in para	anei
	with the other branches.			
	Therefore			
	$\frac{C(s)}{s} = G_1(s) + G_2(s) + G_3(s) - G_3(s)$	$G_4(s)G_5(s)$		
	R(s)	www.enggmee.com		
28.	What are the properties of s	ignal flow graphs? (N	fay 2012)	
	• The Linear algebraic e	quations which are use	d to construct signal flow graph n	nust
	be in the form of cause	e and effect relationship	p.	
	• Signal flow graph is a	pplicable to linear syst	ems only.	
20	Applicable only for 1	<u>ime-invariant systems</u>		
29.	A node in the signal flow Graph	• h rangants the veriet	lo or signal	
	A node adds the signals of al	l incoming branches a	nd transmits the sum to all outgo	ning
	branches	r meening branches a	ind transmites the sum to an outgo	,mg
	A mixed node which has both	incoming and outgoin	g signals can be treated as an out	tput
	node by adding an outgoing b	ranch of unity transmit	tance	-r
30.	State Mason's Gain formula	. (May 2013, May 201	4, Dec 2014, May & Nov 2015 N	Aay
	2016, May 2017)		· · ·	·
	Mason's gain formula is given	n by,		
	$T = \frac{1}{\Delta} \sum_{k} P_k \Delta_k$			
	$P_k = \text{path gain of } k^{\text{th}} \text{ forward } r$	oath.		
	$\Delta = 1$ - (sum of individual lo	op gains) + (sum of g	ain of all combinations of two n	ion-
	touching loops) – (sum of gain	n product of all combin	ations of three non-touching loor	ps)
	$\Delta_k = \Delta$ of that part of graph no	touching the k th forw	ard path	
LI				

Downloaded from EnggTree.com

3.

UNIT II- TIME RESPONSE ANALYSIS

Transient response-steady state response-Measures of performance of the standard first order and second order system-effect on an additional zero and an additional pole-steady error constant and system- type number-PID control-Analytical design for PD, PI,PID control systems

PART - A

1.	What is the necessity for standard test signals in the analysis of control systems?				
	In many control systems the command signals are not known fully ahead of time. It is				
	difficult to express the actual input signals mathematically by simple functions. To know				
	the behavior of the system in advance the standard test signals are used in the analysis of				
-	cont	rol s	ystems. The standard signals are impu	ise, Step, ramp, Parabolic	
2.	List	the	standard test signals used in time do	main analysis. (May 2016, Nov 2017)	
	The	stand	lard test signals used in time domain a	marysis are	
	•		init step input		
	•		Init Impulse input	com	
	•	• 0	nit ramp input	.0011	
	•	• U	nit parabolic input		
3.	Wha	at is	the difference between type and ord	er of a system?	
	S	.No	Type of a system	Order of a system	
	1		Type no is given by number of poles	Order is given by the number of poles of	
			of loop transfer function at origin of	transfer function	
			S=0		
	2		It is specified for loop transfer	It is specified for any transfer function	
			function G(s)H(s)	(open loop or closed loop transfer	
				function)	
4.	Wha	at ar	e type 0 and type 1 system? (May 20	014)	
	Туре	e 0 sy	ystems – there are no poles of loop tran	nsfer function that lies at origin.	
	Туре	e 1 sy	ystem – it has only one pole of loop tra	ansfer function lies at origin.	
5.	Defi	ne a	impulse function.	1. 1. 1. 1.	
	A SI	gnal	which has infinite magnitude at time	equal to zero only. We can assume it as a	
	lightning pulse which acts for a short duration with infinite magnitude of voltage.				
			Impulse (δ(t)) = Derivative of step		
			↑ 1		
			value shown is area.		
	δ(t)				
		0			

6.	For the system with the following transfer function, determine type and order of the system. (Nov 2009)
	(s+4) 200
	i) $G(s)H(s) = \frac{(s+1)}{(s-2)(s+0.25)}$ ii) $G(s)H(s) = \frac{200}{s(s^2+20s+200)}$
	Type of a system:
	Type no is given by number of poles of loop transfer function at origin of S-plane.
	Order of a system:
	i) Type =0, Order=2 ii) Type =1, Order=3
7.	Distinguish between steady state response and transient response.
	Transient response:
	Transient response is the time response of the system when the input changes from one state
	to another. Transient response is temporary and will die out soon
	Steady State Response:
	Steady state response is the time response of the system when time tends to infinity. It is
0	the benaviour of the system after an external input is applied to that system
δ.	what are time domain specifications or Dock time (t) Delay time (t) Disc time (t) Maximum
	The time domain specifications are Peak time (t_p) , Delay time (t_d) , Kise time (t_r) , Maximum over shoot (% M) and Settling time (t_r)
0	Define delay time
9.	Delay time is the time taken for the response to reach 50% of its final value for the very
	first time.
10.	The block diagram shown in fig. represents a heat treating oven. The set point is
	1000°C. What is the steady state temperature? (May 2010)
	$R(s)=1000$ \sim 20000
	\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow C(s)
	\bigwedge (s+1)(1+0.1 s)(1+0.005 s)
	(3+1)(1+0.13)(1+0.0033)
	At steady state the system reaches its final value which is the set point. Here the set point
	is 1000°C
11.	Define rise time. (or) What is meant by rise time? (May 2014, Nov 2016)
	For underdamped system: Rise time is the time taken for the response to rise from 0% to
	100% for the very first time. For every and system: Pice time is the time taken by the response to rise from 10% to
	90%
	For critically damped system: Rise time is the time taken for the response to rise from 5%
	to 95%.
	$\sqrt{1-\xi^2}$
	$\pi - \theta = \pi - \tan^{-1} \frac{\sqrt{1-\zeta}}{\varepsilon}$
	Rise Time $t_r = \frac{x-b}{c} = \frac{\zeta}{1-c^2}$
	$\omega_d \qquad \omega_n \sqrt{1-\zeta^2}$
	Where
	ω_d is the damped frequency; ω_n is the natural frequency; ζ is the damping ratio;
12.	Define Peak time (T_p) (Nov 2016) Deals time is the time taken for the
	Peak time is the time taken for the response to reach the peak value for the very first time.
	(or) it is the time taken for the response to reach the peak overshoot. π
	Peak time= $t_p = \frac{\pi}{\sqrt{1-\pi^2}}$
	$\omega_n \sqrt{1-\xi^2}$
	Where

	ω_n is the natural frequency; ξ is the damping ratio;			
13.	What are static error constants?			
	The K_p , K_v and K_a are called static error constants. These constants are associated with			
	Steady State error in a particular type of system and for a standard input.			
14.	Define settling time.			
	Settling time is defined as the time taken by the response to reach and stay within the			
	specified tolerance band (error). It is usually expressed as % of final value. The usual			
	tolerance band is $\pm 2\%$ or $\pm 5\%$ of the final value.			
	$t = \frac{4}{-4T}$ for +2% tolerance band			
	$v_s = \frac{1}{\xi \omega_n} - 4i$, for $\pm 2/6$ toterance band			
	3			
	$t_s = \frac{1}{\xi \omega} = 3T$, for $\pm 5\%$ tolerance band			
	Where			
	ω_n is the natural frequency: ξ is the damping ratio:			
15	Define maximum neak overshoot			
15.	Maximum Peak overshoot is defined as the ratio of maximum value measured from the			
	steady state vale to the steady state value.			
	$c(t_{1}) - c(\infty)$			
	% Peak overshoot, % $M_p = \frac{c(r_p) - c(r_p)}{c(r_p)} \times 100$			
	$c(\infty)$			
	Where			
16	$c(t_p)$ is the output at t_p ; $c(\alpha)$ is the output at infinity time.			
16.	Define damping ratio.			
	Damping ratio is defined as the ratio of actual damping to critical damping			
	Damping ratio= $\xi = \frac{Actual damping}{Critical damping}$			
17				
1/.	How the system is classified depending on the value of damping?			
	Case 1 : Undamped system, $\zeta = 0$			
	Case 2 : Underdamped system, $0 < \xi < 1$			
	Case 3 : Critically damped system, $\xi=1$			
10	Case 4 :Overdamped system, $\zeta > 1$ Why is (under domning) preferred to ever domning in control systems?			
18.	'Under damping' is preferred over damping in control systems:			
	settling time is less for an under damped system compared to over damped systems, even			
	though the oscillations are less in the later			
19	Give the steady state errors to a various standard inputs for type-2 system (May 2013)			
17.	Input signal SteadyState error			
	Step input 0			
	Ramp input 0			
	Parabolic input 1/Ka			
20.	What is the positional error coefficient?			
	The positional error constant $K_n = \lim_{s \to \infty} G(s)H(s)$. Here $G(s)H(s)$ is the loop transfer function.			
	$p = \frac{1}{s \to 0}$ $p = \frac{1}{s \to 0}$ $r = \frac{1}{s \to 0}$ $r = \frac{1}{s \to 0}$			
	The steady state error in type -0 system for unit step input is given by $-\frac{1}{1}$			
	1 + Kp			
21.	Steady state error will be zero if the system has a PI controller. State true or false.			
	True. The integral controller eliminates the steady state error. the advantage of PI controller,			
	that it minimizes the steady state error so that output tries to follow reference input			
22.	Define velocity error constant.			

	1	Static error constants do not	
		give the information Generalized error constants gives	
		regarding the variation of error signal as a function of time.	
		error with time.	
	2	Static error constants can be Using generalized error constants the	
		used only for standard steady state error can be determined	
		inputs. for any type of input.	
	3	They give the definite values	
		for errors, either 0 or or ∞a They give the exact error values.	
		finite value.	
29.	What are	the types of controllers that are used in a closed loop system?	
	• Pro	oportional controller	
	• Inte	egral controller	
	• Pro	oportional + Integral	
	• Pro	portional + derivative	
	• Pro	portional + Integral + Derivative	
30	What is m	eant hy reset time?	
20.	In the inte	gral mode of controller, the time during which the error signal is integrated is	
	called the	integral or reset time (T_i) . In other words, the time taken by the PI controller to	
	'reset' the s	set point to bring the output to the desired value.	
		$\begin{pmatrix} 1 \end{pmatrix}$	
	U(s)	$=$ Kc $\left 1+\frac{1}{T}\right \times$ E(s)	
	where	$\left(I_{i}S\right)$	
	Ti is the in	tegral (or) reset time;E(s) is the error signal; Kc is the controller gain;	
31.	What is a	derivative controller? What is its effect?	
	Derivative	controller is a device that produces a control signal, which is proportional to the	
	rate of change of input error signal. It is effective only during transient response and does		
	not produce any corrective measures for constant errors. The main usage of the P controller		
	is to decrease the steady state error of the system. As the proportional gain factor K		
	increases, the steady state error of the system decreases.		
32.	Why deriv	vative control action is never used alone?	
	Since the d	lerivative controller's output is directly proportional to the rate of change of error	
	signal if it	is used alone for a constant error signal it will not give any corrective action.	
	With sudd	en changes in the system the derivative controller will compensate the output	
	fast.A deri	vative controller will in general have the effect of increasing the stability of the	
	system, rec	ducing the overshoot, and improving the transient response	
33.	What is the	he effect of PI controller on the system performance? (Nov2013, Dec 2014,	
	May 2016		
	The PI con	ntroller increases the order of the system by one, which results in reducing the	
	steady state	e error. But the system becomes less stable than the original system. It Eliminates	
24	Ullset in th	a affact of DD controllon on the system nonformance?	
34.	What is the	of DD controller is to increase the domain a ratio of the system and so the neck	
	The effect	of PD controller is to decrease the standy state array of the system. As the	
	overshoot	al gain factor K increases the steady state error of the system. As the	
	Proportion	despite the reduction D control can never manage to aliminate the steady state	
	nowever,	despite the reduction, r control can never manage to emininate the steady state	
35	Errol of the	a function of a PID controllor (Nov 2003)	
55.	It combine	es all the three continuous controlling modes gives the output which is	
	nroportion	al to the error signal proportional to the rate of change of error signal and	
	proportion	al to the integral of error signal. So it has all the advantages of three individual	
	modes i e	less rise time less oscillations zero offset and less settling time	
36	What is a	nronortional controller?	
50.	11 mai 15 d		

The proportional controller produces an output signal, which is proportional to the error signal. The controller output, $u \alpha e$ $u = k_{p}e$. 37. Find the unit impulse response of system $H(s) = \frac{5s}{s^2 + 4}$ with zero initial conditions. $\frac{C(s)}{R(s)} = H(s) = \frac{5s}{(s^2 + 4)}; R(s) = \text{Unit impulse input} = 1$ $C(t) = L^{-1} \left[R(s)H(s) \right] = L^{-1} \left| \frac{5s}{(s^2 + 4)} \right| = 5\cos 2t$ 38. Find the unit impulse response of system $H(s) = \frac{5s}{s+2}$ with zero initial conditions.(May 2015) $\frac{C(s)}{R(s)} = H(s) = \frac{5s}{(s+2)} = \frac{5s+10-10}{(s+2)}$ = $\frac{5(s+2)-10}{(s+2)} = 5 - \frac{10}{(s+2)}$; R(s) = Unit impulse input = 1 $C(t) = L^{-1} \left[R(s)H(s) \right] = L^{-1} \left[5 - \frac{10}{(s+2)} \right] = 5\delta(t) - 10e^{-2t}$ 39. Write the mathematical expressions for step input and impulse input.(Nov 2016) 40. Define steady state error (Nov 2016, May 2017) Steady-state error is defined as the difference between the input (command) and the output of a system in the limit as time goes to infinity. (i.e value of error when time goes to infinity) 41 Draw transfer function model for PID Control (May 2017) Κ, Controller output Error U(s) K_i E(s) Κ., **Transfer function of PID controller** $\frac{U(s)}{E(s)} = \left(K_p \left(1 + \frac{K_i}{s} + K_d s\right)\right)$ Where K_p is the proportional gain; K_i is the integral gain; K_d is the derivative gain; E(s) is the error signal; U(s) is the controller output; What are the generalized Error Coefficients?/ What are the dynamic error 42. coefficients? (Nov 2017, May 2018) Т<u>уре 2</u> Steady-Type 0 Type 1 State Input Static error Static error Static error error Error Error Error constant constant constant formula 1 1 $\frac{1}{1+K_p} \mid K_p = \text{constant} \mid \frac{1}{1+K_p}$ $K_p = \infty$ $K_p = \infty$ 0 0 **Step** *u*(*t*)

PART B

(i) Discuss the effect on the performance of a second order control system of the proportional derivative control.
(ii) Figure shows PD controller used for the system. Determine the value of Td so that system will be critically damped. Calculate it's settling time.
R(s) 1 4 (S(S+1.6)) C(s)
2. Derive the expression of the step response of a standard second order underdamped system. Use standard notations. (May 2019)
3. i)A unity feedback system has G(s) = 40(s+2) / s(s+1)(s+4). Determine type of the system, all the error coefficients and error for ramp input with magnitude 4.

	ii) A second order system is given by $\frac{C(s)}{R(s)} = \frac{25}{s^2 + 6s + 25}$. Find its rise time, peak time,
	peak over shoot and settling time if subjected unit step input. Also calculate expression for its output response.(May 2009)
4.	A unity feedback control system has an open loop transfer function $G(s) = \frac{10}{s(s+2)}$.
	Determine its closed loop transfer function, damping ratio and natural frequency of oscillations. Also evaluate the rise time, percentage overshoot, peak time and settling time for a step input of 12 units.(May 2018)
5.	An unity feedback control system is shown in fig. below. By using derivative control the
	damping ratio is to be made to 0.8. Determine the value of Td and compare rise time, peak
	time and maximum overshoot of the system. The input to the system being unit step. (May 2010)
	i) Without derivative control
	i) With derivative control
	R(S) 16 C(S)
	$\rightarrow + \rightarrow = - \rightarrow =$
6.	i)The unity feedback system is characterized by an open loop transfer function
	$G(s) = \frac{K}{1 - \frac{1}{2}}$ Determine the gain K so that the system will have damping ratio of 0.5
	s(s+10) betermine the gain K, so that the system will have damping ratio of 0.5.
	For this value of K, determine settling time, peak over shoot and time to peak overshoot for
	a unit step input.
	ii) A unity feedback system has the forward transfer function $G(s) = \frac{K_1(2s+1)}{s(5s+1)(1+s)^2}$. The
	input is applied to the system. Determine the minimum value of K1, if the steady state error is to be less than 0.1. (May 2011, Nov 2012)
7.	A unity feedback system with a PD controller as shown in Fig. Determine the values of K_P
	and K_D so that the steady state error to a unit ramp input is 0.001 and damping ratio is 0.5.
	B(A) (0)
8.	A unity feedback control system has an open loop transfer function $G(s) = 10/s(s+5)$.
	Determine its closed loop transfer function, damping ratio and natural frequency of
	oscillations. Also evaluate the rise time, peak Overshoot, peak time and settling time for a
0	Step input of 12 units.(NUV 2019)
9.	With suitable block diagrams and equations, explain the following types of controllers
10.	employed in controls systems: (May 2011, Nov 2012, Nov 2015)
	1. Proportional controller, 2. Proportional plus Integral controller. 3. PID controller and
	4. Integral controller
11.	With a neat block diagram and derivation explain how PI, PD and PID compensation will
	improve the time response of system (May 2016)

	A unity feedback system is characterised by the open loop transfer function
	$G(s) = \frac{1}{s(0.5s+1)(0.2s+1)}$. Determine the steady state errors for Unit step, Unit ramp and
	Unit acceleration unit. Also determine the damping ratio and natural frequency of the dominant roots. (Nov2013)
13.	Consider a unity feedback system with open loop transfer function
	$G(s) = \frac{75}{(s+1)(s+2)(s+8)}$. Design a PID controller to satisfy the following specifications.
	(s+1)(s+3)(s+3) (i) The steady state error for unit ramp input should be less than 0.08
	(i) Damping ratio = 0.8 and
	(iii) Natural frequency of oscillations = 2.5 rad/sec. (Nov 2011)
14.	i) The open loop transfer function of a unity feedback control system is given by
	$G(s) = \frac{K}{s(sT+1)}$ where K and T are constants. By what factor should the amplifier gain be
	reduced so that the peak overshoot of unit step response of the system is reduced from 75%
	ii) A certain unity negative feedback control system has the following forward path transfer
	function $G(s) = \frac{K(s+2)}{1-1-1}$. The input applied is $r(t) = 1+3t$. Find the minimum value
	s(s+5)(4s+1)
15.	i)Determine the unit step response of the control system shown in the following figure.
	(May 2014)
	$R(s) \longrightarrow \underbrace{10}_{S(S+3)} C$ www.EnggTree.com
	(s+10)/10
	ii) The open loop transfer function of a unity feedback system is given by $G(s) = \frac{20}{s(s+1)}$.
	ii) The open loop transfer function of a unity feedback system is given by $G(s) = \frac{20}{s(s+1)}$. The input function is $r(t) = 2 + 3t + t^2$. Determine generalized error coefficient and steady state error.
16.	ii) The open loop transfer function of a unity feedback system is given by $G(s) = \frac{20}{s(s+1)}$. The input function is $r(t) = 2 + 3t + t^2$. Determine generalized error coefficient and steady state error. (i). The open loop transfer function of a unity feedback system is given by $g(s) = \frac{200}{s(s+8)}$.
16.	ii) The open loop transfer function of a unity feedback system is given by $G(s) = \frac{20}{s(s+1)}$. The input function is $r(t) = 2 + 3t + t^2$. Determine generalized error coefficient and steady state error. (i).The open loop transfer function of a unity feedback system is given by $g(s) = \frac{200}{s(s+8)}$. The input function is $r(t)=2t$. Determine steady state error. If it is desired to reduce the existing error by 5% find the new gain of the system.(Dec 2018)
16.	ii) The open loop transfer function of a unity feedback system is given by $G(s) = \frac{20}{s(s+1)}$. The input function is $r(t) = 2 + 3t + t^2$. Determine generalized error coefficient and steady state error. (i). The open loop transfer function of a unity feedback system is given by $g(s) = \frac{200}{s(s+8)}$. The input function is $r(t)=2t$. Determine steady state error. If it is desired to reduce the existing error by 5% find the new gain of the system. (Dec 2018) (i). Explain in detail about PID controllers used in control systems. (Dec 2018)
16.	ii) The open loop transfer function of a unity feedback system is given by $G(s) = \frac{20}{s(s+1)}$. The input function is $r(t) = 2 + 3t + t^2$. Determine generalized error coefficient and steady state error. (i).The open loop transfer function of a unity feedback system is given by $g(s) = \frac{200}{s(s+8)}$. The input function is $r(t)=2t$. Determine steady state error. If it is desired to reduce the existing error by 5% find the new gain of the system.(Dec 2018) (ii). Explain in detail about PID controllers used in control systems.(Dec 2018) i) A unity feedback system has the forward transfer function. $G(s) = \frac{ks}{(1+s)^2}$
16.	ii) The open loop transfer function of a unity feedback system is given by $G(s) = \frac{20}{s(s+1)}$. The input function is $r(t) = 2 + 3t + t^2$. Determine generalized error coefficient and steady state error. (i).The open loop transfer function of a unity feedback system is given by $g(s) = \frac{200}{s(s+8)}$. The input function is $r(t)=2t$. Determine steady state error. If it is desired to reduce the existing error by 5% find the new gain of the system.(Dec 2018) (ii). Explain in detail about PID controllers used in control systems.(Dec 2018) i) A unity feedback system has the forward transfer function. $G(s) = \frac{ks}{(1+s)^2}$ For the input $r(t) = 1 + 5t$, find the minimum value of K so that the steady state error is less
16.	ii) The open loop transfer function of a unity feedback system is given by $G(s) = \frac{20}{s(s+1)}$. The input function is $r(t) = 2 + 3t + t^2$. Determine generalized error coefficient and steady state error. (i).The open loop transfer function of a unity feedback system is given by $g(s) = \frac{200}{s(s+8)}$. The input function is $r(t)=2t$. Determine steady state error. If it is desired to reduce the existing error by 5% find the new gain of the system.(Dec 2018) (ii). Explain in detail about PID controllers used in control systems.(Dec 2018) i) A unity feedback system has the forward transfer function. $G(s) = \frac{ks}{(1+s)^2}$ For the input $r(t) = 1 + 5t$, find the minimum value of K so that the steady state error is less than 0.1(Use final value theorem).
16.	ii) The open loop transfer function of a unity feedback system is given by $G(s) = \frac{20}{s(s+1)}$. The input function is $r(t) = 2 + 3t + t^2$. Determine generalized error coefficient and steady state error. (i).The open loop transfer function of a unity feedback system is given by $g(s) = \frac{200}{s(s+8)}$. The input function is $r(t)=2t$. Determine steady state error. If it is desired to reduce the existing error by 5% find the new gain of the system.(Dec 2018) (ii). Explain in detail about PID controllers used in control systems.(Dec 2018) i) A unity feedback system has the forward transfer function. $G(s) = \frac{ks}{(1+s)^2}$ For the input $r(t) = 1 + 5t$, find the minimum value of K so that the steady state error is less than 0.1(Use final value theorem). ii) Briefly discuss about step response analysis of second order system. (May 2015)
16. 17. 18.	ii) The open loop transfer function of a unity feedback system is given by $G(s) = \frac{20}{s(s+1)}$. The input function is $r(t) = 2 + 3t + t^2$. Determine generalized error coefficient and steady state error. (i).The open loop transfer function of a unity feedback system is given by $g(s) = \frac{200}{s(s+8)}$. The input function is $r(t)=2t$. Determine steady state error. If it is desired to reduce the existing error by 5% find the new gain of the system.(Dec 2018) (ii). Explain in detail about PID controllers used in control systems.(Dec 2018) i) A unity feedback system has the forward transfer function. $G(s) = \frac{ks}{(1+s)^2}$ For the input $r(t) = 1 + 5t$, find the minimum value of K so that the steady state error is less than 0.1(Use final value theorem). ii) Briefly discuss about step response analysis of second order system. (May 2015) i) For the system shown in the below figure, find the effect of PD controller with $T_d = 1/10$ on peak overshoot and settling time when it is excited by unit step input
16. 17. 18.	ii) The open loop transfer function of a unity feedback system is given by $G(s) = \frac{20}{s(s+1)}$. The input function is $r(t) = 2 + 3t + t^2$. Determine generalized error coefficient and steady state error. (i).The open loop transfer function of a unity feedback system is given by $g(s) = \frac{200}{s(s+8)}$. The input function is $r(t)=2t$. Determine steady state error. If it is desired to reduce the existing error by 5% find the new gain of the system.(Dec 2018) (ii). Explain in detail about PID controllers used in control systems.(Dec 2018) i) A unity feedback system has the forward transfer function. $G(s) = \frac{ks}{(1+s)^2}$ For the input $r(t) = 1 + 5t$, find the minimum value of K so that the steady state error is less than 0.1(Use final value theorem). ii) Briefly discuss about step response analysis of second order system. (May 2015) i) For the system shown in the below figure, find the effect of PD controller with $T_d = 1/10$ on peak overshoot and settling time when it is excited by unit step input.
16. 17. 18.	ii) The open loop transfer function of a unity feedback system is given by $G(s) = \frac{20}{s(s+1)}$. The input function is $r(t) = 2 + 3t + t^2$. Determine generalized error coefficient and steady state error. (i).The open loop transfer function of a unity feedback system is given by $g(s) = \frac{200}{s(s+8)}$. The input function is $r(t)=2t$. Determine steady state error. If it is desired to reduce the existing error by 5% find the new gain of the system.(Dec 2018) (ii). Explain in detail about PID controllers used in control systems.(Dec 2018) i) A unity feedback system has the forward transfer function. $G(s) = \frac{ks}{(1+s)^2}$ For the input $r(t) = 1 + 5t$, find the minimum value of K so that the steady state error is less than 0.1(Use final value theorem). ii) Briefly discuss about step response analysis of second order system. (May 2015) i) For the system shown in the below figure, find the effect of PD controller with $T_d = 1/10$ on peak overshoot and settling time when it is excited by unit step input. $R(s) \longrightarrow 5$ s 1 $(s+3) \longrightarrow C$
16. 17. 18.	ii) The open loop transfer function of a unity feedback system is given by $G(s) = \frac{20}{s(s+1)}$. The input function is $r(t) = 2 + 3t + t^2$. Determine generalized error coefficient and steady state error. (i). The open loop transfer function of a unity feedback system is given by $g(s) = \frac{200}{s(s+8)}$. The input function is $r(t)=2t$. Determine steady state error. If it is desired to reduce the existing error by 5% find the new gain of the system. (Dec 2018) (ii). Explain in detail about PID controllers used in control systems. (Dec 2018) i) A unity feedback system has the forward transfer function. $G(s) = \frac{ks}{(1+s)^2}$ For the input $r(t) = 1 + 5t$, find the minimum value of K so that the steady state error is less than 0.1(Use final value theorem). ii) Briefly discuss about step response analysis of second order system. (May 2015) i) For the system shown in the below figure, find the effect of PD controller with $T_d = 1/10$ on peak overshoot and settling time when it is excited by unit step input. $R(s) \xrightarrow{5} (s+3) \xrightarrow{5} $

	ii) Discuss the effect of PID controller in the forward path of a system. / State and Explain		
	the effects of P, PI and PID controllers on the system dynamics. (May 2015, Nov 2017,		
	May 2018)		
19.	The unity feedback system is characterized by an open loop transfer function $G(s) = K / C$		
	s(s+10) Determine the gain K, so that the system will have a damping ratio of 0.5 for this		
	value of K. Determine settling time, peak overshoot and peak time for a unit step input.		
	(May 2017)		
20.	(i)Consider the system shown in figure, where damping ration is 0.6 and the natural		
	undamped frequency is 5 rad/sec. Obtain the (1) Rise Time (2) Rise time (3)Peak		
	overshoot (4) Settling time when the system is subjected to a unit step input.(Dec 2018)		
	2		
	$R(s) \longrightarrow (+) \longrightarrow C$		
	$s(s+2\xi\omega_n)$		
	(ii)Derive the time domain specifications of a second order system subjected to a step input		
	(Nov 2016)(Dec 2018)		
21.	i) What are the various standard test signals? Draw the characteristic diagram and obtain		
	the mathematical representation of all. (Dec 2014)		
	ii) Calculate the following parameters for the system whose natural frequency of		
	oscillations is 10 rad/sec and damping factor is 0.707. (Dec 2014)		
	(1) Delay Time (2) Rise time (3)Peak overshoot (4) Settling time		
22.	i)Determine the steady state errors for the following inputs $5u(t)$, $5tu(t)$, $5t^2u(t)$ to a system		
	whose open loop transfer function is given by $G(s) = \frac{100(s+2)(s+6)}{s+100(s+2)(s+6)}$		
	whose open loop transfer function is given by $O(s) = \frac{s(s+3)(s+4)}{s(s+3)(s+4)}$		
	ii) With its block diagram explain the concepts of PI and PD compensation. (Dec 2014)		
23.	i) For a unity feedback control system, the open loop transfer function is $G(s) = \frac{10(s+2)}{s}$		
	The of a unity receiver control system, the open loop transfer function is $O(s) = \frac{1}{s^2(s+1)}$		
	Find (1) the position, velocity . acceleration error constants, (2) the steady state error when		
	$\mathbf{P}(\mathbf{z}) = \begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$		
	$K(s) = \left(\frac{-s}{s}\right)^{-} \left(\frac{-s^{2}}{s^{2}}\right)^{+} \left(\frac{-s^{3}}{s^{3}}\right)^{-} (N_{OV} 2016)$		
	ii)State the effect of DL & DD companyation on the system performance (New 2016)		
24	Explain shout briefly the expertise of D. DL and DD control companyation using circula		
24.	Explain about briefly the operation of P, PI, and PID control compensation using simple		
25	MAILAB programs. (May 2017)		
23.	A unity feedback control systems is characterized by the following open loop transfer function $4S \pm 1$. Determine its transient meaning for white ten input and elected the		
	function $G(S) = \frac{4S+1}{S(S+6)}$. Determine its transient response for unit step input and sketch the		
	response. Evaluate the maximum overshoot and the corresponding peak time. (Nov 2017)		
	i) Derive the time response of a first order system for unit step input.		
	ii) The unity feedback control system is characterized by an open loop transfer function		
26			
20.	$G(s) = \frac{1}{s(s+10)}$. Determine the gain K, so that the system will have damping ratio of 0.5		
	for this value of K. Determine the peak overshoot and peak time for a unit step input		
	$\frac{1}{C(s)} = \frac{1}{Ks+h}$		
	Consider a unity feedback system with a closed loop transfer function $\frac{O(s)}{R(s)} = \frac{A(s+b)}{s^2 + as + b}$		
27.	Determine the open loop transfer function G(s) .Show that the steady state error with unity		
	ramp input is given by $\frac{a-K}{c}$		
	$\frac{1}{b}$		

i)A unity feedback system is characterized by an open loop transfer function $G(s) = \frac{k}{s(s+10)}$. Determine the gain k so that the system will have a damping ratio of 0.5. For this value of k, determine peak overshoot and peak time for a unit step input. ii) The following diagram shows a unity feedback, system with derivative control. By using this derivative control the damping ratio is to be made 0.5. Determine the value of T_{d} . 28 +1.6si)Determine K to limit the error of a system for input $1+8t+\frac{18}{2}t^2$ to 0.8 having $G(s)H(s) = \frac{K}{s^2(s+1)(s+4)}$ 29. ii) The forward path transfer function of a unity feedback control system is given by $G(s) = \frac{2}{s(s+3)}$. Obtain an expression for unit step response of the system. (May 2010) i) Derive an expression to find steady state error of a closed loop control system. ii) The closed loop transfer function of a second order system is given by $G(s) = \frac{100}{s^2 + 10s + 100}$. Determine the damping ratio, natural frequency of oscillations, rise 30. time, settling time and peak overshoot. Determine the positive values of K and a so that the system below oscillates at a frequency of 2 rad/sec.(Dec 2018) 31. What is the need for PID control for feedback control systems? Explain how it is designed 32. for second order systems. (NOV 2019)

UNIT III – FREQUENCY RESPONSE AND SYSTEM ANALYSIS

Closed loop frequency response-Performance specification in frequency domain-Frequency response of standard second order system- Bode Plot - Polar Plot- Nyquist plots-Design of compensators using Bode plots-Cascade lead compensation-Cascade lag compensation-Cascade lag-lead compensation

	PARI - A		
1.	Define band width.		
	The bandwidth is the range of frequencies for which the system normalized gain is more		
	than -3db. The frequency at which the gain is -3db is called cut-off frequency.		
2.	Define cut-off rate.		
	The slope of the log-magnitude curve near the cut-off frequency is called cut-off rate. The		
	cut-off rate indicates the ability of the system to distinguish the signal from noise.		
3.	Define Gain Crossover Frequency.		
	The gain crossover frequency is the frequency at which the magnitude of open loop transfer		
	function is unity(0 dB)		
4.	What are the advantages of frequency domain analysis of control systems?		

	• The absolute and relative stability of the closed loop system can be estimated from the language of the onen loop frequency regrammed.
	the knowledge of the open loop frequency response.
	• The practical testing of system can be easily carried with available sinusoidal signal
	The transfer function of the complicated functions can be determined
	experimentally by frequency response tests
	• The design and parameter adjustments can be carried more easily
	• The corrective measure for noise disturbance and parameter variation can be easily.
	carried
	• It can be extended to certain non - linear systems
5.	What are the frequency domain specifications? (Or) Name the parameters which
	constitute frequency domain specifications. (Nov 2011, May 2016)
	The frequency domain specifications indicate the performance of the system in frequency
	domain, and they are Resonant peak(ω_p), Resonant frequency(ω_r), Band width(ω_b), Cut-
	off rate, Phase margin(γ) & Gain margin (kg).
6.	Define resonant peak and resonant frequency.
	Resonant peak (Mr): The maximum value of the magnitude of closed loop transfer
	function is called resonant peak. A large resonant peak corresponds to a large overshoot in
	transient response.
	The resonant peak, $M_r M_r 1/2\xi \sqrt{1-\xi^2}$
	where M_r is the resonant peak, ξ is the damping ratio.
	Resonant frequency (ω_r) : The frequency at which the resonant peak occurs is called
	resonant frequency. This is related to the frequency of oscillation in the step response and
	thus it is indicative of the speed of transient response.
	The resonant frequency, $\omega_r = \omega_n \sqrt{1 - 2\xi^2}$
	Where www.EnggTree.com
	ω_r is the resonant frequency; ω_n is the natural frequency; ξ is the damping ratio.
7.	What is meant by corner frequency in frequency response analysis? (May 2011, Nov 2012, Mar 2014)
	2012, May 2014) The magnitude plot can be approximated by asymptotic straight lines. The frequencies
	corresponding to the meeting point of asymptotes are called corner frequencies. The slope
	of the magnitude plot changes at every corner frequency.
8.	Define phase margin. (Nov 2013, May 2014, Dec 2014, Nov 2016, May 2018)
	The phase margin is defined as the amount of additional phase lag at the gain crossover
	frequency (ω_{gc}) required to bring the system to the verge of instability.
	Phase margin $\gamma = \phi_{gc} + 180^{\circ}$
	Where ϕ_{gc} is the phase angle of $G(j\omega)H(j\omega)$ at $\omega = \omega_{gc}$
9.	Define phase cross over frequency.
	The phase cross over frequency is the frequency at which the phase of open loop transfer
	function is -180°.
10.	Define the term Gain Margin.(Dec 2014, Nov 2015, May 2017, May 2018)
	The gain margin, K_g is defined as the value of gain, to be added to system in order to bring
	the system to the verge of instability. The gain margin is given by the reciprocal of the
	magnitude of open loop transfer function at phase cross over frequency. The phase cross
	over frequency is the frequency at which the phase is -180° .
	Gain margin $Kg = \frac{1}{ G(ig_{1}) }$
	$ \mathcal{O}(\mathcal{J}\omega_{pc}) $
1	The gain margin in dB can be expressed as

	$K_g in dB = 20 \log(K_g) = 20 \log \frac{1}{G(j\omega_{pc})}$				
11.	What is all pass systems and non-minimum phase transfer function?				
	All pass systems: An all pass s	system is a system whose fre	quency magnitude response is		
	constant for all frequencies an	d the transfer function will he left half of s – plane the	have anti symmetric pole zero		
	position with respect to imagin	ne left han of s – plane, the harv axis.	te is a zero in the mirror image		
	Non-minimum phase transfer	function: A transfer functior	, which has one or more zeros		
	in the right half s – plane is kn	own as non-minimum phase	transfer function.		
12.	Obtain the transfer function	of the system whose Bode	magnitude plot given below:		
	(Way 2019)				
	dB≜				
	60				
	40				
	10				
	20				
	0.1	1.0 \1	0.0 ω (rad/sec)		
	Transfer function G(S)= $\frac{100}{S^2(S+1)}$				
13.	What is a minimum phase tr	ansfer function?			
	A transfer function, which has	s all poles and zeros in the	left half s – plane is known as		
	minimum phase transfer function.				
14	In minimum phase system	how the starting and a	and naint of nolar plat are		
14.	In minimum phase system, identified? (NOV 2019)	, how the starting and e	and point of polar plot are		
14.	In minimum phase system, identified? (NOV 2019) Frequency (rad/sec)	, how the starting and e Magnitude	end point of polar plot are Phase angle(degrees)		
14.	In minimum phase system, identified? (NOV 2019) Frequency (rad/sec) 0	how the starting and e $Magnitude$ ∞	Phase angle(degrees) -90 or 270		
14.	In minimum phase system, identified? (NOV 2019) Frequency (rad/sec) 0 ∞	, how the starting and e Magnitude ∞ 0	Phase angle(degrees) -90 or 270 -270 or 90		
14.	In minimum phase system, identified? (NOV 2019) Frequency (rad/sec) 0 ∞ The polar plot starts at (∞ ,-90)	, how the starting and e Magnitude ∞ 0) and ends at (0,-270).	Phase angle(degrees) -90 or 270 -270 or 90		
14. 15.	In minimum phase system, identified? (NOV 2019) Frequency (rad/sec) 0 ∞ The polar plot starts at (∞ ,-90) Determine the frequency dor	, how the starting and e Magnitude ∞ 0 and ends at (0,-270). nain specification of a second	Phase angle(degrees) -90 or 270 -270 or 90 nd order system when closed		
14.	In minimum phase system, identified? (NOV 2019) Frequency (rad/sec) 0 0 The polar plot starts at (∞,-90) Determine the frequency dor loop transfer function is give	how the starting and e Magnitude ∞ 0 and ends at (0,-270). main specification of a second m by $G(s)H(s) = \frac{64}{s^2 + 10s + s^2}$	Phase angle(degrees) -90 or 270 -270 or 90 nd order system when closed 64 (May 2010)		
14.	In minimum phase system, identified? (NOV 2019) Frequency (rad/sec) 0 ∞ The polar plot starts at (∞ ,-90) Determine the frequency dor loop transfer function is give $\omega_r = \omega_n \sqrt{1-2\varsigma^2}$	how the starting and e Magnitude ∞ 0 and ends at (0,-270). main specification of a second n by $G(s)H(s) = \frac{64}{s^2 + 10s + 10}$	Phase angle(degrees) -90 or 270 -270 or 90 nd order system when closed 64 (May 2010)		
14.	In minimum phase system, identified? (NOV 2019) Frequency (rad/sec) 0 ∞ The polar plot starts at (∞ ,-90) Determine the frequency dor loop transfer function is give $\omega_r = \omega_n \sqrt{1-2\varsigma^2}$ $\omega_n = 8$	how the starting and e Magnitude ∞ 0 and ends at (0,-270). main specification of a second n by $G(s)H(s) = \frac{64}{s^2 + 10s + 10s^2}$	Phase angle(degrees) -90 or 270 -270 or 90 nd order system when closed 64 (May 2010)		
14.	In minimum phase system, identified? (NOV 2019) Frequency (rad/sec) 0 ∞ The polar plot starts at (∞ ,-90) Determine the frequency dor loop transfer function is give $\omega_r = \omega_n \sqrt{1-2\varsigma^2}$ $\omega_n = 8$ $\varsigma = 0.625$	how the starting and e Magnitude ∞ 0 and ends at (0,-270). nain specification of a second n by $G(s)H(s) = \frac{64}{s^2 + 10s $	Phase angle(degrees) -90 or 270 -270 or 90 nd order system when closed 64 (May 2010)		
14. 15. 16.	In minimum phase system, identified? (NOV 2019) Frequency (rad/sec) 0 ∞ The polar plot starts at (∞ ,-90) Determine the frequency dor loop transfer function is give $\omega_r = \omega_n \sqrt{1-2\varsigma^2}$ $\omega_n = 8$ $\varsigma = 0.625$ Derive the transfer function of	how the starting and e Magnitude ∞ 0 and ends at (0,-270). main specification of a second n by $G(s)H(s) = \frac{64}{s^2 + 10s $	Phase angle(degrees) -90 or 270 -270 or 90 nd order system when closed 64 (May 2010) vork. (May 2010)		
14. 15. 16.	In minimum phase system, identified? (NOV 2019) Frequency (rad/sec) 0 ∞ The polar plot starts at (∞ ,-90) Determine the frequency dor loop transfer function is give $\omega_r = \omega_n \sqrt{1-2\varsigma^2}$ $\omega_n = 8$ $\varsigma = 0.625$ Derive the transfer function of	how the starting and e Magnitude ∞ 0 and ends at (0,-270). main specification of a second n by $G(s)H(s) = \frac{64}{s^2 + 10s $	Phase angle(degrees) -90 or 270 -270 or 90 nd order system when closed $\overline{64}$ (May 2010) s + $\frac{1}{T}$		
14. 15. 16.	In minimum phase system, identified? (NOV 2019) Frequency (rad/sec) 0 ∞ The polar plot starts at (∞ ,-90) Determine the frequency dor loop transfer function is give $\omega_r = \omega_n \sqrt{1-2\varsigma^2}$ $\omega_n = 8$ $\varsigma = 0.625$ Derive the transfer function of Transfer function of lead correction	how the starting and e Magnitude ∞ 0 0 0 0 0 0 0 0 0 0 0 0 0	Phase angle(degrees) -90 or 270 -270 or 90 nd order system when closed $\overline{64}$ (May 2010) $s + \frac{1}{T}$		
14. 15. 16.	In minimum phase system, identified? (NOV 2019) Frequency (rad/sec) 0 ∞ The polar plot starts at (∞ ,-90) Determine the frequency dor loop transfer function is give $\omega_r = \omega_n \sqrt{1-2\varsigma^2}$ $\omega_n = 8$ $\varsigma = 0.625$ Derive the transfer function of Transfer function of lead com	how the starting and e Magnitude ∞ 0 0 and ends at (0,-270). nain specification of a second n by $G(s)H(s) = \frac{64}{s^2 + 10s + 1$	Phase angle(degrees) -90 or 270 -270 or 90 nd order system when closed $\overline{64}$ (May 2010) $s + \frac{1}{T}$ $r + \frac{1}{\alpha T}$		
14. 15. 16.	In minimum phase system, identified? (NOV 2019) Frequency (rad/sec) 0 ∞ The polar plot starts at (∞ ,-90) Determine the frequency dor loop transfer function is give $\omega_r = \omega_n \sqrt{1-2\varsigma^2}$ $\omega_n = 8$ $\varsigma = 0.625$ Derive the transfer function of Transfer function of lead com The lead compensator has a po	how the starting and e Magnitude ∞ 0 0 0 0 0 0 0 0	Phase angle(degrees) -90 or 270 -270 or 90 nd order system when closed $\overline{64}$ (May 2010) $s + \frac{1}{T}$ $r + \frac{1}{\alpha T}$ $s = -\frac{1}{T}$. Since $\alpha < 1$		

17.	The damping ratio and the undamped natural frequency of a second order system			
	are 0.5 and 5 respectively. Calculate the Resonant frequency. (May 2014)			
	$\omega_r = \omega_n \sqrt{1 - 2\xi^2}$			
	The resonant frequency, $\omega_r = 5\sqrt{1-2(0.5)^2}$			
	$\omega_r = 3.5355$			
	Here			
	ω_r is the resonant frequency; ω_n is the natural frequency; ξ is the damping ratio;			
18.	What are constant M and N circles? (Nov 2013, May 2016)			
	The magnitude M of closed loop transfer function with unity feedback will be in the form			
	of circle in complex plane for each constant value of M. The family of these circles is			
	called M circles. Let N = tan a, Where a is the phase of closed loop transfer function with			
	unity feedback. For each value of N, a circle can be drawn in the complex plane. The			
	family of these circles is called N circles.			
19.	What is the use of constant M circles?			
	Constant M circles are used to find the closed loop frequency response graphically from			
	the open loop frequency response G (j ω) without calculating the magnitude and phase of			
20	the closed loop transfer function at each frequency			
20.	What is bode plot? State the advantage of Bode plot (Nov 2015).			
	I he bode plot is a frequency response plot of the transfer function of a system. It consists			
	of two piots – magnitude piot and pilase piot. Magnitude plot : Dist between magnitude in dP and log ω for various values of ω			
	Phase plot. Plot between magnitude in do and log ω for various values of ω .			
	Usually both the plots are plotted on a common X_{a} axis in which the frequencies are			
	expressed in logarithmic scale			
	Advantages:			
	• The approximate plot can be sketched quickly.			
	 The frequency domain specifications can be easily determined. 			
	 The Bode plot can be used to analyse both open loop and closed loop system. 			
21.	Write the MATLAB statement to draw the Bode plot of the given system. (May 2013)			
	Y(s) = 4s + 6			
	$\frac{1}{U(s)} = \frac{1}{s^3 + 3s^2 + 8s + 6}$			
	$n_{1}m_{=}[4 \ 6]$			
	$den=[1 \ 3 \ 8 \ 6]$			
	bode(tf(num,den))			
22.	$Y(s) \qquad 4s+6$			
	Write the MATLAB command for $\frac{1}{U(s)} = \frac{1}{s^3 + 3s^2 + 8s + 6}$ plotting Bode diagram (Nov			
	2011)			
	num=[4 6]			
	den=[1 3 8 6]			
	sys=tf(num,den)			
	bode(sys)			
23.	Draw the polar plot of $G(s) = \frac{1}{1}$ (May 2012)			
	(1+sT)			

EnggTree.com

2.	Transfer function of lead	The transfer function of a lag compensator is
	compensator,	$r + \frac{1}{r}$
	$G_{C}(s) = \frac{s + z_{c}}{s + P_{c}} = \frac{s + \frac{1}{T}}{s + \frac{1}{T}}$	given by $Gc(s) = \frac{s + Zc}{s + Pc} = \frac{s + T}{s + \frac{1}{\beta T}}$
	The lead compensator has a $\frac{\alpha}{1}$	The lag compensator has a pole at $s = -\frac{1}{\beta T}$
	pole at $S = -\frac{1}{\alpha T}$ and a zero at	1
	$S = -\frac{1}{T}$. Since $\alpha < 1$	and a zero at $s = -\frac{T}{T}$
	and $T > 0$, the zero of lead compensator is nearer to origin	where, $T > 0$ and $\beta > 1$
3.	Lead compensator acts like PD	Lag compensator acts like PI controller and
	controller improves transient state.	improves steady state.
	PAR	TR

PART B

1.	A unity feedback control system has $G(s) = \frac{1}{s(1+0.1s)(1+s)}$. Draw the bode plot.				
	Determine Gain margin, phase margin, ωgc and ωpc. Comment on the stability. (Dec 2018)				
2.	The open loop transfer Function of a unity feedback system is given by,				
	$G(s) = \frac{64(s+2)}{s(s+0.5)+(s^2+10s+64)}$. Sketch the bode plot and compute the gain and phase margins				
	of the closed loop system. Also comment on the stability of the closed loop system. (May 2019)				
3.	Given $G(s) = \frac{Ke^{-0.2s}}{s(s+2)(s+8)}$, find K for the following two cases: (May 2011, Nov 2012)				
	 (i) Gain margin equal to 6 db (ii) Phase margin equal to 45° 				
4.	i)Sketch the Bode magnitude plot for the transfer function $G(s) = \frac{100(1+0.1s)}{(1+0.01s)(1+s)}$				
	ii)Draw the polar plot for the following transfer function $G(s) = \frac{10(s+2)}{s(s+1)(s+3)}$ (Nov 2011)				
5.	List out the frequency domain specifications of a standard second order system. Derive the expressions for resonant peak and Bandwidth of a second order system. (NOV 2019)				
6.	Draw the pole-zero diagram of a lead compensator. Propose lead compensation using electrical network. Derive the transfer function. Draw the Bode plot. (Nov 2012)				
7.	A unity feedback control system has $G(s) = \frac{10}{s(s+1)}$. Design a lead compensator such that				
	the closed loop system will satisfy the following specifications Static velocity error				
	constant = 20 sec; Phase margin = 50° , Gain margin = 10 db				
8.	(i)For the following transfer function, $G(s) = \frac{K(s+3)}{s(s+1)(s+2)}$ sketch the Bode magnitude plot				
	by showing slope contributions from each pole and zero.				
	(ii) For an unity feedback system with closed loop transfer function $\frac{G(s)}{1+G(s)}$ derive the				
	equations for the locus of constant M circles and constant N circles. (May 2012)				

9.	Define all the frequency domain specifications of a second order control system after			
	plotting the response. (Nov 2015)			
10.	i)Write the procedure to obtain Nichol's chart from constant M circles.			
	ii) Write a Matlab program to examine the stability using Bode plot, for the given transfer			
	functions $G(s) = \frac{20e^{-0.2s}}{s(s+2)(s+8)}$. Explain the code (statements) as to what the variables and			
	numbers mean and also what action is caused by each statement. State also how you will			
	numbers mean and also what action is caused by each statement. State also how you will interpret the result. (May 2012)			
11.	Consider a unity feedback open loop transfer function $G(s) = \frac{100}{s(1+0.1s)(1+0.2s)}$. Draw the			
	Bode plot and find the phase and gain cross over frequencies, phase and gain margin and the stability of the system. (May 2013)			
12.	Explain in detail the design procedure of lead compensator using Bode plot.(May 2013)			
13.	For the following transfer function draw bode plot and obtain gain crossover frequency.			
	20			
	$G(s) = \frac{1}{s(1+3s)(1+4s)}$ (Nov2013)			
14	Discuss in detail about lead and lag networks (Nov2013)			
14.	Discuss in detail about lead and lag networks.(19072013)			
15.	The open loop transfer function of a system is given by $G(s)H(s) = \frac{50}{(1+0.5)(1+0.00)}$.			
	s(1+0.5s)(1+0.08s)			
	Draw the Bode plot and determine Gain margin and Phase margin. (May 2014)			
16.	(i)Sketch the polar plot of the unity feedback system with open loop transfer function			
	$G(s) = \frac{1}{s(s+1)^2}$. Also find the frequency at which $ G(j\omega) = 1$. (10)(May 2014)			
	ii) What are the advantages and disadvantages of frequency response analysis?			
17.	For the following transfer function draw the bode plot, find the gain and phase margin:			
	(May 2015)			
	5			
	$G(s)H(s) = \frac{1}{s(10+s)(20+s)}$			
18	The open loop transfer Function of a unity feedback system is given by			
10.	The open loop transfer function of a unity feedback system is given by, 50			
	$(s) = \frac{1}{s(s+1) + (s+5)(s+10)}.$			
	Sketch the polar plot, calculate the gain and phase margins of the closed loop system and			
	comment on the stability of the closed loop system.(May 2019)			
19.	The open loop transfer function of a unity feedback system is given by			
	$G(s) = \frac{1}{1}$ Sketch the polar plant and determine the gain and phase margin			
	s(s+1)(1+2s). Solution the point plant and determine the gain and phase margin.			
20.	i) Describe about Lead- Lag compensators design procedure.			
	(ii) Write short notes on constant M and N circles. (Dec 2014)			
21.	i)Write short notes on series compensation. (May 2016)			
	ii) Write down the procedure for designing Lead compensator using Bode plot.			
22.	The open loop transfer function of a unity feedback system is given by $G(s) = \frac{1}{(s)(1+s)^2}$			
	Sketch the polar plant and determine the gain and phase margin (Nov 2016)			
23	i)Write down the procedure for designing Lag compensator using Rode plot			
	ii) State about Parallel feedback compensation. (Nov 2016)			
24.	Plot the polar plot for the following transfer function. (May 2017).			

	$G(s) = \frac{15}{15}$		
	(s+1)(3+s)(6+s)		
25.	Discuss briefly about the lag, lead and lag-lead compensator with examples. (May 2017)		
26.	A unity feedback system has $G(S) = \frac{K}{S(S+4)(S+10)}$. Draw the bode plot. (Nov 2017)		
27.	The open loop transfer function of a unity feedback system is $G(S) = \frac{K}{S(S+1)}$. It is desired		
	to have the velocity error constant $Kv=12 \text{ sec}^{-1}$ and phase margin as 40°. Design a lead compensator to meet the above specifications. (Nov 2017)		
28.	Discuss the procedure for constructing the bode magnitude plot and bode phase plot. (May 2018)		
29.	A unity feedback system has an open loop transfer function, $G(S) = \frac{K}{S(1+2S)}$. Design a		
	suitable lag compensator so that phase margin is 40 deg and the steady state error for ramp input is less than or equal to 0.2. (May 2018)		
30.	An unity feedback has $G(s) = \frac{K}{S(1+0.2S)(1+0.05S)}$. Draw the polar plot. Find the K		
	when gain margin =18 dB.(Dec 2018)		
33.	An unity feedback has $G(s) = \frac{k}{s(s+4)(s+10)}$. Draw the bode plot. Find the K when phase		
	margin =30 deg.		
34.	Sketch the bode plot for the following transfer function and determine the system gain K I		
	for the gain cross over frequency to be 5 rad/ sec. $G(s) = \frac{Ks^2}{(1+0.2s)(1+0.02s)}$		
35.	The open loop transfer function of a unity feedback control system is		
	$G_f(s) = \frac{k}{s(s+1)(s+2)}$ Design a suitable lag-lead compensator so as to meet the		
	following specifications: static velocity error constant $Kv = 10 \text{ sec}^{-1}$, phase margin = 50deg and gain margin = 10db.		
36.	Determine the transfer function for the given magnitude plot.(Dec 2018)		
	dB		
	0 dB/dec		
	20 dB/dec		
	40 dP/dec		
	40 dB/dec		
	0 05 1 5 ^w		
37.	Describe the procedure for obtaining the polar plot for a system whose loop transfer		
	function is $G(s) = \frac{4}{(s+2)(s+4)}$		
38.	Design a lead compensator for the system $G(s) = \frac{1}{s(s+2)}$ with damping coefficient equal		
	to 0.45, velocity error constant > 20 and small settling time.		

39.	Analyze on lead, lag and lead lag compensators with neat diagram. Also explain their		
	importance.		
40.	The open loop transfer function of the plant is		
	G(s) $10e^{-S\tau_D}$		
	$\overline{H(s)} = \overline{s(0.1s+1)(0.05s+1)}$		
	Use Bode plot, find the gain and phase margin when $\tau_D=0$. (NOV 2019)		
41.	The open loop transfer function of a unity feedback system is $G(s)=K/s(s+1)$. It is desired		
	to have the velocity error constant $K_v = 12 \text{sec}^{-1}$ and phase margin as 40. Design a lead		
	compensator to meet the above specifications. (NOV 2019)		

UNIT IV - CONCEPTS OF STABILITY ANALYSIS

Concept of stability-Bounded - Input Bounded - Output stability-Routh stability criterion-Relative stability-Root locus concept-Guidelines for sketching root locus-Nyquist stability criterion

PART - A

1.	Define stability of a system. (May 2011, Nov 2011)			
	A linear time invariant system is said to be stable if the following conditions are satisfied.			
	(i)When the system is excited by a bounded input, output is also bounded and			
	controllable.(ii) In the absence of the input, output must tends to zero irrespective of			
	initial conditions.			
2.	Define "bounded input bounded output (BIBO) stability".(Dec 2014, Nov 2017)			
	The first notion of system stability is for a linear time invariant system if the system is			
	excited by a bounded input (i.e. for a finite input), the output should be bounded (i.e. finite			
	output). Or in other words the impulse response g (t) is absolutely integrable.			
3.	Define asymptotic stability.			
	In the absence of the input, the output tends towards zero (the equilibrium state of the			
	system) irrespective of initial conditions. This stability concept is known as asymptotic			
	stability.			
4.	What is limitedly stable system?			
	For a bounded input signal, if the output has constant amplitude oscillations then the			
	system may be stable or unstable under some limited constraints. Such a system is called			
	limitedly stable.			
5.	What is the relation between stability and coefficient of characteristic polynomial?			
	If any one or more of the coefficients of characteristics polynomial are negative or zero,			
	then some of the roots lies on right half of S plane. Hence the system is unstable. If the			
	coefficients of characteristic equation are zero and the rest of the coefficients are positive			
	then there is a possibility of the system to be stable provided all the roots are lying on left			
	then there is a possibility of the system to be stable provided all the roots are lying on left half of s-plane.			
6.	then there is a possibility of the system to be stable provided all the roots are lying on left half of s-plane.How are the locations of roots of characteristic equation related?			
6.	 then there is a possibility of the system to be stable provided all the roots are lying on left half of s-plane. How are the locations of roots of characteristic equation related? a) If all the roots of the characteristic equations have -ve real parts, the system is bounded 			
6.	 then there is a possibility of the system to be stable provided all the roots are lying on left half of s-plane. How are the locations of roots of characteristic equation related? a) If all the roots of the characteristic equations have -ve real parts, the system is bounded Input bounded output stable. 			
6.	 then there is a possibility of the system to be stable provided all the roots are lying on left half of s-plane. How are the locations of roots of characteristic equation related? a) If all the roots of the characteristic equations have -ve real parts, the system is bounded Input bounded output stable. b) If any root of the characteristic equation has a +ve real part the system is unbounded 			
6.	 then there is a possibility of the system to be stable provided all the roots are lying on left half of s-plane. How are the locations of roots of characteristic equation related? a) If all the roots of the characteristic equations have -ve real parts, the system is bounded Input bounded output stable. b) If any root of the characteristic equation has a +ve real part the system is unbounded and the impulse response is infinite and the system is unstable. 			
6.	 then there is a possibility of the system to be stable provided all the roots are lying on left half of s-plane. How are the locations of roots of characteristic equation related? a) If all the roots of the characteristic equations have -ve real parts, the system is bounded Input bounded output stable. b) If any root of the characteristic equation has a +ve real part the system is unbounded and the impulse response is infinite and the system is unstable. c) If the characteristic equation has repeated roots on the jω axis the system is marginally 			
б.	 then there is a possibility of the system to be stable provided all the roots are lying on left half of s-plane. How are the locations of roots of characteristic equation related? a) If all the roots of the characteristic equations have -ve real parts, the system is bounded Input bounded output stable. b) If any root of the characteristic equation has a +ve real part the system is unbounded and the impulse response is infinite and the system is unstable. c) If the characteristic equation has repeated roots on the jω axis the system is marginally stable 			
6.	 then there is a possibility of the system to be stable provided all the roots are lying on left half of s-plane. How are the locations of roots of characteristic equation related? a) If all the roots of the characteristic equations have -ve real parts, the system is bounded Input bounded output stable. b) If any root of the characteristic equation has a +ve real part the system is unbounded and the impulse response is infinite and the system is unstable. c) If the characteristic equation has repeated roots on the jω axis the system is marginally stable d) If the characteristic equation has non-repeated roots on the jω axis the system is 			
6.	 then there is a possibility of the system to be stable provided all the roots are lying on left half of s-plane. How are the locations of roots of characteristic equation related? a) If all the roots of the characteristic equations have -ve real parts, the system is bounded Input bounded output stable. b) If any root of the characteristic equation has a +ve real part the system is unbounded and the impulse response is infinite and the system is unstable. c) If the characteristic equation has repeated roots on the jω axis the system is marginally stable d) If the characteristic equation has non-repeated roots on the jω axis the system is limitedly Stable 			
6.	 then there is a possibility of the system to be stable provided all the roots are lying on left half of s-plane. How are the locations of roots of characteristic equation related? a) If all the roots of the characteristic equations have -ve real parts, the system is bounded Input bounded output stable. b) If any root of the characteristic equation has a +ve real part the system is unbounded and the impulse response is infinite and the system is unstable. c) If the characteristic equation has repeated roots on the jω axis the system is marginally stable d) If the characteristic equation has non-repeated roots on the jω axis the system is limitedly Stable e)double roots at the origin is unstable 			
6.	 then there is a possibility of the system to be stable provided all the roots are lying on left half of s-plane. How are the locations of roots of characteristic equation related? a) If all the roots of the characteristic equations have -ve real parts, the system is bounded Input bounded output stable. b) If any root of the characteristic equation has a +ve real part the system is unbounded and the impulse response is infinite and the system is unstable. c) If the characteristic equation has repeated roots on the jω axis the system is marginally stable d) If the characteristic equation has non-repeated roots on the jω axis the system is limitedly Stable e)double roots at the origin is unstable What is root locus? (May 2012) 			

	$-\infty$ to $+\infty$.(change). The graphical representation in the complex s-plane of the possible			
	locations of its closed-loop poles for varying values of a certain system parameter. The			
	points that are part of the root locus satisfy the angle condition.			
8.	Comment on the stability of the system, when the roots of characteristic equation are			
	lying on imaginary axis. (NOV 2019)			
	If the roots of the characteristic equation are lying on the imaginary axis then the system			
	is marginally stable system. Here the term marginally stable means the system is in			
	between the conditions of stability and instability.			
9.	What are pole and zero of a system?			
	The poles of a closed loop system are defined as the roots of the denominator polynomial			
	of the transfer function of that system. It represents the physical dimension of a system			
	The zeros of a closed loop system are defined as the roots of the numerator polynomial of the transfer function of that system. Zeros are the roots of numerator of given transfer			
	function by making numerator is equal to 0			
10	What is meant by the term " magnitude criterie" in root locus technique?			
10.	The magnitude criteria states that $ D(g) = 1$			
	The magnitude criteria states that $ D(s) = 1$			
	$ D(s) = K \frac{ s + z_1 \bullet s + z_2 \bullet s + z_3 \bullet s + z_4 }{ s - z_1 } = 1$			
	$ s + p_1 \bullet s + p_2 \bullet s + p_3 \bullet s + p_4 $			
	$\prod_{k=1}^{m} s+z_k $			
	$=K \frac{\prod_{i=1}^{n} V_i - V_i }{1} = 1$			
	$-K \frac{1}{\prod_{k=1}^{n} s+p_{k} } = 1$			
	$\prod_{i=1}^{ S ^{-1}} P_i $			
	$ G(s)H(s) = K = \frac{\text{Product of length of vectors from open loop zeros to the point sa}}{ G(s)H(s) }$			
	Product of length of vectors from open loop poles to the point sa			
11.	What is meant by relative stability? (May 2014)			
	Relative stability is a quantitative measure of how fast the transients die out in the system.			
	It may be measured by relative settling times of each root or pair of roots. Relative			
	Stability gives the degree of stability or how close it is to instability			
12.	Why closed loop systems have a tendency to oscillate?			
	In closed loop system it has negative Feedback where the output is always compared with			
	the input and the controller is going to take corrective action based on the difference			
10	between error and it has the tendency to oscillate when the gain in the controller increases.			
13.	What is the phase angle criterion in the root locus technique?			
	Phase angle chiefta states that $(D(r)) = (180^{\circ}(2r+1))$			
	$\sum D(s) = \pm 180 (2q+1)$			
	$\therefore \sum_{i=1}^{m} \angle (s+z_i) - \sum_{i=1}^{m} \angle (s+p_i) = \pm 180^{\circ} (2q+1) q=0,1,2,$			
	i=1 $i=1$			
14.	What is the advantage of using root locus for design? (Nov 2009)			
	To find out the potential closed loop pole location. It helps to design good compensator.			
	The Root Locus Plot technique can be applied to determine the dynamic response of the			
	system. This method associates itself with the transient response of the system and is			
15	particularly useful in the investigation of stability characteristics of the system			
15.	Asymptotes are atraight lines which are parallel to root leave going to infinity and most			
	Asymptotes are straight lines which are parallel to root locus going to minimity and meet $100^{\circ}(2-1)$			
	the root locus at infinity. Angles of asymptotes = $\frac{\pm 180(2q+1)}{2}$; $q = 0, 1, 2, 3, \dots, (n-m)$.			
	n-m			
1.0	n = no of poles and m = no of zeros			
16.	what is centroid ? How the centroid is calculated?			

	The meeting point of asymptotes with real axis is called centroid. The centroid is given by,				
	$Centroid = \frac{Sum of \ poles - Sum of \ zeros}{n = no \ of \ poles \ and \ m = no \ of \ zeros}$				
17	n-m				
17.	Dis	stinguis	sh between relative stability and abso	Dute stability.	
		5.INO	Relative stability	Absolute Stability	
	-	1	Relative stability is a quantitative	A system is absolutely stable if it is	
			measure of how fast the transients	stable for all values of system	
			die out in the system. It may be	Parameters.	
			measured by relative settling times		
		2	It is defined based on the location of		
	4	2	it is defined based of the location of	It is defined based on the location of	
			passing through a point other than	roots with respect to imaginary	
			the origin	axis passing through the origin.	
18	Sta	te the 1	rule for obtaining breakaway noint i	n root locus (May 2011)	
10.	Dia	• To	find the break away and break in p	pints form an equation for K from the	
		cha	aracteristics equation and differentiate	the equation of K with respect to s	
		- Th	dK	the equation of K with respect to S .	
		• 110	en find the roots of equation $\frac{1}{ds} = 0$	the roots of $\frac{ds}{ds} = 0$ are breakaway or	
10	**/*	bre	eakin points, provided for this value of	root, the gain K should be positive real.	
19.	WI	hat is t	the main objective of root locus and	nalysis technique.(May 2019)	
	The main objective of root locus plot is to obtain the transient response of feedback system				
	for	Various K' that	will make the feedback system upstabl		
20	Wh	N ulat	ominant nole? (Dec 2014 Nov 2016)	е.	
20.	The dominant pole is a pair of complex conjugate poles which decides transient response				
	of the system. In higher order system the dominant poles are very close to origin and all				
	other poles of the system are widely separated and so they have less effect on transient				
	response of the system.				
21.	State the advantages of Nyquist plot.				
	(i) The Nyquist plot helps in determining the relative stability of the system in addition to				
	the absolute stability of the system.				
	(ii)It determines the stability of the closed-loop system from the open-loop transfer				
	function without calculating the roots of the characteristic equation.				
22.	What is the nature of locus of poles of second order closed loop system with constant				
	Gai	in?			
	The	e root lo	cus is a straight line passing through or	rigin at an angle θ with negative real axis.	
	$\theta =$	$\cos \zeta$	damping ratio		
23	where ζ is damping ratio.			a nacessary and sufficient condition for	
23.	stal	hility in	n Routh's stability criteria. (May 201	13. Nov 2015. May 2016 May 2017)	
	As	sufficier	nt condition for stability is that all of	the elements in the first column of the	
	Roi	uth arra	by be positive. If this condition is not m	et, the system is unstable and the number	
	of s	sign cha	anges in the elements of the first colur	nn of the Routh array corresponds to the	
	nun	nber of	roots of the characteristic equation in	the right half of the s – plane	
	Nec	cessary	condition is that the coefficients of	the characteristic polynomial should be	
	pos	itive.			
24.	Wh	nat are	the effects of addition of open loop p	ooles? (May 2010)	
	Ado	dition of	of open loop poles degrades the relat	ive stability. System produces sluggish	
	resp	ponses.	Improves the Transient response		
25.	5. State any two limitations of Routh stability criterion. (Nov 2011, Nov 2012)				
	(i) Routh stability criterion is valid only for real coefficients of the characteristic equation.				

	(ii) Routh stability criterion does not provide exact locations of the closed loop poles in				
	left or right half of s-plane.				
	(iii) Routh stability criterion does not suggest methods of stabilizing an unstable system.				
	(iv) Rou	th stability criterion is appl	licable only to	o linear systems	
26.	State Ny	yquist stability criterion.	(May 2010,	May 2012, May 2	013, Nov 2015, May
	2017, No	ov 2017)			
	If G(s)H	I(s) contour in the $G(s)H(s)$	s) plane corr	esponding to Nyqu	ist contour in s-plane
	encircles	the point $-1+j0$ in the ant	i-clockwise o	lirection as many ti	mes as the number of
	right hal	f of s-plane poles of G(s)H	(s). Then the	closed loop system	is stable. The Nyquist
	criterion	for systems with poles on t	the imaginary	vaxis.). This results	s from the requirement
	of the ar	gument principle that the	contour cann	ot pass through any	y pole of the mapping
	function	. The most common case a	re systems w	ith integrators (pole	s at zero).
	The stab	ility of linear control syste	m using the N	Nyquist Stability cri	terion are:
	i. N	to encirclement of -1+j0 p	oint, implies	the system is stable	,
	11. A	Anticlockwise encirclemen	t of $-1+j0$ p	oint, implies the sy	stem is stable, if the
	n ·	umber of anticlockwise en	circlements is	s same as the numbe	r of poles of $G(S)H(S)$
	11	n the right half of S plane	. If the number	per of anticlockwis	e encirclements is not
	e e	qual to number of poles or	right half of	S plane, then the sy	ystem is unstable.
27		se encirclement of -1+j0 pe	oint implies t	ne system is unstab	le.(
27.	The volu	of K corresponding to do	y point on re	ou locus:	magnitude condition
	Let K h	e the value of gain at dom	inant pole (s) on root locus	i magintude condition.
		roduct of length of vector	s from on an la) on rolesto do min	ant noles
	$K_{sd} = \frac{P}{M}$				
	p	roduct of length of vector	sfromopente	pop polesto do min	ant zeros
28.	How wil	l find root locus on real a	xis? (May 2	016)	
	First split the real axis into regions based on location of poles and zeros on the real axis.				
	Consider a test point on the real axis. If the total number of poles and zeros on the real axis				
	to the rig	ght of the test point is odd	number ther	the selected region	n 18 root locus. If it is
20	What will be stability of the system when the roots of characteristics equation are				
29.	lving on	imaginary axis? (Nov 20	17 May 201	8)	cristics equation are
	If the characteristics equation has repeated roots, one or more non repeated in the iw axis.				
	the system is unstable. If the roots of the characteristics equations have negative real parts				
	except for the presence of one or more non-repeated roots on the iw axis, the system is				
	limitedly stable.				
30.	How do	you define relative stabil	ity? (NOV 2	019)	
	It is mea	sure of how fast the transie	nt dies out in	the system. Relativ	e stability is related to
	settling time, a system having poles away from the left half of imaginary axis is considered				
	to be relatively more stable compared to a system having poles closed to imaginary axis				
31.	The Nyq	luist plot of G(jω)H(jω) f	or a closed lo	op system, passes	through (-1+j0) point
	in the G	H plane. What is the gair	n margin of t	he system in dB?()	Dec 2018)
	Gain Mar	gin is calculated by taking	inverse of th	e modulus of the g	ain where the Nyquist
	plot cuts the real axis.				
	Gain	margin=inverse of gain			
	Gain mo	$argin = 20 \log\left(\frac{1}{1}\right) = 20 l$	$\log 1 = 0 dB$		
32.	Find the	e range of K for closed lo	oop stable be	ehaviour of system	with characteristics
	equation	n s ⁴ +8s ³ +36s ² +80s+K usin	g Routh Hu	rwitz stability crite	erion.(Dec 2018)
	Solution	:			
	S^4	1	36	Κ	
	S ³	8	80		
1	1				

	S ³ /8	1	10		
	S ²	$\frac{36 \times 1 - 10 \times 1}{1} = 26$	$\frac{1 \times K - 0}{1} = K$		
	S ¹	$\frac{26 \times 10 - K}{26} = \frac{260 - K}{26}$	0		
	\mathbf{S}^0	К			
	For the s	ystem to be stable the first	column shou	ıld be +ve.	
	From S ¹ it can be said that $\frac{260 - K}{26} > 0$				
	260 <i>– K</i>	> 0			
	K < 260) it can be said that K\0			
	Therefor	e 0 > K < 260			
			PART B		
1.	By Nyqı	ist stability criterion deter	rmine the sta	bility of closed loop	p system, whose open
	loop tran	sfer function is given by (G(s)H(s) = -	$\frac{s+2}{s+1)(s-1)}$. Comm	ent on the stability of
-	open loo	p and closed loop systems	. (Nov 2009)		
2.	(i) Examine the stability of Routh's criterion $s^5 + s^4 + 2s^3 + 2s^2 + 3s + 15 = 0$ (8) (ii) Find range of values of K so that system with the characteristic equation				
3	$\frac{T(s) - s(s)}{Draw}$ the	$\frac{3+3+1}{(3+4)+k} = 0$, will	transfer fun	ction of a unity fee	dback control system
Ј.	given by $G(s) = \frac{K}{s(s+1)(s+3)}$ and determine (i). The value of K for G=0.5, (ii). The value				
	of K for	marginal stability. (iii).The	e value of K a	at S= -4. (May 2010)
4.	An unity feedback control system has $G(s) = \frac{10}{s(s+1)(s+2)}$. Draw the Nyquist plot and				
5	commen The	t on closed loop stability. ((May 2010)	unity foodbook	control system is
5.	$G_f(s) = -$	$\frac{k}{(s+2)(s^3+10s^2+49s+100)}$		unity recuback	control system is
	Using Routh stability criterion, calculate the range of 5				
6.	Sketch	the Nyquist plot for	a system	with open loop	p transfer function
	G(s)H(s)	$=\frac{k(1+0.4s)(s+1)}{(1+8s)(s-1)}$ and det	ermine the ra	ange of k for which	the system is stable.
	(Nov 202	11)			
7.	The ope K	n loop transfer Function	of a unity	feedback system	is given by, $G(s) =$
	$\frac{1}{s(s+1)+(s+5)}$ where K>0. Apply Nyquist stability criterion to determine a range of K			ine a range of K over	
	which th	e closed loop system will l	be stable. (M	ay 2019)	
8.	(i) A cer	tain unity negative feedbac	ck control sys	stem has the follow	ing open loop transfer
	function	$G(s)H(s) = \frac{k}{s(s+2)(s^2+2s+1)}$	$\frac{1}{1+5}$. Find the	e breakaway points	and draw Root Locus
	for $0 \le \omega$	≤∞ (12) (Nov 2011)			
	(ii) List t	he advantages of Routh's a	rray method	of examining stabili	ty of a control system.

9.	(i) Construct Routh array and determine the stability of the system whose characteristics
	equation is $s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0$.(6)
	ii) Sketch the Root locus of the system whose open loop transfer function is
	$G(s) = \frac{k}{s(s+2)(s+4)}$. Find the value of k so that the damping ratio of the closed loop
	system is 0.5 (10) (May 2012, May 2013)
10.	(i) Determine the range of K for stability of unity feedback system whose open loop
	transfer function is $G(s) = \frac{k}{s(s+1)(s+2)}$ using Routh stability criterion. (8)
	(ii) Draw the approximate root locus diagram for a closed loop system whose loop transfer
	function is given by $G(s)H(s) = \frac{k}{s(s+5)(s+10)}$. Comment on the stability. (Nov 2012)
11.	Sketch the root locus of the system having $G(s) = \frac{k(s+3)}{s(s+1)(s+2)(s+4)}$ (May 2013)
12.	Sketch the root locus for $GH(s) = \frac{k(s+2)(s+3)}{(s+1)(s-1)}$. (Nov2013)
13.	The open loop transfer function of a unity feedback control system is given by
	$GH(s) = \frac{k}{1 + 1 + 1}$. By applying the Routh criterian, discuss the stability of
	$(s+2)(s+4)(s^2+6s+25)$
14	the closed loop system as a function of K. (Nov 2013)
14.	C(s) K
	$\frac{1}{R(S)} = \frac{1}{s(s+4)(s^2+s+1)}$. (Dec 2018)
15.	Draw the root locus diagram for the loop transfer function $G(s)H(s) = \frac{K(s+6)}{s}$ and
	calculate K for which the closed loop system will be critically damped (May 2019)
16.	k k k
	(1) The open loop transfer function is given by $G(s) = \frac{1}{s(1+0.1s)(1+s)}$. For this unity
	feedback system, determine the value of k so that the gain margin is 6dB. (8)
	(ii) By using Routh Criterion, determine the stability of the system represented by
17	following characteristic equations ⁵ + s^4 + $2s^3$ + $2s^2$ + $11s$ + $10 = 0$. (8) (May 2014)
17.	A single loop negative reedback system has a loop transfer function $K(s+6)^2$
	$G(s)H(s) = \frac{K(s+0)}{s(s^2+1)(s+4)}$. Sketch the root locus as a function of K. Find the range of K
	for which the system is stable K for which purely imaginary roots exist and find the roots
	(May 2015).
18.	Describe the procedure for obtaining the root locus for a system. (Nov 2015)(Nov
	2016)(May 2017)
19	Determine closed loop stability of the system using Nyouist stability criterion
17.	$\frac{2}{2}$
	$G(S) = \frac{1}{s^2(s+2)} $ (Nov 2015)
20.	Draw the Nyquist plot and find the stability of the following open loop transfer function
	of unity feedback control system $G(s)H(s) = \frac{K(s+1)}{s^2(s+10)}$ if the system is conditionally
	stable, find the range of K for which the system is stable. (May 2015)

21.	i) Using Routh Hurwitz criterion, determine the stability of a system representing the abarrateristic equation $a_{1}^{6} + 2a_{2}^{5} + 8a_{4}^{4} + 12 + a_{3}^{3} + 20a_{2}^{2} + 16a + 16a + 16a$		
	characteristic equation $s^2+2s^2+8s^2+12+s^2+20s^2+10s+10=0$ and comment on location of the roots of the characteristics equation (8) (May 2016)		
	(ii) Describe about Nyquist contour and its various segments (8) (May 2016)		
22	(i) State Nyquist stability criterion and explain the three situations while examining the		
22.	stability of the linear control system		
	(ii) Construct R-H criterion and determine the stability of a system representing the		
	characteristics equation s^5+s^4+2 $s^3+3s+5=0$. Comment on location of the roots of the		
	characteristics equation. (Nov 2016)		
23.	Determine the range of K for stability of unity feedback system using Routh stability		
	C(s) K		
	criterion whose transfer function $\frac{1}{R(s)} = \frac{1}{s(s^2 + s + 1)(s + 2) + K}$ (Way 2017) or		
	Determine the range of K for stability of the system as shown in figure. (May 2018)		
	R K C		
	$(s^2 + s + 1)(s + 2)$		
	H(s)		
24.	Explain briefly about the steps to be followed to construct a rrot locus plot of s given		
25	transfer function.(May 2017)		
25.	Sketch the root locus plot for $G(S)H(S) = \frac{K(S^2 - 4S + 20)}{K(S^2 - 4S + 20)}$. Find the gain K at the point		
	(S+2)(S+4)		
	where the locus crosses the imaginary axis. (Nov 2017)		
26.	With neat steps write down the procedure for construction of root locus. Each rule give an		
	example. (Nov 2016)		
27.	Draw the Nyquist plot for the system, whose open loop transfer function is		
	$G(s)H(s) = \frac{K(1+s)^2}{2}$. Determine the range of K for which closed loop system is stable.		
	s^3		
	(Dec 2018)		
28.	Sketch the root locus for the system whose loop transfer function is		
	$G(S) = \frac{K}{G(S+1)(S+2)}$, H(S)=1. Determine the value of K such that the damping ratio of		
	S(S+1)(S+2)		
	a dominant complex conjugate closed loop poles is 0.5. (May 2018)		
29.	Draw the root locus diagram for a system open loop transfer function and then determine		
	the value of κ such that the damping ratio of the dominant closed loop poles is 0.4. Open		
	$-$ loop transfer function : $-\frac{20}{10000000000000000000000000000000000$		
	s(s+1)(s+4) + 20ks		
30.	Sketch the root locus for the open loop transfer function of unity feedback control system		
	given below. $G(S) = \frac{k}{1 - \frac{k}{1 -$		
	$s(s^2 + 4s + 13)$		
31.	(i) Obtain Routh array for the system whose characteristics polynomial equation is		
	$s^{6}+2s^{5}+12s^{3}+20s^{2}+16s+16=0$. Check the stability. (Dec 2014)		
	(ii) Define Nyquist stability criterion and explain the different situations of it.(Dec 2014)		
32.	Sketch the Nyquist plot for a system with open loop transfer function		
	$G(s)H(s) = \frac{k(1+0.4s)(s+1)}{s}$ and determine the range of K for which the system is stable		
	(1+8s)(s-1) and determine the range of K for which the system is stable.		
33.	For a certain control system, , Sketch the Nyquist plot and determine the range of values		
	of K for stability.(May2009, May 2011, May 2012)		

UNIT V – CONTROL SYSTEM ANALYSIS USING STATE VARIABLE METHODS

State variable representation-Conversion of state variable models to transfer functions-Conversion of transfer functions to state variable models-Solution of state equations-Concepts of Controllability and Observability-Stability of linear systems-Equivalence between transfer function and state variable representations-State variable analysis of digital control system-Digital control design using state feedback

1.	Define state and state variable. (Nov 2012, May 2013, May 2016)		
	State: The minimum Number of initial conditions that must be specified at any initial time		
	t_0 so that the complete behaviour of the system for t ≥ 0 is determined when the input is		
	known. The state is the condition of a system at any time instant.		
	State variable: State variables depend on the dynamic model selected to describe the		
	physical system which can be described by nth order differential equations. A set of		
	variables which describe the state of the system at any time instant are called state variables.		
2.	What is state space?(Nov 2015)		
	Sate space is the state of a system described by set of all possible variables in which the		
	state vector X(t) can have at time 't' forms the state space of the system.		
3.	Draw the block diagram of state space model.		

	4. Does not provide information regarding the internal state of the system.			
	Merits of State Variable form:			
	1. The state space analysis can be predicted be performed with initial conditions.			
	2. The variables used to represent the system can be any variables in the system.			
	3. Using	this analysis the internal states of the s	ystem at any time instant.	
9.	What is	s meant by sampled data control sy	stem? /Digital Control system/Discrete	
	control	System(Nov 2012)		
	When th	e signal or information at any or some	points in a system is in the form of discrete	
	pulses, t	hen the system is called discrete data sy	stem or sampled data system.	
10.	What is	meant by quantization? (May 2011, I	May 2012)	
	The pro	cess of converting a discrete-time con	tinuous valued signal into a discrete-time	
	discrete	valued signal is called quantization. In c	uantization the value of each signal sample	
	is repres	sented by a value selected from a finite	set of possible values called quantization	
	levels.	-		
11.	Explain	the term sampling and sampler?		
	Samplin	g is a process in which the continuous t	ime signal is converted into a discrete time	
	signal by	y taking samples of the continuous time	signal at discrete time instants. Sampler is	
	a device	which performs the process of samplin	g.	
12.	Differe	ntiate between digital and Analog cor	ntrollers.	
	S.No.	Analog controller	Digital controller	
	1.	Analog system uses continuous		
		signals.	Digital system uses discrete signals.	
	2.	Analog Controller is complex	Digital Controller is Simple.	
	3.	It is non programmable.	It is programmable.	
	4.	It is not flexible in nature.	It is flexible.	
	5.	It is costlier	It is less costlier	
13.	State Sl	nannon's sampling theorem.(May 201	5, Nov 2016, May Nov 2017, May 2018)	
	It states	that a band limited continuous time sig	nal with highest frequency f _m hertz, can be	
	uniquely	recovered from its samples provided	that the sampling rate F_s is greater than or	
	equal to	2f _m samples per second.		
14.	What a	re the advantages of state space mode	lling using physical variables?	
	a) Can p	perform both Time variant and time inva	riant systems as well	
	b) can b	e applied to MIMO System		
	c) Sate s	space modelling can be applied for Non	inear systems	
	d) The implementation of design with state variable feedback becomes straight forward.			
15.	When the control system is called sampled data system?			
	a) When	a digital computer or microprocessor o	r digital device is employed as a part of the	
	control loop.			
	b) When the control components are used on time sharing basis.			
	c) When	the control signals are transmitted by p	ulse modulation.(Move to top)	
16.	What a	re phase variables?		
	The pl	hase variables are defined as those partic	ular state variables which are obtained from	
	one of the system variables and its derivatives. Usually the variables used are the system			
	output and the remaining state variables are then derivatives of the output.			
17.	Write tl	he canonical form of state model for r	th order system. (NOV 2019)	
	For a ge	neral n th order transfer function:		
	$H(s) = \frac{Y(s)}{1 + 1} = \frac{D_0 s^{n-1} + D_1 s^{n-1} + \dots + D_{n-1} s + D_n}{1 + 1 + 1}$			
	$U(s) = s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n$			
	The obs	ervable canonical state space model for	n is	

	$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 2 & 2 \end{bmatrix}$
	$\begin{bmatrix} -2 & -3 \end{bmatrix}$
	$\mathbf{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
	$\mathbf{C} = \begin{bmatrix} \mathbf{I} & 0 \end{bmatrix}$
	By kalman's test $Q_C = B AB \neq 0$
	Then the system is controllable.
	$Q_{\rm C} = \begin{vmatrix} 0 & 1 \\ 1 & -2 \end{vmatrix} = -1$
	The determinant of $Q_C \neq 0$. Therefore the system is controllable.
25.	How the modal matrix is determined? (May 2012)
	The modal matrix M can be formed from eigenvectors. Let m ₁ , m ₂ , m ₃ ,m _n be the eigen
	vectors of a n th order system. Now the modal matrix M is obtained by arranging all the
	eigen vectors column wise as shown below.
26	$Modal matrix = M = [m_1 m_2 m_3 ,, m_n]$
26.	Give the concept of controllability. (Nov2013)
	A system is said to be completely state controllable if it is possible to transfer the system state from any initial state $\mathbf{X}(t_0)$ at any other desired state $\mathbf{X}(t_0)$ in specified finite time by a
	state from any initial state $X(t_0)$ at any other desired state $X(t)$, in specified finite time by a control vector $U(t_0)$. Controllability test is necessary to find the usefulness of a state variable.
	If the state variables are controllable then by controlling the state variables the desired
	outputs of the system are achieved.
27.	Define observability (May 2015)
	A system is said to be completely observable if every state X(t) can be completely identified
	by measurements of the output $Y(t)$ over a finite time interval $t_0 \le t \le t_f$.
28.	What is the need for observability test?
	The observability test is necessary to find weather the state variables are completely
	measurable are not. If the state variables are measurable then the state of the system can be
20	determined by practical measurements of the state variables.
29.	The pole placement by state feedback is a control system design technique, in which the
	state variables are used for feedback to achieve the desired closed loop poles
30.	What is necessary condition to be satisfied for design using state feedback?
	The state feedback design requires arbitrary pole placement to achieve the desired
	performance. The necessary and sufficient condition to be satisfied for arbitrary pole
	placement is that the system be completely state controllable.
31.	What is control law?
	In control system design using state variable feedback, the equation u=r-KX is called
	control law.
	Where, u=input to the plant;
	r = input to the system with state feedback;
	X=state vector;
32	Draw the block diagram of a system with state feedback
52.	
	K

PART B

	$\begin{vmatrix} x_1 \\ \cdot \end{vmatrix} = \begin{vmatrix} -2 & 1 & 0 \\ \cdot \end{vmatrix} = \begin{vmatrix} x_1 \\ \cdot \end{vmatrix} = \begin{vmatrix} 0 \\ \cdot \end{vmatrix}$	
	$\begin{vmatrix} x_2 \\ z_2 \end{vmatrix} = \begin{vmatrix} 0 & -3 & 1 \end{vmatrix} \begin{vmatrix} x_2 \\ x_2 \end{vmatrix} + \begin{vmatrix} 0 \\ u \end{vmatrix} = \begin{vmatrix} 0 & 1 & 0 \end{vmatrix} \begin{vmatrix} x_2 \\ x_2 \end{vmatrix}$	
	$\begin{vmatrix} \bullet \\ x_2 \end{vmatrix} \begin{bmatrix} -3 & -4 & -5 \end{bmatrix} \begin{bmatrix} x_3 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} x_3 \end{bmatrix}$	
_		
5.	A system is represented by the state equation $X=AX+BU$; $Y=CX$ where	
	0 1 0 0 Determine the transfer function of the system	
	$A = \begin{bmatrix} 0 & -1 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ and C = \begin{bmatrix} 100 \end{bmatrix}$. Determine the transfer function of the system.	
	$\begin{bmatrix} 0 & -1 & -10 \end{bmatrix}$ $\begin{bmatrix} 10 \end{bmatrix}$	
6	(May 2013)	
6.	Obtain the state space representation of armature controlled D.C. motor with load shown	
	R L _a Rr	
	$\mathbf{v}_{a} \pm (\mathbf{T}_{m}) \otimes \mathbf{L}_{f} \pm \mathbf{v}_{fa}$	
	J.f	
	Choose the armature current i_a , the angular displacement of shaft Θ , and the speed $\frac{d\theta}{dt}$ as	
7	state variables and θ as output variable.(May 2012)	
1.	(1) The state model matrices of a system are given below. Evaluate the observability of the system using Gilbert's test (10) (May 2012)	
	$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$	
	$A = \begin{bmatrix} 0 & 0 & -1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ and C & = \begin{bmatrix} 3 & 4 & 1 \end{bmatrix}.$	
	$\begin{bmatrix} 0 & -2 & -3 \end{bmatrix}$ $\begin{bmatrix} 1 \end{bmatrix}$	
	(ii) Find the controllability of the system described by the following equation. (6)	
	$ \hat{X} = \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} X_1 \\ + \end{bmatrix} \begin{bmatrix} 0 \\ U(t) \end{bmatrix} $	
	$\begin{bmatrix} 2 & -1 \end{bmatrix} \begin{bmatrix} X_1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$	
8.	A system is characterized by the transfer function $\frac{Y(s)}{U(s)} = \frac{3}{s^3 + 5s^2 + 11s + 6}$. Identify the first	
	state as the output. Determine whether or not the system is completely controllable and	
_	observable. (May 2013)	
9.	For the given state variable representation of a second order system given below find the	
	2013)(Dec 2018)	
	$\begin{vmatrix} x_1 \\ z_1 \end{vmatrix} = \begin{vmatrix} 0 & 1 \\ 0 & 1 \end{vmatrix} \begin{vmatrix} x_1 \\ z_1 \end{vmatrix} + \begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix} \begin{vmatrix} x_1 & 0 \\ z_1 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix}$	
	$\begin{vmatrix} \cdot \\ x_2 \end{vmatrix} \begin{bmatrix} -2 & -3 \end{bmatrix} \begin{bmatrix} x_2 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ x_2 \end{bmatrix} \begin{bmatrix} x_2 & 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$	
10.	Consider the system with the state equation. Check the controllability of the system. (Nov	
	2013)	

	$\begin{bmatrix} \mathbf{\cdot} \\ x_1 \\ \mathbf{\cdot} \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} u$
	$\begin{bmatrix} \bullet \\ x_3 \end{bmatrix} \begin{bmatrix} -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_3 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$
11.	(i) Check the controllability of the following state space system. (May 2014) $\dot{x}_1 = x_2 + u_2$ $\dot{x}_2 = x_3$ $\dot{x}_3 = -2x_2 - 3x_3 + u_1 + u_2$ (ii) Obtain the transfer function model for the following state space system. (8) $A = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix} B = \begin{bmatrix} 1 \\ 0 \end{bmatrix} C = \begin{bmatrix} 1 & 0 \end{bmatrix} D = \begin{bmatrix} 0 \end{bmatrix}$
12.	Consider a system with state – space model given below. $\begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -1 \end{bmatrix} X + \begin{bmatrix} 0 \\ 5 \\ -24 \end{bmatrix} U; Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} X + \begin{bmatrix} 0 \end{bmatrix} U$ Verify that the system is observable and controllable. (May 2015)
13.	Determine the state model in canonical form. Draw the block diagram
14.	Explain how controllability and observability for a system can be tested with an example
15	(Nov 2015)
15.	space representation is given as (May 2016, Nov 2016, Nov 2017(13))
	$\begin{bmatrix} \dot{X}_{1} \\ \dot{X}_{2} \\ \dot{X}_{3} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \\ X_{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} u; \ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \\ X_{3} \end{bmatrix}$
16.	(i) Construct a state model for a system characterized by the differential equation (May
	2016) $\frac{d^{3}y}{dt^{3}} + 6\frac{d^{2}y}{dt^{2}} + 11\frac{dy}{dt} + 6y + u = 0$
17.	Construct the state model of the following electrical system. (Nov 2016)
	$C_{1} \xrightarrow{L_{1} i_{1}+i_{2}}_{C_{2}} \xrightarrow{R_{2}}_{R_{1}} R_{2}$

18.	A system is characterized by transfer function $\frac{Y(s)}{U(s)} = \frac{2}{s^3 + 6s^2 + 11s + 6}$. Find the state and		
	output equation in matrix form and also test the controllability and observability of the system. (May 2017)		
19.	Obtain a state-space equation and output equation for the system defined by		
	$\frac{Y(S)}{2s^3 + s^2 + s + 2} (Max 2018)$		
	$\overline{U(S)} = \frac{1}{s^3 + 4s^2 + 5s + 2}$. (Way 2010)		
20.	Obtain a state-space equation and output equation for the system defined by		
	$Y(S) = S^3 + 5s^2 + 6s + 1$ Also shock for controllability and observability (Dec 2018)		
	$\frac{1}{R(s)} = \frac{1}{S^3 + 4s^2 + 3s + 3}$ Also check for controllability and observability. (Dec 2018)		
21.	For a system represented by state equation X(t) = A X(t). The response is $X(t) = \begin{bmatrix} e^{-2t} \\ -2e^{-3t} \end{bmatrix}$		
	when $X(0) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ and $X(t) = \begin{bmatrix} e \\ -e^{-t} \end{bmatrix}$ when $X(0) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Determine the system matrix		
22	and transition matrix. (May 2017)		
22.	lest the controllability and observability of the system whose state space representation is given as (Dec 2014)		
	$\begin{bmatrix} x \end{bmatrix} \begin{bmatrix} 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$		
	$\begin{bmatrix} x_1 \\ y \\ -2 \\ -2 \\ -3 \\ 0 \end{bmatrix} \begin{bmatrix} x_1 \\ y \\ +2 \\ 0 \\ -2 \\ -3 \\ 0 \end{bmatrix} \begin{bmatrix} x_1 \\ y \\ +2 \\ 0 \\ -2 \\ -3 \\ -3 \\ 0 \end{bmatrix} \begin{bmatrix} x_1 \\ y \\ -1 \\ -2 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3$		
	$\begin{bmatrix} X_2 \\ Y \end{bmatrix} = \begin{bmatrix} -2 & -3 & 0 \\ 0 & 2 & -2 \end{bmatrix} \begin{bmatrix} X_2 \\ Y \end{bmatrix} = \begin{bmatrix} 2 & u \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} X_2 \\ X \end{bmatrix}$		
	$\begin{bmatrix} X_3 \end{bmatrix} \begin{bmatrix} 0 & 2 & -5 \end{bmatrix} \begin{bmatrix} X_3 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \qquad \begin{bmatrix} X_3 \end{bmatrix}$		
23.	(1) Obtain the state model of the system described by the following transfer function. y(z) = 5		
	$\frac{y(s)}{u(s)} = \frac{5}{s^2 + 6s + 7}$. (May 2014), EnggTree.com		
	(ii) Obtain the state transition matrix for the state model whose system matrix A is given		
	$ _{\text{by } \mathbf{A}} = \begin{vmatrix} 1 & 1 \end{vmatrix}$		
24.	(i) Find the state variable equation for a mechanical system (spring-mass-damper system)		
	shown below. (Nov 2011)		
	$F(t) \rightarrow M$		
	1 C Q		
25.	(ii) A LTI system is characterized by the state equation $\begin{bmatrix} \cdot \\ x_1 \\ \cdot \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} u \end{bmatrix}$ where		
	u is a unit step function. Compute the solution of these equations assuming initial conditions		
	$x_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$		
26.	For the circuit shown in figure determine the state equation.		
-			

