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1.1 INTRODUCTION 

A system is a combination of components connected to perform a required action. 

The control component of a system plays a major role in altering or maintaining the 

system output based on our desired characteristics. There are two types of control 

systems: manual control and automatic control. For example, in manual control, a man 

can switch ON or OFF the bore well motor to control the level of water in a tank. On the 

other hand, in automatic control, level switches and transducers are used to control the 

level of water in a tank. Control systems have naturally evolved in our ecosystem. In 

almost all living things, automatic control regulates the conditions necessary for life by 

tackling the disturbance through sensing and controlling functionalities. They operate 

complex systems and processes and achieve control with desired precision. The 

application of control systems facilitates automated manufacturing processes, accurate 

positioning and effective control of machine tools. They guide and control space vehicles, 

aircrafts, ships and high-speed ground transportation systems. modern automation of a 

plant involves components such as sensors, instruments, computers and application of 

techniques that involve data processing and control. It is essential to understand a system 

and its characteristics with the help of a model, before creating a control for it. The 

process of developing a model is known as modeling. Physical systems are modeled by 

applying notable laws that govern their behavior. For example, mechanical systems are 

described by Newton’s laws and electrical systems are described by Ohm’s law, 

Kirchhoff’s laws, Faraday’s laws and Lenz’s law. These laws form the basis for the 

constitutive properties of the elements in a system. 

BASIC ELEMENTS IN CONTROL SYSTEMS 

 In recent years, control systems have gained an increasingly importance in the 

development and advancement of the modern civilization and technology. Disregard the 

complexity of the system; it consists of an input (objective), the control system and its 

output (result). Practically our day-to-day activities are affected by some type of control 

systems. There are four basic elements of a typical motion control system. These are  

 Controller 

 Amplifier 
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 Actuator 

 Feedback 

 Error detector 

The complexity of each of these elements will vary depending on the types of applications 

for which they are designed and built. A dynamical system manipulates entities such as 

energy, material, information, capital investment etc. It is characterized by relationships 

among certain variables that are chosen in its description. Usually inputs (causes) and 

outputs (effects) are important variables, which are connected by relations. Although a 

relationship is a function of time, the properties embedded in it may be time-invariant. A 

system may have only one input and one output. Such a system is termed a single-input-

single-output (SISO) system. Some may be multiple-input-multiple-output (MIMO) 

systems. Large systems are characterized by several levels of organization, in a hierarchy. 

Figure 1 shows the schematic diagrams of systems indicating such features. The fields of 

systems, control and information processing are closely related to the science of 

cybernetics. Cybernetics attempts to understand the behavior of the system in nature. This 

understanding leads to the knowledge enabling us to improve the performance of natural 

or man-made processes.  

 

Figure 1.1.1 Basic Elements in Control Systems 

[Source: “Control Systems Engineering” by I.J.Nagrath, M.Gopal, Page: 5] 
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1.2 OPEN AND CLOSED LOOP SYSTEMS 

In recent years, control systems have gained an increasingly importance in the 

development and advancement of the modern civilization and technology. Figure shows 

the basic components of a control system. Disregard the complexity of the system; it 

consists of an input (objective), the control system and its output (result). Practically our 

day-to-day activities are affected by some type of control systems. There are two main 

branches of control systems: 

1) Open-loop systems and 2) Closed-loop systems 

 

Figure 1.2.1 Classification of Control Systems 

[Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.2] 

OPEN LOOP SYSTEMS 

 A control system that cannot adjust itself to the changes is called open-loop control 

system. In general, manual control systems are open-loop systems. The block diagram of 

open-loop control system is shown in figure. 

 

Figure 1.2.2 Block diagram of open loop system 

[Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.2] 

Here, r(t) is the input signal, u(t) is the control signal/actuating signal and c(t) is the output 

signal. In this system, the output remains unaltered for a constant input. In case of any 

discrepancy, the input should be manually changed by an operator. An open loop control 

system is suited when there is tolerance for fluctuation in the system and when the system 

parameter variation can be handled irrespective of the environmental conditions. 

PRACTICAL EXAMPLES OF OPEN LOOP CONTROL SYSTEM 

1. Electric Hand Drier-Hot air (output) comes out as long as you keep your hand 

under the machine, irrespective of how much your hand is dried. 

Control Systems

Open-loop 
Systems

Closed-loop 
Systems
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2. Automatic Washing Machine-This machine runs according to the pre-set time 

irrespective of washing is completed or not. 

3. Bread Toaster-This machine runs as per adjusted time irrespective of toasting is 

completed or not. 

4. Automatic Tea/Coffee Maker-These machines also function for pre adjusted time 

only. 

5. Timer Based Clothes Drier-This machine dries wet clothes for pre-adjusted time, 

it does not matter how much the clothes are dried. 

6. Light Switch-Lamps glow whenever light switch is on irrespective of light is 

required or not. 

7. Volume on Stereo System-Volume is adjusted manually irrespective of output 

volume level. 

Advantages of Open Loop Control System 

a) Simple in construction and design 

b) Economical 

c) Easy to maintain 

d) Generally stable 

e) Convenient to use as output is difficult to measure. 

Disadvantages of Open Loop Control System 

a) They are inaccurate 

b) They are unreliable 

c) Any change in output cannot be corrected automatically. 

CLOSED LOOP SYSTEMS 

 Any system that can respond to the changes and make corrections by itself is 

known as closed loop control system. The only difference when compared to open loop 

system is the presence of feedback action. The block diagram of a closed loop system is 

shown in the figure. Here, r(t) is the input signal, e(t) is the error signal/actuating signal, 

u(t) or m(t) is the control signal/manipulated signal, b(t) is the feedback signal and c(t) is 

the controlled output. Here, the output of the machine is fed back to a comparator (error 

detector). The output signal is compared with the reference input, r(t) and the error signal, 
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e(t) is sent to the controller. Based on the error, the controller adjusts the air conditioners 

input [control signal u(t)]. This process is continued till the error gets nullified. 

 

Figure 1.2.3 Block diagram of closed loop system 

[Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.3] 

Both the manual and automatic controls can be implemented in a closed loop system. 

PRACTICAL EXAMPLES OF CLOSED LOOP CONTROL SYSTEM 

1) Automatic Electric Iron-Heating elements are controlled by output temperature of 

the iron. 

2) Servo Voltage Stabilizer-Voltage controller operates depending upon output 

voltage of the system. 

3) Water Level Controller-Input water is controlled by water level of the reservoir. 

4) Missile Launched and Auto Tracked by Radar-The direction of missile is 

controlled by comparing the target and position of the missile. 

5) An Air Conditioner-An air conditioner functions depending upon the temperature 

of the room. 

6) Cooling System in Car-It operates depending upon the temperature which it 

controls. 

Advantages of Closed Loop Control System 

a) Closed loop control systems are more accurate even in the presence of non-

linearity. 

b) Highly accurate as any error arising is corrected due to presence of feedback signal. 
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c) Bandwidth range is large. 

d) Facilitates automation. 

e) The sensitivity of system may be made small to make system more stable. 

f) This system is less affected by noise. 

Disadvantages of Closed Loop Control System 

a) They are costlier. 

b) They are complicated to design. 

c) Required more maintenance. 

d) Feedback leads to oscillatory response. 

e) Overall gain is reduced due to presence of feedback. 

f) Stability is the major problem and more care is needed to design a stable closed 

loop system. 

S. No. Open loop control system Closed loop control system 

1 Inaccurate Accurate 

2 Unreliable Reliable 

3 Stable 
Unstable. It can be stabilized using the 

feedback or by reducing sensitivity 

4 Bandwidth is small Bandwidth is large 

5 System is affected by noise System is less affected by noise 

6 Cheap Costly  

7 Simple in construction 
Complex construction since a greater 

number of components are present 

8 Requires less maintenance Requires more maintenance 

9 Overall gain is high Overall high is reduced due to feedback 
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1.3 MECHANICAL TRANSLATIONAL AND ROTATIONAL SYSTEMS 

 The general classification of mechanical system is of two types namely 

translational and rotational systems. 

 

Figure 1.3.1 Classification of mechanical system 

[Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.21] 

MECHANICAL TRANSLATIONAL SYSTEMS 

The model of mechanical translational systems can obtain by using three basic 

elements mass, spring and dashpot. When a force is applied to a translational mechanical 

system, it is opposed by opposing forces due to mass, friction and elasticity of the system. 

The force acting on a mechanical body is governed by Newton’s second law of motion. 

For translational systems it states that the sum of forces acting on a body is zero. 

Force balance equations of idealized elements: 

Inertia force, fm(t) 

Consider an ideal mass element shown in figure, which has negligible friction and 

elasticity. Let a force be applied on it. The mass will offer an opposing force which is 

proportional to acceleration of a body. 

 

Figure 1.3.2 Mechanical translational element: Mass 

[Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.21] 
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Let f(t) - applied force, fm - opposing force due to mass,  

𝑓𝑚 ∝
𝑑2𝑥

𝑑𝑡2
 

 By Newton's second law,  

𝑓 = 𝑓𝑚 = 𝑀
𝑑2𝑥

𝑑𝑡2
 

Damper force, fb(t) 

Consider an ideal frictional element dash-pot shown in fig. which has negligible mass 

and elasticity. The dashpot’s opposing force which is proportional to velocity of the body. 

 

Figure 1.3.3 Mechanical translational element: Dashpot 

[Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.23] 

Let f = applied force, f b = opposing force due to friction 

𝑓𝑏 ∝
𝑑𝑥

𝑑𝑡
 

By Newton's second law,    

𝑓 = 𝑓𝑏 = 𝐵
𝑑𝑥

𝑑𝑡
 

Spring force, fk(t) 

Consider an ideal elastic element spring is shown in fig. This has negligible mass and 

friction. 
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Figure 1.3.4 Mechanical translational element: Spring 

[Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.24] 

Let f = applied force, f k = opposing force due to elasticity 

𝑓𝑘 ∝ 𝑥 

By Newtons second law,         

𝑓 = 𝑓𝑘 = 𝐾𝑥 

According to D’Alembert’s principle, “The algebraic sum of the externally applied 

forces to any body is equal to the algebraic sum of the opposing forces restraining motion 

produced by the elements present in the body.” A simple translational mechanical system 

and its free body diagram are shown in figures 1.3.5 (a) and (b) respectively.  

 

Figure 1.3.5 Mechanical translational system and its free body diagram 

 [Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.25] 

𝑓𝑚 = 𝑀
𝑑2𝑥

𝑑𝑡2
 

𝑓𝑏 = 𝐵
𝑑𝑥

𝑑𝑡
 

𝑓𝑘 = 𝐾𝑥 

𝑓(𝑡) = 𝑓𝑚 + 𝑓𝑏 + 𝑓𝑘 = 𝑀
𝑑2𝑥

𝑑𝑡2
+ 𝐵

𝑑𝑥

𝑑𝑡
+ 𝐾𝑥 
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MECHANICAL ROTATIONAL SYSTEM 

 The modeling of a linear passive rotational mechanical system can be obtained by 

using three basic elements: inertia, rotational spring and rotational damper. The modeling 

of a rotational mechanical system is similar to that of a translational mechanical system 

except that the elements undergo a rotational instead of a translational movement. The 

opposing torques due to inertia, rotational spring and rotational damper act on a system 

when the system is subjected to a torque. Using D’Alembert’s principle, for a linear 

passive rotational mechanical system, the sum of all the torques acting on a body is zero 

(i.e., the sum of applied torques is equal to the sum of the opposing torques on a body). 

Angular displacement, angular velocity and angular acceleration are the variables used 

to describe a linear passive rotational mechanical system. In rotational mechanical 

systems, the energy storage elements are inertia and rotational spring and the energy 

dissipating element is the rotational viscous damper. The analogous of the energy storage 

elements in ana electrical circuit are the inductors and the capacitors and the analogous 

of energy dissipating element in an electrical circuit is the resistor. 

Torque balance equations of idealized elements: 

Inertia Torque, Tj(t) 

 When a torque T(t) is applied to an inertia element J, it experiences an angular 

acceleration and it is shown in figure 1.3.6. 

 

Figure 1.3.6 Mechanical rotational element: Inertia 

 [Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.38] 

According to Newton’s second law, the inertia torque is proportional to the angular 

acceleration. 

𝑇𝑗(𝑡) ∝
𝑑2𝜃

𝑑𝑡2
 

𝑇𝑗(𝑡) = 𝐽
𝑑2𝜃

𝑑𝑡2
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where J is the moment of inertia (kg-m2/rad), θ(t) is the angular displacement (rad) and 

Tj(t) is measured in Newton-meter (N-m). 

Damping Torque, Tb(t) 

 When a torque, T(t) is applied to a damping element, B, it experiences an angular 

velocity and it is shown in figure 1.3.7. 

 

Figure 1.3.7 Mechanical rotational element: Dashpot 

 [Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.38] 

The damping torque is proportional to the angular velocity. Therefore, 

𝑇𝑏(𝑡) ∝
𝑑𝜃

𝑑𝑡
 

𝑇𝑏(𝑡) = 𝐵
𝑑𝜃

𝑑𝑡
 

where, B is the viscous friction coefficient (N-s/m), θ(t) is the angular displacement (rad). 

Damper element with two angular displacements and a single applied torque is shown in 

figure 1.3.8. 

 

Figure 1.3.8 Mechanical rotational element: Dashpot 

 [Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.39] 

𝑇𝑏(𝑡) = 𝐵 (
𝑑𝜃1
𝑑𝑡

−
𝑑𝜃2
𝑑𝑡

) 

Here, Tb(t) is measured in Newton-meter. 

Torsional/Rotational Spring Torque, Tk(t) 

When a torque T(t) is applied to a spring element, K, it experiences ana angular 

displacement and it is shown in figure 1.3.9. 
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Figure 1.3.9 Mechanical rotational element: Dashpot 

 [Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.39] 

According to Hooke’s law, spring torque is proportional to the angular displacement. 

𝑇𝑘(𝑡) ∝ 𝜃 

𝑇𝑘(𝑡) = 𝐾𝜃 

where, K is the spring constant (N-m/rad). 

A spring element with two angular displacements is given in figure 1.3.10. 

 

Figure 1.3.10 Mechanical rotational element: Dashpot 

 [Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.40] 

𝑇𝑘(𝑡) = 𝐾(𝜃1 − 𝜃2) 

Here, Tk(t) is measured in Newton-meter. 

According to D’Alembert’s principle, “The algebraic sum of the externally applied 

torques to any body is equal to the algebraic sum of the opposing torques restraining 

motion produced by the elements present in the body.” A simple rotational mechanical 

system and its free body diagram are shown in figures 1.3.11 (a) and (b) respectively. 

 

Figure 1.3.11 Mechanical rotational system and its free body diagram 

 [Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.40] 
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𝑇𝑗 = 𝐽
𝑑2𝜃

𝑑𝑡2
 

𝑇𝑏 = 𝐵
𝑑𝜃

𝑑𝑡
 

𝑇𝑘 = 𝐾𝜃 

𝑇(𝑡) = 𝑇𝑗 + 𝑇𝑏 + 𝑇𝑘 = 𝐽
𝑑2𝜃

𝑑𝑡2
+ 𝐵

𝑑𝜃

𝑑𝑡
+ 𝐾𝜃 

Translational mechanical system Rotational mechanical system 

Force (F) Torque (T) 

Velocity (v) Angular velocity (ω) 

Displacement (x) Angular displacement (θ) 

Mass (M) Moment of inertia (J) 

Damping coefficient (B) Rotational damping (B) 

Spring constant (K) Rotational spring constant (K) 
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1.4 ELECTRICAL ANALOGY OF MECHANICAL SYSTEMS 

FORCE-VOLTAGE ANALOGY 

Consider a simple translational mechanical system as shown in figure 1.4.1. 

 

Figure 1.4.1 Translational mechanical system 

[Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.51] 

Using D’ Alembert’s principle, we have, 

Sum of the applied forces = Sum of the opposing forces 

 

Consider a series RLC circuit as shown in figure 1.4.2. 

 

Figure 1.4.2 Series RLC circuit 

[Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.52] 

Using KVL, the integro-differential equations can be written as 
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FORCE-CURRENT ANALOGY 

Consider a simple parallel RLC circuit as shown in figure 1.4.3. 

 

Figure 1.4.3 Parallel RLC circuit 

[Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.52] 

Using KCL, the integro-differential equations can be written as follows: 

 

where, conductance, G=1/R. 

On comparing with the mechanical translational system equation, we get, 
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TORQUE-VOLTAGE ANALOGY 

Consider a simple rotational mechanical system as shown in figure 1.4.4. 

 

Figure 1.4.4 Rotational mechanical system 

[Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.71]  

Using D’ Alembert’s principle, we have, 

Sum of the applied torques = Sum of the opposing torques 

 

Consider a series RLC circuit as shown in figure 1.4.5. 

 

Figure 1.4.5 Series RLC circuit 

[Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.72] 

Using KVL, the integro-differential equations can be written as 

 

On comparing with the mechanical rotational system equation, we get, 
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TORQUE-CURRENT ANALOGY 

Consider a simple parallel RLC circuit as shown in figure 1.4.6. 

 

Figure 1.4.6 Parallel RLC circuit 

[Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.73] 

Using KCL, the integro-differential equations can be written as follows: 

 

where, conductance, G=1/R. 

On comparing with the mechanical rotational system equation, we get, 
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1.5 ELECTRICAL ANALOGY OF THERMAL SYSTEMS 

There are two fundamental physical elements that make up thermal networks, 

thermal resistances and thermal capacitance. There are also three sources of heat, a power 

source, a temperature source, and fluid flow. 

Example: 

In practice temperature when we discuss temperature, we will use degree Celsius 

(ºC), while SI unit for temperature is to use Kelvins (0ºK = - 273.15ºC). Generally 

reference temperature (T1) is taken and all temperatures are measured relative to this 

reference. Reference temperature is assumed to be constant.  

 

Figure 1.5.1 Network elements of thermal systems 

[Source: “Linear Control System Analysis and Design” by John J. D’Azzo, Page: 76] 

Thermal resistance 

Consider the situation in which there is a wall, one side of which is at a temperature 

T1, with the other side at temperature T2, the wall has a thermal resistance of R12. 

Thermal capacitance 

In addition to thermal resistance, objects can also have thermal capacitance (also 

called thermal mass). The thermal capacitance of an object is a measure of how much 

heat it can store. If an object has thermal capacitance its temperature will rise as heat 

flows into the object, and the temperature will lower as heat flows out. To understand 

this, envision a rock in the sun. During the day heat goes in to the rock from the sunlight, 

and the temperature of the rock increases as energy is stored in the rock as an increased 

temperature. At night energy is released, and the rock cools down. We represent a thermal 

capacitance in isolation in diagrams (and equations) as shown in Figure (in the drawing 

at the left the coil represents a power source and the stippled object is the thermal 

capacitance). In the thermal analogy, one end of the capacitor is always connected to the 

constant ambient temperature. The electrical model will always have one side of the 
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capacitance connected to ground, or reference. Also, we could write the equation as = q 

but since T1 is constant, it can be removed from the derivative. The thermal capacitance 

of an object is determined by its mass and specific heat. 

C = mcp 

Where C is the thermal capacitance, m is the mass in kilograms, and cp is the specific 

heat in J/(kg-ºK). it is always assumed that the capacitor is at a single uniform 

temperature, though this is obviously a simplification in many cases. 

𝐶
𝑑𝑇2
𝑑𝑡

= 𝑞 

Power source (or heat source) 

A common part of a thermal model is a controlled power source that generates a 

predetermined amount of power, or heat, in a system. This power can either be constant 

or a function of time. In the electrical analogy, the power source is represented by a 

current source. An example of a power source is the quantity q in the diagrams for the 

thermal capacitance, above. In practice a power source is often an electrical heating 

element comprised of a coil of wire that is heated by a current flowing through it. 

Therefore, we use a diagram of a coil of wire to represent the power source. An ideal 

power source generates power that is independent of temperature. 

Temperature source 

An ideal temperature source maintains a given temperature independent of the 

amount of power required. Ambient temperature is considered to be reference 

temperature). 

Mass Transfer (Fluid Flow) 

If fluid with specific heat cp J/kg-ºK) flows into a system with a flow rate of G 

kg/sec and a temperature of TmºC above reference, and flows out at a temperature of 

ToutºC below reference then the rate of heat flow into the system is given by 

 

We can cancel the K and ºC since a temperature difference (Tin – Tout) is the same in 

Kelvin r Celsius. If you carefully observe this equation, it makes sense intuitively. Heat 

into s system goes up with mass flow rate into the system (increased mass flow, yields 
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increased heat flow). Heat into a system also goes up with the specific heat of the mass 

(Higher specific heat indicates increased capacity to store heat). Finally, heat into system 

increases with an increased inflow temperature, or a decreased outflow temperature (if 

the temperature difference between inflow and outflow increases, more heat is being 

taken from the fluid). Note, the mass flow rate at the input and output must be equal to 

the mass (and thermal capacitance) of the system would be changing. This is not allowed 

for the systems being studied (time-invariant systems). 

Energy balance 

To develop a mathematical model of a thermal system we use the concept of an 

energy balance. The energy balance equation simply states that at any given location, or 

node, in a system, the heat into that node is equal to the heat out of the node plus any heat 

that is stored (heat is stored as increased temperature in thermal capacitances). The terms 

used in the equations is mentioned below: 

 

Additional heat stored in a body whose temperature is raised from θ1 to θ2 is given by 

 

 

Rate of heat flow through a body in terms of the two boundary temperatures θ3 to θ4 

 

The thermal resistance determines the rate of heat flow through the body. This is 

analogous to the resistance of a resistor in an electric circuit, which determines the current 

flow. 
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SIMPLE MERCURY THERMOMETER 

Consider a thin glass-walled thermometer filled with mercury that has stabilized at a 

temperature θ1. It is plunged into a bath of temperature θ0 at t=0. In its simplest form, the 

thermometer can be considered to have a capacitance C that stores heat and a resistance 

R that limits the heat flow. The temperature at the center of the mercury is θm.The flow 

of heat into the thermometer is 

 

The heat entering the thermometer is stored in the thermal capacitance and is given by 

 

These equations can be combined to form 

 

Differentiating the above equation and rearranging the terms gives, 

 

The thermal network is drawn as in figure 1.5.2. Thus, the state equation is 

 

 

Figure 1.5.2 Network representation of a thermometer 

[Source: “Linear Control System Analysis and Design” by John J. D’Azzo, Page: 77] 

In general,    Heat in = Heat out + Heat stored 
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1.6 TRANSFER FUNCTION 

 The transfer function of a linear, time-invariant, differential equation system is 

defined as the ratio of the Laplace transform of the output (response function) to the 

Laplace transform of the input (driving function) under the assumption that all initial 

conditions are zero. 

Open loop transfer function: G(s) 

Loop transfer function: G(s)H(s) 

Closed loop transfer function: 

𝐶(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠)
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1.7 SERVOMOTOR 

Servo Motor also called control motors, are used in feedback control systems as 

output actuators and does not use for continuous energy conversion. The principle of the 

Servomotor is similar to that of the other electromagnetic motor, but the construction and 

the operation are different. Their power rating varies from a fraction of a watt to a few 

hundred watts. Rotor inertia of the motors is low and have a high speed of response. The 

rotor of the Motor has the long length and smaller diameter. They operate at very low 

speed and sometimes even at the zero speed. Servo motor is widely used in radar and 

computers, robot, machine tool, tracking and guidance systems, processing controlling. 

AC SERVOMOTORS 

Servo motors are generally an assembly of four things: a DC motor, a gearing set, 

a control circuit and a position-sensor (usually a potentiometer). The position of servo 

motors can be controlled more precisely than those of standard DC motors, and they 

usually have three wires (power, ground & control). AC Servo Motors are divided into 

two types 2 and 3 Phase AC servomotor. Most of the AC servomotor are of the two-phase 

squirrel cage induction motor type. They are used for low power applications. The three 

phase squirrel cage induction motor is now utilized for the applications where high-power 

system is required. An AC servo motor is essentially a two-phase induction motor with 

modified constructional features to suit servo applications as shown in figure 1.7.1. 

 

Figure 1.7.1 Symbolic representation of AC Servomotor 

[Source: “Control Systems: Principles and Design” by M. Gopal, Page: 132] 
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It has two windings displaced by 90o on the stator. One winding, called as reference 

winding, is supplied with a constant sinusoidal voltage. The second winding, called 

control winding, is supplied with a variable control voltage which is displaced by -- 90o 

out of phase from the reference voltage.  

The major differences between the normal induction motor and an AC servo motor are  

1. The rotor winding of an ac servo motor has high resistance (R) compared to its 

inductive reactance (X) so that its X / R ratio is very low. 

2. For a normal induction motor, X / R ratio is high so that the maximum torque is 

obtained in normal operating region which is around 5% of slip. 

The torque speed characteristics of a normal induction motor and an ac servo motor are 

shown in figures 1.7.2 and 1.7.3. 

 

Figure 1.7.2 Torque speed characteristics of AC motors 

[Source: “Control Systems: Principles and Design” by M. Gopal, Page: 131] 

 

Figure 1.7.3 Torque speed characteristics of AC servomotor 

[Source: “Control Systems: Principles and Design” by M. Gopal, Page: 133] 
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The torque-speed characteristic of a normal induction motor is highly nonlinear and has 

a positive slope for some portion of the curve. This is not desirable for control 

applications. as the positive slope makes the systems unstable. The torque speed 

characteristic of an ac servo motor is fairly linear and has negative slope throughout. The 

rotor construction is usually squirrel cage or drag cup type for an ac servo motor. The 

diameter is small compared to the length of the rotor which reduces inertia of the moving 

parts. Thus, it has good accelerating characteristic and good dynamic response. The 

supplies to the two windings of ac servo motor are not balanced as in the case of a normal 

induction motor. The control voltage varies both in magnitude and phase with respect to 

the constant reference vulture applied to the reference winding. The direction of rotation 

of the motor depends on the phase (± 90°) of the control voltage with respect to the 

reference voltage. For different rms values of control voltage the torque speed 

characteristics are shown in Figure. The torque varies approximately linearly with respect 

to speed and also controls voltage. The torque speed characteristics can be linearized at 

the operating point and the transfer function of the motor can be obtained. 
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DC SERVOMOTOR 

A DC servo motor is used as an actuator to drive a load. It is usually a DC motor of low 

power rating. DC servo motors have a high ratio of starting torque to inertia and therefore 

they have a faster dynamic response. DC motors are constructed using rare earth 

permanent magnets which have high residual flux density and high coercively. As no 

field winding is used, the field copper losses am zero and hence, the overall efficiency of 

the motor is high. The speed torque characteristic of this motor is flat over a wide range, 

as the armature reaction is negligible. Moreover, speed in directly proportional to the 

armature voltage for a given torque. Armature of a DC servo motor is specially designed 

to have low inertia. DC Servo Motors are separately excited DC motor or permanent 

magnet DC motors. The figure (a) shows the connection of Separately Excited DC Servo 

motor and the figure (b) shows the armature MMF and the excitation field MMF in 

quadrature in a DC machine. This provides a fast torque response because torque and flux 

are decoupled. Therefore, a small change in the armature voltage or current brings a 

significant shift in the position or speed of the rotor. Most of the high-power servo motors 

are mainly DC. 

(a) Armature controlled DC servo motor 

The physical model of an armature controlled DC servo motor is given in 

The armature winding has a resistance Ra and inductance La. 

 

Figure 1.7.4 Armature controlled DC motor with load 

[Source: “Control Systems: Principles and Design” by M. Gopal, Page: 117] 

The field is produced either by a permanent magnet or the field winding is separately 

excited and supplied with constant voltage so that the field current, if is a constant. When 
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the armature is supplied with a DC voltage of ea volts, the armature rotates and produces 

a back emf, eb. The armature current ia depends on the difference of eb and en. The 

armature has a permanent of inertia J, frictional coefficient B0. The angular displacement 

of the motor is θ. The torque produced by the motor is given by 

𝑇𝑀 = 𝐾𝑇𝑖𝑎 

𝑒𝑏 = 𝐾𝑏𝜔 

𝐿𝑎
𝑑𝑖𝑎
𝑑𝑡

+ 𝑅𝑎𝑖𝑎 + 𝑒𝑏 = 𝑒𝑎 

𝐽
𝑑𝜔

𝑑𝑡
+ 𝐵𝜔 + 𝑇𝑤 = 𝑇𝑀 

Taking Laplace transform, 

𝑇𝑀(𝑠) = 𝐾𝑇𝐼𝑎(𝑠) 

𝐸𝑏(𝑠) = 𝐾𝑏𝜔(𝑠) 

𝐿𝑎𝑠𝐼𝑎(𝑠) + 𝑅𝑎𝐼𝑎(𝑠) + 𝐸𝑏(𝑠) = 𝐸𝑎(𝑠) 

𝐽𝑠𝜔(𝑠) + 𝐵𝜔(𝑠) + 𝑇𝑤(𝑠) = 𝑇𝑀(𝑠) 

where KT is the motor torque constant. The back emf is proportional to the speed of the 

motor and hence 

On solving, 

𝜔(𝑠)

𝐸𝑎(𝑠)
=

𝐾𝑇/𝑅𝑎
𝐽𝑠 + 𝐵 + 𝐾𝑇𝐾𝑏/𝑅𝑎

 

𝜔(𝑠)

𝐸𝑎(𝑠)
=

𝐾𝑚
𝜏𝑚𝑠 + 1

 

where,  

𝐾𝑚 =
𝐾𝑇

𝑅𝑎𝐵 + 𝐾𝑇𝐾𝑏
 

𝜏𝑚 =
𝑅𝑎𝐽

𝑅𝑎𝐵 + 𝐾𝑇𝐾𝑏
 

Km – motor gain constant, τm – motor time constant 

(b) Field controlled DC servo motor 

The schematic diagram of a field controlled DC servo motor is shown in figure 1.7.5. 
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Figure 1.7.5 Field controlled DC servomotor 

[Source: “Control Systems: Principles and Design” by M. Gopal, Page: 120] 

𝑇 = 𝐾𝑇𝑓𝑖𝑓 

𝐿𝑓
𝑑𝑖𝑓

𝑑𝑡
+ 𝑅𝑓𝑖𝑓 = 𝑒𝑓 

𝐽
𝑑𝜔

𝑑𝑡
+ 𝐵𝜔 + 𝑇𝑤 = 𝑇𝑀 

Taking Laplace transform, 

𝑇(𝑠) = 𝐾𝑇𝑓𝐼𝑓(𝑠) 

𝐿𝑓𝑠𝐼𝑓(𝑠) + 𝑅𝑓𝐼𝑓(𝑠) = 𝐸𝑓(𝑠) 

𝐽𝑠2𝜃(𝑠) + 𝐵𝑠𝜃(𝑠) + 𝑇𝑤(𝑠) = 𝑇𝑀(𝑠) 

𝜃(𝑠)

𝐸𝑓(𝑠)
=

𝐾𝑇𝑓

𝑠(𝐽𝑠 + 𝐵)(𝑅𝑓 + 𝑠𝐿𝑓)
=

𝐾𝑇𝑓/𝑅𝑓𝐵

𝑠(
𝐽
𝐵
𝑠 + 1)(1 + 𝑠

𝐿𝑓
𝑅𝑓
)

=
𝐾𝑚

𝑠(𝜏𝑚𝑠 + 1)(1 + 𝑠𝜏𝑓)
 

where, motor gain constant, 𝐾𝑚 = 𝐾𝑇𝑓/𝑅𝑓𝐵 

            motor time constant, 𝜏𝑚 =
𝐽

𝐵
 

            field time constant, 𝜏𝑓 =
𝐿𝑓

𝑅𝑓
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1.8 BLOCK DIAGRAM REDUCTION TECHNIQUES 

 A system that can change its output in accordance with change in input is known 

as a closed loop system. This can be implemented by introducing a feedback path in an 

open-loop system and manipulating the input that is applied to the system. Such as closed-

loop system can be represented by using a block diagram shown in figure 1.8.1. 

 

Figure 1.8.1 Simple block diagram representation 

[Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 3.2] 

BLOCK 

The transfer function of a component is represented by a block. Block has single input 

and single output. 

 

SUMMING POINT 

The summing point is represented with a circle having cross (X) inside it. It has two or 

more inputs and single output. It produces the algebraic sum of the inputs. It also performs 

the summation or subtraction or combination of summation and subtraction of the inputs 

based on the polarity of the inputs. Let us see these three operations one by one. The 

following figure shows the summing point with two inputs (A, B) and one output (Y). 

Here, the inputs A and B have a positive sign. So, the summing point produces the output, 

Y as sum of A and B. 
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NODE 

The node is a point from which the same input signal can be passed through more than 

one branch. That means with the help of node, we can apply the same input to one or 

more blocks, summing points. In the following figure, the node is used to connect the 

same input, R(s) to two more blocks. 

 

The advantages of block diagram representation are: 

(i) It facilitates easier representation of complex systems. 

(ii) Calculation of transfer function by block diagram reduction techniques is 

easy. 

(iii) Performance analysis of a complex system is simplified by determining its 

transfer function. 

(iv) It facilitates easier access of individual elements in a system that is represented 

by a block diagram. 

(v) It facilitates visualization of operation of the whole system by the flow of 

signals. 

The disadvantages of block diagram representation are: 

(i) It is difficult to determine the actual composition of individual elements in a 

system. 

(ii) Representation of a system using block diagram is not unique. 

(iii) The main source of signal flow cannot be represented definitely in a block 

diagram. 
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RULES FOR BLOCK DIAGRAM REDUCTION 

Rule 

No. 

Rule 
Block diagram Equivalent block diagram 

1 Blocks in cascade 
  

2 Blocks in parallel 

 
 

3 

Moving a summing 

point behind the 

block   

4 

Moving a summing 

point ahead of the 

block   

5 

Moving a branch 

point behind the 

block  
 

6 

Moving a branch 

point ahead of the 

block   

7 
Eliminating a 

feedback loop 

 
 

8 
Interchanging the 

summing point 
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1.9 SIGNAL FLOW GRAPH 

 The diagrammatic or pictorial representation of a set of simultaneous linear 

algebraic equations of a more complicated system is known as signal flow graph (SFG). 

It shows the flow of signals in the system. It is important to note that the flow of signals 

in SFG is only in one direction. To represent the set of algebraic equations using SFG, it 

is necessary that those algebraic equations are to be represented in the s-domain. The 

transfer function of the system which is represented by SFG can be obtained by using 

Mason’s gain formula. The dependent and independent variables in the set of algebraic 

equations are represented by the nodes in the SFG. The branches are used to connect 

different nodes present in SFG. The connection between the different nodes is based on 

the relationship given in the algebraic equation. The arrow and the multiplication factor 

indicated on the branch of SFG represent the signal direction. The SFG and the block 

diagram representation of a system yield the same transfer function; but when a system 

is represented by SFG, the transfer function is obtained easily and quickly without using 

the SFG reduction techniques. The terminologies used in SFG rae explained with the help 

of SFG of a system as shown in figure 1.9.1. 

 

Figure 1.9.1 Signal flow graph of a system 

[Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 4.1] 

Node: The variables present in the set of algebraic equations are represented by a point 

called node. 

 

Figure 1.9.2 Node in signal flow graph 

[Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 4.2] 
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Branch  

The line segment joining the two nodes with a specific direction is known as a branch. 

The specific direction is indicated by an arrow in the branch. 

 

Figure 1.9.3 Branch in signal flow graph 

[Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 4.2] 

MASON’S GAIN FORMULA 

 A technique to reduce a signal flow graph to a single transfer function requires the 

application of one formula. The transfer function of a system represented by a signal flow 

graph is 

 

where, k  – number of forward path 

 Pi  – ith forward path gain 

Δ  – 1- (sum of individual loop gains)+(sum of product of two non-touching  

   loop gains)-(sum of product of three non-touching loop gains)+…… 

Δi  – 1- (Δ of the loop non-touching the ith forward path) 

Steps to determine the transfer function of a system using SFG Method 

Step 1: Identify the number of forward paths. 

Step 2: Identify the individual loops and find their respective loop gains. 

Step 3: Identify the two non-touching loops and find the product of their gains. 

Step 4: Identify the three non-touching loops and find the gain product and so on… 

Step 5: Calculate the Δ value. 

Step 6: Calculate the Δi value. 

Step 7: Use Mason’s gain formula to calculate the transfer function value, T. 
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Characteristics Block Diagram Signal flow graph 

Time Consumption 

More since the diagrams 

have to be redrawn 

repeatedly 

Less since there is no 

necessary to redraw the 

diagrams 

Technique applied 
Block Diagram reduction 

technique 
Mason’s gain formula 

Representation of 

elements 

Blocks are used to 

represent the element. 

Nodes are need to 

represent the elements 

Representation of transfer 

function of each element 

Represented inside the 

block of each element 

Represented along the 

branches above the arrow 

ahead 

Feedback paths 

Present and hence the 

formula, (G/(1±GH)) is 

used to reduce the paths 

Present, but there is no 

need for any formulae to 

reduce the paths 

Self-loops Absence of self-loops Presence of self-loops 

Summing points and 

takeoff points 
Present in block diagram Absence in SFG 
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2.1 TIME RESPONSE 

The time response of the system is the output of the closed loop system as a 

function of time. It describes the behavior of a system and contains much information 

about it with respect to time response specification. Time response is formed by the 

transient response and the steady state response. 

Time response = Transient response + Steady state response 

Transient time response  

Transient response (Natural response) describes the behavior of the system in its 

first short time until arrives the steady state value and this response will be our study 

focus. If the input is step function then the output or the response is called step time 

response and if the input is ramp, the response is called ramp time response, etc. 

y(t) = ytr(t) + yss(t) 

The transient response is defined as the part of the time response that goes to zero as time 

becomes very large. Thus yt(t) has the property 

Lim yt(t) = 0,     t --> ∞ 

The time required to achieve the final value is called transient period. The transient 

response may be exponential or oscillatory in nature. Output response consists of the sum 

of forced response (form the input) and natural response (from the nature of the 

system).The transient response is the change in output response from the beginning of 

the response to the final state of the response and the steady state response is the output 

response as time is approaching infinity (or no more changes at the output). 

Steady State Response 

The steady state response is the part of the total response that remains after the transient 

has died out. For a position control system, the steady state response when compared to 

with the desired reference position gives an indication of the final accuracy of the system. 

If the steady state response of the output does not agree with the desired reference exactly, 

the system is said to have steady state error. 
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2.2 TIME DOMAIN SPECIFICATIONS 

The desired performance characteristics of control systems are specified in terms 

of time domain specifications. Systems with energy storage elements cannot respond 

instantaneously and will exhibit transient responses, whenever they are subjected to 

inputs or disturbances. The desired performance characteristics of a system of any order 

may be specified in terms of the transient response to a unit step input signal. The 

response of a second order system for unit step input with various values of damping ratio 

is shown in figure 2.2.1. 

 

Figure 2.2.1 Time Response 

[Source: “Modern Control Engineering” by Katsuhiko Ogata, Page: 229] 

The transient response of a system to a unit step input depends on the initial conditions. 

Therefore, to compare the time response of various systems it is necessary to start with 

standard initial conditions. The most practical standard is to start with the system at rest 

and so output and all time derivatives before t=0 will be zero. The transient response of 

a practical control system often exhibits damped oscillation before reaching steady state. 

A typical damped oscillatory response of a system is shown in figure 2.2.2. 
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Figure 2.2.2 Transient and steady-state response analyses 

[Source: “Modern Control Engineering” by Katsuhiko Ogata, Page: 230] 

The transient response characteristics of a control system to a unit step input is specified 

in terms of the following time domain specifications:  

1. Delay time, td: It is the time required for the response to reach 50% of the steady state 

value for the first time. 

𝑡𝑑 =
1 + 0.7𝜁

𝜔𝑛
 

2. Rise time, tr: It is the time required for the response to reach 100% of the steady state 

value for under damped systems. However, for over damped systems, it is taken as 

the time required for the response to rise from 10% to 90% of the steady state value. 

The unit step response of second order system for underdamped case is given by, 

𝑐(𝑡) = 1 −
𝑒−𝜁𝜔𝑛𝑡

√(1 − 𝜁2)
sin(𝜔𝑑𝑡 + 𝜃) 

At t = tr, c(t) = c(tr) = 1 

𝑐(𝑡𝑟) = 1 −
𝑒−𝜁𝜔𝑛𝑡𝑟

√(1 − 𝜁2)
sin(𝜔𝑑𝑡𝑟 + 𝜃) = 1 
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−𝑒−𝜁𝜔𝑛𝑡𝑟

√(1 − 𝜁2)
sin(𝜔𝑑𝑡𝑟 + 𝜃) = 0 

Since −𝑒−𝜁𝜔𝑛𝑡𝑟 ≠ 0, the term, sin(𝜔𝑑𝑡𝑟 + 𝜃) = 0, 

When Φ = 0, π, 2π, 3π,….      sin Φ = 0 

𝜔𝑑𝑡𝑟 + 𝜃 = 𝜋 

𝜔𝑑𝑡𝑟 = 𝜋 − 𝜃 

𝑡𝑟 =
𝜋 − 𝜃

𝜔𝑑
 

On constructing right angled triangle, 

tan 𝜃 =
√(1 − 𝜁2)

𝜁
 

𝜃 = tan−1
√(1 − 𝜁2)

𝜁
 

𝐷𝑎𝑚𝑝𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦,   𝜔𝑑 = 𝜔𝑛√(1 − 𝜁2) 

𝑡𝑟 =

𝜋 − tan−1 (
√(1 − 𝜁2)

𝜁 )

𝜔𝑛√(1 − 𝜁2)
 

3. Peak time, tp: It is the time required for the response to reach the maximum or peak 

value of the response. To find the expression for peak time, tp, differentiate c(t) with 

respect to ‘t’ and equate to zero. 

𝑑

𝑑𝑡
𝑐(𝑡)|𝑡=𝑡𝑝

= 0 

The unit step response of under damped second order system is given by 

𝑐(𝑡) = 1 −
𝑒−𝜁𝜔𝑛𝑡

√(1 − 𝜁2)
sin(𝜔𝑑𝑡 + 𝜃) 

Differentiating c(t) with respect to ‘t’, 

𝑑

𝑑𝑡
𝑐(𝑡) =

−𝑒−𝜁𝜔𝑛𝑡

√(1 − 𝜁2)
(−𝜁𝜔𝑛) sin( 𝜔𝑑𝑡 + 𝜃) + (

−𝑒−𝜁𝜔𝑛𝑡

√(1 − 𝜁2)
) cos(𝜔𝑑𝑡 + 𝜃)𝜔𝑑 

Put 𝜔𝑑 = 𝜔𝑛√(1 − 𝜁2), 

𝑑

𝑑𝑡
𝑐(𝑡) =

𝑒−𝜁𝜔𝑛𝑡

√(1 − 𝜁2)
(𝜁𝜔𝑛) sin( 𝜔𝑑𝑡 + 𝜃) − (

𝑒−𝜁𝜔𝑛𝑡

√(1 − 𝜁2)
) cos(𝜔𝑑𝑡 + 𝜃)𝜔𝑛√(1 − 𝜁2) 
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                =
𝜔𝑛𝑒−𝜁𝜔𝑛𝑡

√(1−𝜁2)
[𝜁 sin( 𝜔𝑑𝑡 + 𝜃) − (√(1 − 𝜁2))cos(𝜔𝑑𝑡 + 𝜃)] 

                =
𝜔𝑛𝑒−𝜁𝜔𝑛𝑡

√(1−𝜁2)
[cos 𝜃 sin( 𝜔𝑑𝑡 + 𝜃) − sin 𝜃 cos(𝜔𝑑𝑡 + 𝜃)] 

                =
𝜔𝑛𝑒−𝜁𝜔𝑛𝑡

√(1−𝜁2)
[sin( 𝜔𝑑𝑡 + 𝜃 − 𝜃)] 

                =
𝜔𝑛𝑒−𝜁𝜔𝑛𝑡

√(1−𝜁2)
[sin( 𝜔𝑑𝑡)] 

At t = tp, 
𝑑

𝑑𝑡
𝑐(𝑡) = 0 

𝜔𝑛𝑒−𝜁𝜔𝑛𝑡𝑝

√(1 − 𝜁2)
[sin( 𝜔𝑑𝑡𝑝)] = 0 

Since, 𝑒−𝜁𝜔𝑛𝑡𝑝 ≠ 0, the term, [sin( 𝜔𝑑𝑡𝑝)] = 0 

When Φ = 0, π, 2π, 3π,….      sin Φ = 0 

𝜔𝑑𝑡𝑝 = 𝜋 

𝑡𝑝 =
𝜋

𝜔𝑑
 

On substituting, we get, 

𝑡𝑝 =
𝜋

𝜔𝑛√(1 − 𝜁2)
 

4. Peak overshoot, Mp: It is defined as the difference between the peak value of the 

response and the steady state value. Iris usually expressed in percent of the steady 

state value. If the time for the peak is tp, percent peak overshoot is given by, 

Maximum percent overshoot = 
𝑐(𝑡𝑝)−𝑐(∞)

𝑐(∞)
 

𝐴𝑡 𝑡 = ∞, 𝑐(𝑡) = 𝑐(∞) = 1 −
𝑒−𝜁𝜔𝑛∞

√(1 − 𝜁2)
sin(𝜔𝑑𝑡 + 𝜃) = 1 − 0 = 1 

𝐴𝑡 𝑡 = 𝑡𝑝, 𝑐(𝑡) = 𝑐(𝑡𝑝) = 1 −
𝑒−𝜁𝜔𝑛𝑡𝑝

√(1 − 𝜁2)
sin(𝜔𝑑𝑡𝑝 + 𝜃) 

     = 1 −
𝑒

−𝜁𝜔𝑛
𝜋

𝜔𝑛√(1−𝜁2)

√(1−𝜁2)
sin (𝜔𝑑

𝜋

𝜔𝑑
+ 𝜃) 

      = 1 −
𝑒

−𝜁
𝜋

√(1−𝜁2)

√(1−𝜁2)
sin(𝜋 + 𝜃) 
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     = 1 −
𝑒

−𝜁
𝜋

√(1−𝜁2)

√(1−𝜁2)
sin(𝜃) = 1 +

𝑒

𝜁𝜋

√(1−𝜁2)

√(1−𝜁2)
√(1 − 𝜁2) 

%𝑀𝑝 =
𝑐(𝑡𝑝) − 𝑐(∞)

𝑐(∞)
 

%𝑀𝑝 = 𝑒

𝜋𝜁

√(1−𝜁2) × 100 

5. Settling time, ts: It is the time taken by the response to reach and stay within a specified 

error. It is usually expressed as percentage of final value. The usual tolerable error is 

2% and 5% of the final value. 

The response of second order system has two components. They are 

a. Decaying exponential component, 
𝑒−𝜁𝜔𝑛𝑡

√(1−𝜁2)
 

b. Sinusoidal component, sin(𝜔𝑑𝑡 + 𝜃) 

In these terms, the decaying component term dampens or reduces the oscillations 

produced by sinusoidal component. Hence, the settling time is decided by the exponential 

component. The settling time can be found out by equating exponential component to 

percentage tolerance errors. 

For 2% tolerance error band, at t = ts, 
𝑒−𝜁𝜔𝑛𝑡𝑠

√(1−𝜁2)
= 0.02 

For least values of 𝜁, 𝑒−𝜁𝜔𝑛𝑡𝑠 = 0.02 

On taking natural logarithm on both sides, we get, 

−𝜁𝜔𝑛𝑡𝑠 = ln(0.02) = −4 

𝑡𝑠 =
4

𝜁𝜔𝑛
= 4𝑇 

For 5% tolerance error band, at t = ts, 
𝑒−𝜁𝜔𝑛𝑡𝑠

√(1−𝜁2)
= 0.05 

For least values of 𝜁, 𝑒−𝜁𝜔𝑛𝑡𝑠 = 0.05 

On taking natural logarithm on both sides, we get, 

−𝜁𝜔𝑛𝑡𝑠 = ln(0.02) = −3 

𝑡𝑠 =
3

𝜁𝜔𝑛
= 3𝑇 
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𝑆𝑒𝑡𝑡𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒, 𝑡𝑠 =
4

𝜁𝜔𝑛
 𝑓𝑜𝑟 2% 𝑒𝑟𝑟𝑜𝑟 

𝑆𝑒𝑡𝑡𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒, 𝑡𝑠 =
3

𝜁𝜔𝑛
 𝑓𝑜𝑟 5% 𝑒𝑟𝑟𝑜𝑟 

The performance of a system is usually evaluated in terms of the following qualities: 

 How fast it is able to respond to the input? 

 How fast it is reaching the desired output? 

 What is the error between the desired output and the actual output, once the 

transients die down and steady state is achieved? 

 Does it oscillate around the desired value? 

 Is the output continuously increasing with time or is it bounded? 

 These are the specifications to be given for the design of a controller for a given 

system. 
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2.3  TYPES OF TEST INPUT 

The knowledge of input signal is required to predict the response of a system. In 

most of the systems, the input signals are not known ahead of time and also it is difficult 

to express the input signals mathematically by simple equations. The characteristics of 

actual input signals are a sudden shock, a sudden change, a constant velocity and a 

constant acceleration. Hence test signals which resembles these characteristics are used 

as input signals to predict the performance of the system. The commonly use test input 

signals are impulse, step, ramp, acceleration and sinusoidal signals. 

Standard Input Signals 

1. Step signal   2. Unit step signal 

3. Ramp signal   4. Unit ramp signal 

5. Parabolic signal  6. Unit parabolic signal 

7. Impulse signal  8. Sinusoidal signal 

STEP SIGNAL 

 The step signal is a signal whose value changes from zero to A at t=0 and remains 

constant at A for t > 0. The step signal resembles an actual steady input to a system. A 

special case of step signal is unit step in which A is unity. 

RAMP SIGNAL 

 The ramp signal is a signal whose value increases linearly with time from an initial 

value of zero at t=0. The ramp signal resembles a constant velocity input to the system. 

A special case of ramp signal is unit ramp signal in which the value of A is unity. 

PARABOLIC SIGNAL  

 In parabolic signal, the instantaneous value varies as square of the time from an 

initial value of zero at t=0. The sketch of the signal with respect to time resembles a 

parabola. The parabolic signal resembles a constant acceleration input to the system. A 

special case of parabolic signal is unit parabolic signal in which A is unity. 

IMPULSE SIGNAL 

 A signal of very large magnitude which is available for very short duration is called 

impulse signal. Ideal impulse signal is a signal with infinite magnitude and zero duration 

but with an area of A. The unit impulse signal is a special case, in which A is unity. Since 

perfect impulse cannot be achieved in practice, it is usually approximated by a pulse of 
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small width but with area, A. Mathematically an impulse signal is the derivative of a step 

signal. Laplace transform of the impulse function is unity. 

 

 

Figure 2.3.1 Standard test signals 

[Source: “Control Systems Engineering” by I J Nagrath, M Gopal, Page: 196] 

Input r(t) R(s) 

Step input A A/s 

Ramp input At A/s2 

Parabolic input At2/2 A/s3 

Impulse input δ(t) 1 
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2.4     FIRST AND SECOND ORDER SYSTEM RESPONSE 

Transfer Function 

 It is the ratio of Laplace transform of output to Laplace transform of input with 

zero initial conditions. 

 One of the types of modeling a system 

 Using first principle, differential equation is obtained 

 Laplace Transform is applied to the equation assuming zero initial conditions 

Order of a system 

 Order of a system is given by the order of the differential equation governing the 

system 

 Alternatively, order can be obtained from the transfer function  

 In the transfer function, the maximum power of s in the denominator polynomial 

gives the order of the system 

Dynamic Order of Systems 

 Order of the system is the order of the differential equation that governs the 

dynamic behaviour 

 Working interpretation: Number of the dynamic elements / capacitances or holdup 

elements between a manipulated variable and a controlled variable 

 Higher order system responses are usually very difficult to resolve from one 

another 

 The response generally becomes sluggish as the order increases 

SYSTEM RESPONSE 

First-order system time response 

 Transient 

 Steady-state 

Second-order system time response 

 Transient 

 Steady-state 
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FIRST ORDER SYSTEM 

Response of First Order System for Unit Step Input 

The standard form of closed loop transfer function of first order system is 

𝐶(𝑠)

𝑅(𝑠)
=

1

1 + 𝑠𝑇
 

If the input is unit step, then r(t) and R(s)=1/s 

𝐶(𝑠) = 𝑅(𝑠)
1

1 + 𝑠𝑇
=

1

𝑠
×

1

1 + 𝑠𝑇
 

Applying partial fraction expansion, 

𝐶(𝑠) =
𝐴

𝑠
+

𝐵

1 + 𝑠𝑇
 

On solving, 

𝐶(𝑠) =
1

𝑠
−

1

𝑠 +
1
𝑇

 

On taking inverse Laplace transform, the response in time domain is obtained as, 

𝑐(𝑡) = 1 − 𝑒−
𝑡
𝑇 

Hence, the input and output signal of the first order system is given by, 

 

Figure 2.4.1 Response of first order system to unit step input 

[Source: “Control Systems” by Nagoor Kani, Page: 2.20] 
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SECOND ORDER SYSTEM 

LTI second-order system 

 

Figure 2.4.2 Closed loop for second order system 

[Source: “Control Systems” by Nagoor Kani, Page: 2.20] 

𝐶(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)

1 + 𝐺(𝑠)
 

𝐶(𝑠)

𝑅(𝑠)
=

(
𝜔𝑛

2

𝑠(𝑠 + 2𝜁𝜔𝑛
)

1 + (
𝜔𝑛

2

𝑠(𝑠 + 2𝜁𝜔𝑛
)

=
𝜔𝑛

2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2
 

where, 𝜁 is the damping ratio, ωn is the natural frequency 

DAMPING RATIO 

 It is the ratio of critical damping to actual damping. 

CHARACTERISTIC EQUATION 

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 = 0 

𝑠 = −𝜁𝜔𝑛 ± 𝜔𝑛√𝜁2 − 1 

The roots of characteristic equation are: 

 The two roots are imaginary when 𝜁 = 0 (undamped system) 

 The two roots are real and equal when 𝜁 = 1 (critically damped system)  

 The two roots are real but not equal when  𝜁 > 1 (overdamped system) 

 The two roots are complex conjugate when 0 < 𝜁 < 1 (underdamped system) 
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Response of Second Order System for Unit Step Input 

Consider the unit step signal as an input to the second order system. Laplace transform 

of the unit step signal is 

R(s) = 1/s 

Transfer function of the second order closed loop transfer function is 

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2
 

Case 1: Undamped system 

When 𝜁 = 0, 

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

𝑠2 + 𝜔𝑛
2
 

For unit step input, R(s) = 1/s, 

𝐶(𝑠) =
𝜔𝑛

2

𝑠2 + 𝜔𝑛
2

(
1

𝑠
) =

𝜔𝑛
2

𝑠(𝑠2 + 𝜔𝑛
2)

 

 

Taking inverse Laplace transform, 

𝑐(𝑡) = 1 − cos 𝜔𝑛𝑡 

 

Figure 2.4.3 Response of undamped second order system to unit step input 

[Source: “Control Systems” by Nagoor Kani, Page: 2.22] 
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Case 2: Underdamped system 

When 0 < 𝜁 < 1, 

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2
 

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 = {𝑠2 + 2𝜁𝜔𝑛𝑠 + (𝜁𝜔𝑛)2} + 𝜔𝑛

2 − (𝜁𝜔𝑛)2 

       = (𝑠 + 𝜁𝜔𝑛)2 + 𝜔𝑛
2(1 − 𝜁2) 

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

(𝑠 + 𝜁𝜔𝑛)2 + 𝜔𝑛
2(1 − 𝜁2)

 

For unit step input, R(s)=1/s, 

𝐶(𝑠) =
𝜔𝑛

2

𝑠((𝑠 + 𝜁𝜔𝑛)2 + 𝜔𝑛
2(1 − 𝜁2))

 

By applying partial fraction, 

𝐶(𝑠) =
𝐴

𝑠
+

𝐵𝑠 + 𝐶

((𝑠 + 𝜁𝜔𝑛)2 + 𝜔𝑛
2(1 − 𝜁2))

 

On solving, we get, 

𝐶(𝑠) =
1

𝑠
−

𝑠 + 2𝜁𝜔𝑛

((𝑠 + 𝜁𝜔𝑛)2 + 𝜔𝑛
2(1 − 𝜁2))

 

𝐶(𝑠) =
1

𝑠
−

𝑠 + 𝜁𝜔𝑛

((𝑠 + 𝜁𝜔𝑛)2 + 𝜔𝑛
2(1 − 𝜁2))

−
𝜁𝜔𝑛

((𝑠 + 𝜁𝜔𝑛)2 + 𝜔𝑛
2(1 − 𝜁2))

 

 

𝐶(𝑠) =
1

𝑠
−

𝑠 + 𝜁𝜔𝑛

((𝑠 + 𝜁𝜔𝑛)2 + (𝜔𝑛√1 − 𝜁2)
2

)
−

𝜁𝜔𝑛

((𝑠 + 𝜁𝜔𝑛)2 + (𝜔𝑛√1 − 𝜁2)
2

)
 

 

𝐶(𝑠) =
1

𝑠
−

𝑠 + 𝜁𝜔𝑛

((𝑠 + 𝜁𝜔𝑛)2 + (𝜔𝑛√1 − 𝜁2)
2

)

−
𝜁

√1 − 𝜁2

𝜔𝑛√1 − 𝜁2

((𝑠 + 𝜁𝜔𝑛)2 + (𝜔𝑛√1 − 𝜁2)
2

)
 

On taking inverse Laplace transform, 

𝑐(𝑡) = (1 − 𝑒−𝜁𝜔𝑛𝑡 cos 𝜔𝑑𝑡 −
𝜁

√1 − 𝜁2
𝑒−𝜁𝜔𝑛𝑡 sin 𝜔𝑑𝑡) 
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𝑐(𝑡) = (1 −
𝑒−𝜁𝜔𝑛𝑡

√1 − 𝜁2
((√1 − 𝜁2) cos 𝜔𝑑𝑡 + 𝜁 sin 𝜔𝑑𝑡)) 

We know, sin 𝜃 = √1 − 𝜁2, cos 𝜃 = 𝜁 

𝑐(𝑡) = (1 −
𝑒−𝜁𝜔𝑛𝑡

√1 − 𝜁2
(sin 𝜃 cos 𝜔𝑑𝑡 + cos 𝜃 sin 𝜔𝑑𝑡)) 

𝑐(𝑡) = (1 −
𝑒−𝜁𝜔𝑛𝑡

√1 − 𝜁2
(sin(𝜔𝑑𝑡 + 𝜃))) 

 

Figure 2.4.4 Response of underdamped second order system to unit step input 

[Source: “Control Systems” by Nagoor Kani, Page: 2.24] 
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Case 3: Critically damped system 

When 𝜁 = 1, 

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2
 

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

𝑠2 + 2𝜔𝑛𝑠 + 𝜔𝑛
2
 

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

(𝑠 + 𝜔𝑛)2
 

For a step input, R(s)=1/s 

𝐶(𝑠) =
𝜔𝑛

2

𝑠(𝑠 + 𝜔𝑛)2
 

By applying partial fractions, 

𝐶(𝑠) =
𝐴

𝑠
+

𝐵

𝑠 + 𝜔𝑛
+

𝐶

(𝑠 + 𝜔𝑛)2
 

On solving, we get 

𝐶(𝑠) =
1

𝑠
−

1

𝑠 + 𝜔𝑛
−

𝜔𝑛

(𝑠 + 𝜔𝑛)2
 

By taking inverse Laplace transform, 

𝑐(𝑡) = 1 − 𝑒−𝜔𝑛𝑡 − 𝜔𝑛𝑡𝑒−𝜔𝑛𝑡 

 

Figure 2.4.5 Response of critically damped second order system to unit step input 

[Source: “Control Systems” by Nagoor Kani, Page: 2.25] 
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Case 4: Overdamped system 

When 𝜁 > 1, 

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2
 

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 = {𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛

2 + 𝜁2𝜔𝑛
2 − 𝜁2𝜔𝑛

2} 

          = (𝑠 + 𝜁𝜔𝑛)2 − 𝜔𝑛
2(𝜁2 − 1) 

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

(𝑠 + 𝜁𝜔𝑛)2 − 𝜔𝑛
2(𝜁2 − 1)

 

For unit step input, R(s)=1/s, 

𝐶(𝑠) =
𝜔𝑛

2

𝑠[(𝑠 + 𝜁𝜔𝑛)2 − 𝜔𝑛
2(𝜁2 − 1)]

 

𝐶(𝑠) =
𝜔𝑛

2

𝑠(𝑠 + 𝜁𝜔𝑛 + 𝜔𝑛√1 − 𝜁2)(𝑠 + 𝜁𝜔𝑛 − 𝜔𝑛√1 − 𝜁2)
 

By applying partial fraction, 

𝐶(𝑠) =
𝐴

𝑠
+

𝐵

(𝑠 + 𝜁𝜔𝑛 + 𝜔𝑛√1 − 𝜁2)
+

𝐶

(𝑠 + 𝜁𝜔𝑛 − 𝜔𝑛√1 − 𝜁2)
 

By applying inverse Laplace transform, 

𝑐(𝑡) = [1 + (
1

2(𝜁 + √𝜁2 − 1)(√𝜁2 − 1)
) 𝑒

−(𝜁𝜔𝑛+𝜔𝑛√𝜁2−1)𝑡

− (
1

2(𝜁 − √𝜁2 − 1)(√𝜁2 − 1)
) 𝑒

−(𝜁𝜔𝑛−𝜔𝑛√𝜁2−1)𝑡
] 

 

Figure 2.4.6 Response of over damped second order system to unit step input 

[Source: “Control Systems” by Nagoor Kani, Page: 2.27] 
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2.5     ERROR COEFFICIENTS 

There are two different types of error coefficient representation namely, 

a) Static error constants 

b) Generalized error coefficients 

STATIC ERROR CONSTANTS 

  Positional error constant, 𝐾𝑝 = lim
𝑠→0

𝐺(𝑠)𝐻(𝑠) 

  Velocity error constant, 𝐾𝑣 = lim
𝑠→0

𝑠𝐺(𝑠)𝐻(𝑠) 

  Acceleration error constant, 𝐾𝑎 = lim
𝑠→0

𝑠2𝐺(𝑠)𝐻(𝑠) 

GENERALIZED ERROR COEFFICIENTS 

𝐶𝑜 = lim
𝑠→0

𝐹(𝑠) 

𝐶1 = lim
𝑠→0

𝑑𝐹(𝑠)

𝑑𝑠
 

𝐶2 = lim
𝑠→0

𝑑2𝐹(𝑠)

𝑑𝑠2
 

where, 𝐹(𝑠) =
1

1+𝐺(𝑠)𝐻(𝑠)
 

Relation between static error constants and generalized error coefficients 

𝐶𝑜 =
1

1 + 𝐾𝑝
 

𝐶1 =
1

𝐾𝑣
 

𝐶2 =
1

𝐾𝑎
 

 

EnggTree.com

Downloaded From EnggTree.com



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

EE3503 CONTROL SYSTEMS 

2.6   STEADY STATE ERROR 

The deviation of the output of control system from desired response during steady 

state is known as steady state error. It is represented as ess. We can find steady state error 

using the final value theorem as follows.  

ess=lim
t→∞

𝑒(𝑡) 

ess=lim
s→0

𝑠𝐸(𝑠) 

where, E(s) is the Laplace transform of the error signal, e(t) 

 

Figure 2.6.1 Closed loop control system 

[Source: “Control Systems Engineering” by I J Nagrath, M Gopal, Page: 213] 

𝐶(𝑠) = 𝐺(𝑠)𝐸(𝑠) 

𝐸(𝑠) = 𝑅(𝑠) − 𝐶(𝑠)𝐻(𝑠) = 𝑅(𝑠) − 𝐺(𝑠)𝐸(𝑠)𝐻(𝑠) 

𝐸(𝑠)(1 + 𝐺(𝑠)𝐻(𝑠)) = 𝑅(𝑠) 

𝐸(𝑠) =
𝑅(𝑠)

(1 + 𝐺(𝑠)𝐻(𝑠))
 

𝑒𝑠𝑠 = lim
𝑠→0

𝑠𝐸(𝑠) = lim
𝑠→0

𝑠𝑅(𝑠)

(1 + 𝐺(𝑠)𝐻(𝑠))
 

When a control system is excited with standard input signal, the steady state error may 

be zero, constant or infinity. Its value depends on the type number and input signal. 

a) Type-0 system will have a constant steady state error when the input is step signal 

b) Type-1 system will have a constant steady state error when the input is ramp signal 

c) Type-2 system will have a constant steady state error when the input is parabolic 

signal 

For unit step input, 𝑒𝑠𝑠 =
1

1+𝐾𝑝
 

For unit ramp input, 𝑒𝑠𝑠 =
1

𝐾𝑣
 

For unit parabolic input, 𝑒𝑠𝑠 =
1

𝐾𝑎
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Static error constants for various type number of systems 

Error constants 
Type number of system 

0 1 2 3 

Kp Constant ∞ ∞ ∞ 

Kv 0 Constant ∞ ∞ 

Ka 0 0 Constant ∞ 

 

Steady state error for various types of input 

Input signal 
Type number of system 

0 1 2 3 

Kp 
1

1 + 𝐾𝑝
 0 0 0 

Kv ∞ 
1

𝐾𝑣
 0 0 

Ka ∞ ∞ 
1

𝐾𝑎
 0 
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2.7      ROOT LOCUS CONSTRUCTION 

The root locus is a graphical representation in s-domain and it is symmetrical about 

the real axis. Because the open loop poles and zeros exist in the s-domain having the 

values either as real or as complex conjugate pairs.  

Rules for Construction of Root Locus 

The following rule structure is followed for constructing a root locus. 

Rule 1 − Locate the open loop poles and zeros in the ‘s’ plane. 

Rule 2 − Find the number of root locus branches. 

We know that the root locus branches start at the open loop poles and end at open loop 

zeros. So, the number of root locus branches N is equal to the number of finite open loop 

poles P or the number of finite open loop zeros Z, whichever is greater. 

Mathematically, we can write the number of root locus branches N as 

 

Rule 3 − Identify and draw the real axis root locus branches. 

If the angle of the open loop transfer function at a point is an odd multiple of 1800, then 

that point is on the root locus. If odd number of the open loop poles and zeros exist to the 

left side of a point on the real axis, then that point is on the root locus branch. Therefore, 

the branch of points which satisfies this condition is the real axis of the root locus branch. 

Rule 4 − Find the centroid and the angle of asymptotes. 

 If P=Z 

then all the root locus branches start at finite open loop poles and end at finite open loop 

zeros. 

 If P>Z 

then Z number of root locus branches start at finite open loop poles and end at finite open 

loop zeros and P−Z 

number of root locus branches start at finite open loop poles and end at infinite open loop 

zeros. 

 If P<Z 
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then P number of root locus branches start at finite open loop poles and end at finite open 

loop zeros and Z−P number of root locus branches start at infinite open loop poles and 

end at finite open loop zeros.  

So, some of the root locus branches approach infinity, when P≠Z. Asymptotes give the 

direction of these root locus branches. The intersection point of asymptotes on the real 

axis is known as centroid. 

We can calculate the centroid α by using this formula, 

 

Angle of asymptotes,     

 

where, 

q=0,1,2,....,(P−Z)−1 

Rule 5 − Find the intersection points of root locus branches with an imaginary axis. 

We can calculate the point at which the root locus branch intersects the imaginary axis 

and the value of K at that point by using the Routh array method and special case (ii). 

 If all elements of any row of the Routh array are zero, then the root locus branch 

intersects the imaginary axis and vice-versa. 

 Identify the row in such a way that if we make the first element as zero, then the 

elements of the entire row are zero. Find the value of K for this combination. 

 Substitute this K value in the auxiliary equation. You will get the intersection 

point of the root locus branch with an imaginary axis. 

Rule 6 − Find Break-away and Break-in points. 

 If there exists a real axis root locus branch between two open loop poles, then 

there will be a break-away point in between these two open loop poles. 

 If there exists a real axis root locus branch between two open loop zeros, then 

there will be a break-in point in between these two open loop zeros. 

[Note − Break-away and break-in points exist only on the real axis root locus branches.] 

Follow these steps to find break-away and break-in points. 

1. Write K in terms of s from the characteristic equation 1+G(s)H(s)=0 
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2. Differentiate K with respect to s and make it equal to zero. Substitute these values 

of s in the above equation. 

3. The values of s for which the K value is positive are the break points. 

Rule 7 − Find the angle of departure and the angle of arrival. 

The Angle of departure and the angle of arrival can be calculated at complex conjugate 

open loop poles and complex conjugate open loop zeros respectively. 

Angle of departure, 

 

Angle of arrival, 

 

where, 

 

EnggTree.com

Downloaded From EnggTree.com



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

EE3503 CONTROL SYSTEMS 

2.8 ROUTH HURWITZ CRITERION 

Consider a closed-loop transfer function 

𝐻(𝑠) =
𝑏0𝑠𝑚 + 𝑏1𝑠𝑚−1 + ⋯ + 𝑏𝑚−1𝑠 + 𝑏𝑚

𝑎0𝑠𝑛 + 𝑎1𝑠𝑛−1 + ⋯ + 𝑎𝑛−1𝑠 + 𝑎𝑛
=

𝐵(𝑠)

𝐴(𝑠)
 

where the ai’s and bi’s are real constants and m ≤ n. An alternative to factoring the 

denominator polynomial, Routh’s stability criterion, determines the number of closed-

loop poles in the right-half s-plane. 

Algorithm for applying Routh’s stability criterion 

The algorithm described below, like the stability criterion, requires the order of A(s) to 

be finite. 

1. Factor out any roots at the origin to obtain the polynomial, and multiply by −1 if 

necessary, to obtain 

𝑎0𝑠𝑛 + 𝑎1𝑠𝑛−1 + ⋯ + 𝑎𝑛−1𝑠 + 𝑎𝑛 = 0 

𝑤ℎ𝑒𝑟𝑒, 𝑎0 ≠ 0 𝑎𝑛𝑑 𝑎𝑛 > 0 

2. If the order of the resulting polynomial is at least two and any coefficient ai is zero or 

negative, the polynomial has at least one root with nonnegative real part. To obtain 

the precise number of roots with nonnegative real part, proceed as follows. Arrange 

the coefficients of the polynomial, and values subsequently calculated from them as 

shown below: 

sn a0 a2 a4 a6 ⋯ 

sn-1 a1 a3 a5 a7 ⋯ 

sn-2 b1 b2 b3 b4 ⋯ 

sn-3 c1 c2 c3 c4 ⋯ 

sn-4 d1 d2 d3 d4 ⋯ 

⋮ ⋮ ⋮    

s2 e1 e2    

s1 f1     

s0 g0     
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The array is generated until all subsequent coefficients are zero. Similarly, cross 

multiply the coefficients of the two previous rows to obtain the ci, di, etc. Until the nth 

row of the array has been completed. Missing coefficients are replaced by zeros. The 

resulting array is called the Routh array. The powers of s are not considered to be part 

of the array. We can think of them as labels. The column beginning with a0 is 

considered to be the first column of the array. The Routh array is seen to be triangular. 

It can be shown that multiplying a row by a positive number to simplify the calculation 

of the next row does not affect the outcome of the application of the Routh criterion. 

where, the coefficients bi are, 

𝑏1 =
𝑎1𝑎2 − 𝑎0𝑎3

𝑎1
 

𝑏2 =
𝑎1𝑎4 − 𝑎0𝑎5

𝑎1
 

𝑏3 =
𝑎1𝑎6 − 𝑎0𝑎7

𝑎1
 

⋮ 

3. Count the number of sign changes in the first column of the array. It can be shown 

that a necessary and sufficient condition for all roots of (2) to be located in the left-

half plane is that all the ai are positive and all of the coefficients in the first column be 

positive. 

Example: Generic Cubic Polynomial 

Consider the generic cubic polynomial: 

𝑎0𝑠3 + 𝑎1𝑠2 + 𝑎2𝑠 + 𝑎3 = 0 

where all the ai are positive. The Routh array is 

s3 𝑎0 𝑎2 

s2 𝑎1 𝑎3 

s1 
𝑎1𝑎2 − 𝑎0𝑎3

𝑎0
  

s0 𝑎3  

So, the condition that all roots have negative real parts is 

𝑎1𝑎2 > 𝑎0𝑎3 
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Example: A Quadratic Polynomial. 

Next, we consider the fourth-order polynomial: 

𝑠4 + 2𝑠3 + 3𝑠2 + 4𝑠 + 5 = 0 

Here we illustrate the fact that multiplying a row by a positive constant does not change 

the result. One possible Routh array is given at left, and an alternative is given at right, 

s4 1 3 5 

s3 2 4 0 

s2 1 5  

s1 -6   

s0 5   

Also, 

s4 1 3 5 

s3 2 4 0 

 1 2 0 

s2 1 5  

s1 -3   

s0 5   

In this example, the sign changes twice in the first column so the polynomial equation       

A(s) = 0 has two roots with positive real parts. 

Necessity of all coefficients being positive 

In stating the algorithm above, we did not justify the stated conditions. Here we show 

that all coefficients being positive is necessary for all roots to be located in the left half-

plane. It can be shown that any polynomial ins, all of whose coefficients are real, can be 

factored into a product of a maximal number linear and quadratic factors also having real 

coefficients. Clearly a linear factor (s+a) has nonnegative real root if a is positive. For 

both roots of a quadratic factor (s2+bs+c) to have negative real parts both b and c must 

be positive. (If c is negative, the square root ofb2−4cis real and the quadratic factor can 

be factored into two linear factors so the number of factors was not maximal.) It is easy 

to see that if all coefficients of the factors are positive, those of the original polynomial 
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must be as well. To see that the condition is not sufficient, we can refer to several 

examples above. 

Example: Determining Acceptable Gain Values 

Consider a system whose closed-loop transfer function is 

𝐻(𝑠) =
𝐾

𝑠(𝑠2 + 𝑠 + 1)(𝑠 + 2) + 𝐾
 

Characteristic equation 

𝑠4 + 3𝑠3 + 3𝑠2 + 2𝑠 + 𝐾 = 0 

Routh array is 

s4 1 3 K 

s3 3 2  

s2 7/3 K  

s1 (14-9K)/7   

s0 K   

For the system to be stable, the elements of the first column of the Routh array should be 

positive. Based on that condition, the s1 row yields the condition that, for stability, 

(14 − 9𝐾)

7
> 0 

(14 − 9𝐾) > 0 

14 > 9𝐾 

14

9
> 𝐾 

The s0 row yields the condition that, for stability, 

K > 0 

Hence, the system is stable when the value of K lies in the range of 

0 < K < 14/9 
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Special Case: Zero First-Column Element. 

If the first term in a row is zero, but the remaining terms are not, the zero is replaced by 

a small, positive value of ϵ and the calculation continues as described above. Here’s an 

example: 

𝑠3 + 2𝑠2 + 𝑠 + 2 = 0 

Routh array is 

s3 1 1 

s2 2 2 

s1 0 ≅ 𝜖  

s0 2  

Special Case: Zero Row 

If all the coefficients in a row are zero, a pair of roots of equal magnitude and opposite 

sign is indicated. These could be two real roots with equal magnitudes and opposite signs 

or two conjugate imaginary roots. The zero row is replaced by taking the coefficients of 

dP(s)/ds, where P(s), called the auxiliary polynomial, is obtained from the values in the 

row above the zero row. The pair of roots can be found by solving dP(s)/ds= 0. Note that 

the auxiliary polynomial always has even degree. It can be shown that an auxiliary 

polynomial of degree 2n has n pairs of roots of equal magnitude and opposite sign. 
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2.9     TIME RESPONSE ANALYSIS 

 Two types of inputs can be applied to a control system 

 Command Input or Reference Input yr(t) 

 Disturbance Input w(t)  

(External disturbances w(t) are typically uncontrolled variations in the load on a 

control system). In systems controlling mechanical motions, load disturbances may 

represent forces. In voltage regulating systems, variations in electrical load area major 

source of disturbances. 

In general, the closed loop transfer function of a system is denoted as M(s). 
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3.1 FREQUENCY RESPONSE 

 The response of a system for the sinusoidal input is called sinusoidal response. The 

ratio of sinusoidal response to sinusoidal input is called sinusoidal transfer function of 

the system and in general, it is denoted by, T(jω). The sinusoidal transfer function is the 

frequency domain representation of the system and so it is also called frequency domain 

transfer function. 

 The frequency domain transfer function T(jω) is a complex function of ω. Hence, 

it can be separated into magnitude function and phase function. Now, the magnitude and 

phase functions will be real functions of ω and they are called frequency response.  

The frequency response can be evaluated for open loop system and closed loop 

system. The frequency domain transfer function of open loop and closed loop systems 

can be obtained from the s-domain transfer function by replacing ‘s’ by jω as shown: 

Open loop transfer function:   𝑮(𝒋𝝎) = |𝑮(𝒋𝝎)|∠𝑮(𝒋𝝎) 

Loop transfer function:   𝑮(𝒋𝝎)𝑯(𝒋𝝎) = |𝑮(𝒋𝝎)𝑯(𝒋𝝎)|∠𝑮(𝒋𝝎)𝑯(𝒋𝝎) 

Closed loop transfer function:  𝑴(𝒋𝝎) = |𝑴(𝒋𝝎)|∠𝑴(𝒋𝝎) 

The advantages of frequency response analysis are the following: 

1. The absolute and relative stability of the closed loop system can be estimated 

from the knowledge of their open loop frequency response. 

2. The practical testing of systems can be easily carried with available sinusoidal 

signal generators and precise measurement equipments. 

3. The transfer function of complicated systems can be determined experimentally 

by frequency response tests. 

4. The design and parameter adjustment of the open loop transfer function of a 

system for specified closed loop performance is carried out more easily in 

frequency domain. 

5. When the system is designed by the use of frequency response analysis, the 

effects of noise disturbance and parameter variations are relatively easy to 

visualize and incorporate corrective measures. 

6. The frequency response analysis and designs can be extended to certain non-

linear control systems. 
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The frequency response of a system is a frequency dependent function which expresses 

how a sinusoidal signal of a given frequency on the system input is transferred through 

the system. Time-varying signals at least periodical signals – which excite systems, as 

the reference (set point) signal or a disturbance in a control system or measurement 

signals which are inputs signals to signal filters, can be regarded as consisting of a sum 

of frequency components. Each frequency component is a sinusoidal signal having 

certain amplitude and a certain frequency. (The Fourier series expansion or the Fourier 

transform can be used to express these frequency components quantitatively.) The 

frequency response expresses how each of these frequency components is transferred 

through the system. Some components may be amplified, others may be attenuated, and 

there will be some phase lag through the system. The frequency response is an important 

tool for analysis and design of signal filters (as low pass filters and high pass filters), and 

for analysis, and to some extent, design, of control systems. Both signal filtering and 

control systems applications are described (briefly) later in this chapter. The definition of 

the frequency response – which will be given in the next section – applies only to linear 

models, but this linear model may very well be the local linear model about some 

operating point of a non-linear model. The frequency response can be found 

experimentally or from a transfer function model. It can be presented graphically or as a 

mathematical function. 

FREQUENCY DOMAIN SPECIFICATIONS 

 The performance and characteristics of a system in frequency domain are measured 

in terms of frequency domain specifications. The requirements of a system to be designed 

are usually specified in terms of these specifications. 

The frequency domain specifications are, 

a) Resonant peak, Mr 

b) Resonant frequency, ωr 

c) Bandwidth, ωb 

d) Cut-off rate 

e) Gain margin, Kg 

f) Phase margin, γ 
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FREQUENCY DOMAIN SPECIFICATIONS OF SECOND ORDER SYSTEM 

Resonant peak, Mr 

 The maximum value of the magnitude of closed loop transfer function is called the 

resonant peak, Mr. A large resonant peak corresponds to a large overshoot in transient 

response. Consider the closed loop transfer function of second order system, 

𝐶(𝑠)

𝑅(𝑠)
= 𝑀(𝑠) =

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2
 

The sinusoidal transfer function M(jω) is obtained by letting s=jω. 

𝑀(𝑗𝜔) =
𝜔𝑛

2

(𝑗𝜔)2 + 2𝜁𝜔𝑛(𝑗𝜔) + 𝜔𝑛
2
 

            =
𝜔𝑛

2

−𝜔2 + 2𝜁𝜔𝑛(𝑗𝜔) + 𝜔𝑛
2
 

              =
𝜔𝑛

2

𝜔𝑛
2 (−

𝜔2

𝜔𝑛
2 + 2𝑗𝜁

𝜔
𝜔𝑛

+ 1)
 

     =
1

1 − (
𝜔

𝜔𝑛
)

2
+ 2𝑗𝜁

𝜔
𝜔𝑛

 

Let normalized frequency, 𝑢 = (
𝜔

𝜔𝑛
), 

𝑀(𝑗𝜔) =
1

1 − 𝑢2 + 2𝑗𝜁𝑢
 

Let, M – Magnitude of closed loop transfer function 

 α – Phase of closed loop transfer function 

𝑀 = |𝑀(𝑗𝜔)| = [(1 − 𝑢2)2 + 4𝜁2𝑢2]−
1
2 

𝛼 = ∠𝑀(𝑗𝜔) = − tan−1
2𝜁𝑢

1 − 𝑢2
 

The resonant peak is the maximum value of M. The condition for maximum value of M 

can be obtained by differentiating the equation of M with respect to u and letting 

(dM/du=0) when (u=ur) with normalized frequency, 𝑢𝑟 =
𝜔𝑟

𝜔
. 

On differentiating ‘M’ with respect to ‘u’, we get, 

𝑑𝑀

𝑑𝑢
=

𝑑

𝑑𝑢
[1 − 𝑢2 + 2𝑗𝜁𝑢]−

1
2 
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= −
1

2
[1 − 𝑢2 + 2𝑗𝜁𝑢]−

3
2[2(1 − 𝑢2)(−2𝑢) + 8𝜁2𝑢] 

              = −
[−4𝑢(1 − 𝑢2) + 8𝜁2𝑢]

2[(1 − 𝑢2)2 + 4𝜁2𝑢2]
3
2

 

              = −
[4𝑢(1 − 𝑢2) − 8𝜁2𝑢]

2[(1 − 𝑢2)2 + 4𝜁2𝑢2]
3
2

 

Replacing u by ur and equating dM/du to zero, 

[4𝑢𝑟(1 − 𝑢𝑟
2) − 8𝜁2𝑢𝑟]

2[(1 − 𝑢𝑟
2)2 + 4𝜁2𝑢𝑟

2]
3
2

= 0 

4𝑢𝑟(1 − 𝑢𝑟
2) − 8𝜁2𝑢𝑟 = 0 

4𝑢𝑟 − 4𝑢𝑟
3 − 8𝜁2𝑢𝑟 = 0 

4𝑢𝑟 − 4𝑢𝑟
3 = 8𝜁2𝑢𝑟 

4𝑢𝑟
3 = 4𝑢𝑟 − 8𝜁2𝑢𝑟 

𝑢𝑟
2 = 1 − 2𝜁2 

𝑢𝑟 = √1 − 2𝜁2 

Therefore, the resonant peak occurs when 𝑢𝑟 = √1 − 2𝜁2 

On substituting for M with M=Mr and u=ur, 

                 𝑀𝑟 =
1

[(1 − 𝑢𝑟
2)2 + 4𝜁2𝑢𝑟

2]
1
2

=
1

[(1 − (1 − 2𝜁2))
2

+ 4𝜁2(1 − 2𝜁2)]

1
2

=
1

[4𝜁4 + 4𝜁2 − 8𝜁4]
1
2

=
1

[4𝜁2 − 4𝜁4]
1
2

=
1

[4𝜁2(1 − 𝜁2)]
1
2

=
1

2𝜁√1 − 𝜁2
 

𝑀𝑟 =
1

2𝜁√1 − 𝜁2
 

Resonant frequency, ωr 

 The frequency at which the resonant peak occurs is called resonant frequency, ωr. 

This is related to the frequency of oscillation in the step response and thus it is indicative 

of the speed of transient response. 

Normalized resonant frequency, 

𝑢𝑟 =
𝜔𝑟

𝜔𝑛
= √1 − 2𝜁2 
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𝜔𝑟 = 𝜔𝑛√1 − 2𝜁2 

Bandwidth, ωb 

The bandwidth is the range of frequencies for which the system normalized gain is 

more than -3db. The frequency at which the gain is -3db is called cut-off frequency. 

Bandwidth is usually defined for closed loop system and it transmits the signals whose 

frequencies are less than the cut-off frequency. The bandwidth is a measure of the ability 

of a feedback system to reproduce the input signal, noise rejection characteristics and rise 

time. A large bandwidth corresponds to a small rise time or fast response. 

Let, normalized bandwidth,  

𝑢𝑏 =
𝜔𝑏

𝜔𝑛
 

When u=ub, the magnitude M, of the closed loop system is 1/√2 or (-3db) 

On substituting for M with u=ub and equating it to 1/√2 

𝑀 =
1

[(1 − 𝑢𝑏
2)2 + 4𝜁2𝑢𝑏

2]
1
2

=
1

√2
 

On squaring and cross multiplying, we get, 

(1 − 𝑢𝑏
2)2 + 4𝜁2𝑢𝑏

2 = 2 

1 + 𝑢𝑏
4 − 2𝑢𝑏

2 + 4𝜁2𝑢𝑏
2 = 2 

𝑢𝑏
4 − 2𝑢𝑏

2(1 − 2𝜁2) − 1 = 0 

Let 𝑥 = 𝑢𝑏
2, 

𝑥2 − 2𝑥(1 − 2𝜁2) − 1 = 0 

Hence, 

𝑥 =
2(1 − 2𝜁2) ± √4(1 − 2𝜁2)2 + 4

2
=

2(1 − 2𝜁2) ± 2√(1 + 4𝜁4 − 4𝜁2) + 1

2
 

Let us take only the positive sign, 

𝑥 = 1 − 2𝜁2 + √(2 + 4𝜁4 − 4𝜁2) 

But, 𝑢𝑏 = √𝑥 

𝑢𝑏 = [1 − 2𝜁2 + √(2 + 4𝜁4 − 4𝜁2)]

1
2
 

Also, 𝑢𝑏 =
𝜔𝑏

𝜔𝑛
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𝜔𝑏 = 𝜔𝑛 [1 − 2𝜁2 + √(2 + 4𝜁4 − 4𝜁2)]

1
2
 

Cut-off rate 

 The slope of the log-magnitude curve near the cut-off frequency is called cut-off 

rate. The cut-off rate indicates the ability of the system to distinguish the signal from 

noise. 

Gain margin, Kg 

 The gain margin, Kg is defined as the value of gain, to be added to system, in order 

to bring the system to the verge of instability. The gain margin is given by the reciprocal 

of the magnitude of open loop transfer function at phase crossover frequency. 

 The frequency at which the phase of open loop transfer function is 180o is called 

the phase crossover frequency, ωpc. 

𝐾𝑔 =
1

|𝐺(𝑗𝜔𝑝𝑐)|
 

𝐾𝑔𝑖𝑛 𝑑𝑏 = 20 log 𝐾𝑔 = 20 log
1

|𝐺(𝑗𝜔𝑝𝑐)|
 

 The gain margin in db is given by the negative of the db magnitude of G(jω) at 

phase crossover frequency. The gain margin indicates the additional gain that can be 

provided to system without affecting the stability of the system. 

[Note: The gain margin of second order system is infinite]. 

Phase margin, γ 

 The phase margin, γ is defined as the additional phase lag to be added at the gain 

crossover frequency in order to bring the system to the verge of instability.  

 The gain crossover frequency, ωgc is the frequency at which the magnitude of the 

open loop transfer function is unity (or it is the frequency at which the db magnitude is 

zero). 

 The phase margin is obtained by adding 180o to the phase angle, 𝜙 of the open 

loop transfer function at the gain crossover frequency. The phase margin indicates the 

additional phase lag that can be provided to the system without affecting stability. 

𝐺(𝑠) =
𝜔𝑛

2

𝑠(𝑠 + 2𝜁𝜔𝑛)
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Put s=jω, 

𝐺(𝑗𝜔) =
𝜔𝑛

2

𝑗𝜔(𝑗𝜔 + 2𝜁𝜔𝑛)
=

𝜔𝑛
2

𝜔𝑛(𝑗
𝜔

𝜔𝑛
)𝜔𝑛(𝑗

𝜔
𝜔𝑛

+ 2𝜁)
=

1

(𝑗
𝜔

𝜔𝑛
)(𝑗

𝜔
𝜔𝑛

+ 2𝜁)
 

Let normalized frequency, 𝑢 =
𝜔

𝜔𝑛
 

𝐺(𝑗𝜔) =
1

(𝑗𝑢)(𝑗𝑢 + 2𝜁)
 

Magnitude of G(jω), 

|𝐺(𝑗𝜔)| =
1

(𝑢)√(𝑢2 + 4𝜁2)
=

1

√(𝑢4 + 4𝑢2𝜁2)
 

Phase of G(jω), 

∠𝐺(𝑗𝜔) = −90𝑜 − tan−1
𝑢

2𝜁
 

At the gain crossover frequency ωgc, the magnitude is unity. 

Hence, at u=ugc, 

|𝐺(𝑗𝜔𝑔𝑐)| =
1

√(𝑢𝑔𝑐
4 + 4𝑢𝑔𝑐

2𝜁2)

= 1 

(𝑢𝑔𝑐
4 + 4𝑢𝑔𝑐

2𝜁2) = 1 

(𝑢𝑔𝑐
4 + 4𝑢𝑔𝑐

2𝜁2) − 1 = 0 

Let x= ugc
2 

𝑥2 + 4𝑥𝜁2 − 1 = 0 

𝑥 =
−4𝜁2 ± √16𝜁4 + 4

2
= −2𝜁2 ± √4𝜁4 + 1 

Let us take only the positive sign, 

𝑥 = −2𝜁2 + √4𝜁4 + 1 

Hence, 

𝑢𝑔𝑐 = [−2𝜁2 + √4𝜁4 + 1]

1
2
 

Phase margin, 

𝛾 = 180𝑜 + 𝜙𝑔𝑐 
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𝛾 = 180𝑜 + ∠𝐺(𝑗𝜔𝑔𝑐) = 180𝑜 + (−90𝑜 − tan−1
𝑢𝑔𝑐

2𝜁
) 

𝛾 = 90𝑜 − tan−1
[−2𝜁2 + √4𝜁4 + 1]

1
2

2𝜁
 

 

Figure 3.1.1 Typical magnification curve of a feedback control system 

[Source: “Automatic Control Systems” by Benjamin C. Kuo, Page: 463] 
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3.2 BODE PLOT 

The Bode plot is a frequency response plot of the sinusoidal transfer function of a 

system. One is a plot of the magnitude of a sinusoidal transfer function versus log ω. The 

other is a plot of the phase angle of a sinusoidal transfer function versus log ω. The main 

advantage of bode plot is that multiplication of magnitudes can be converted into 

addition. Also, a simple method for sketching an approximate log-magnitude curve is 

available. A Bode plot is a (semilog) plot of the transfer function magnitude and phase 

angle as a function of frequency.  

The gain magnitude is many times expressed in terms of decibels (dB) = 20 log10A. 

Semilog sheet 

Two sets of axes: gain on top, phase below (identical) 

Logarithmic frequency axes 

Gain axis is logarithmic – either explicitly or as units of decibels(dB) 

Phase axis is linear with units of degrees 

 

Figure 3.2.1 Magnitude and phase plots of Bode plot 

[Source: “Linear Control System Analysis and Design with MATLAB” by John J D’Azzo, Constantine, Stuart, Page: 318] 

 

EnggTree.com

Downloaded From EnggTree.com



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

EE3503 CONTROL SYSTEMS 

BASIC FACTORS OF G(jω) 

The basic factors that are very frequently occur in a typical transfer function G(jω) are, 

1. Constant gain, K 

2. Integral and derivative factors (𝑗𝜔)∓1 

3. First-order factors (1 + 𝑗𝜔𝑇)∓1 

4. Quadratic factors (1 + 2𝜁 (𝑗
𝜔

𝜔𝑛
) + (𝑗

𝜔

𝜔𝑛
)

2

)
∓1

 

Constant Gain, K 

Let G(s)=K, 

𝐺(𝑗𝜔) = 𝐾 = 𝐾∠0𝑜 

𝐴 = |𝐺(𝑗𝜔)|𝑖𝑛 𝑑𝑏 = 20 log 𝐾 

𝜙 = ∠𝐺(𝑗𝜔) = 0𝑜 

The magnitude plot for a constant gain K is a horizontal straight line at the magnitude of 

20log K db. The phase plot is a straight line at 0o. 

 

Figure 3.2.2 Bode plot of constant gain, K 

[Source: “Control Systems” by A Nagoor Kani, Page: 3.10] 

Integral Factor 

Let G(s)=K/s, 

𝐺(𝑗𝜔) =
𝐾

𝑗𝜔
=

𝐾

𝜔
∠ − 90𝑜 
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𝐴 = |𝐺(𝑗𝜔)|𝑖𝑛 𝑑𝑏 = 20 log (
𝐾

𝜔
) 

𝜙 = ∠𝐺(𝑗𝜔) = −90𝑜 

The magnitude plot of the integral factor is a straight line with the slope of -20db/dec and 

passing through zero db when ω=K. The phase plot is a straight line at -90o. 

 

Figure 3.2.3 Bode plot of integral factor, K/jω 

[Source: “Control Systems” by A Nagoor Kani, Page: 3.11] 

Derivative factor 

Let G(s)=Ks, 

𝐺(𝑗𝜔) = 𝐾𝑗𝜔 = 𝐾𝜔∠90𝑜 

𝐴 = |𝐺(𝑗𝜔)|𝑖𝑛 𝑑𝑏 = 20 log(𝐾𝜔) 

𝜙 = ∠𝐺(𝑗𝜔) = +90𝑜 

The magnitude plot of the integral factor is a straight line with the slope of 20db/dec and 

passing through zero db when ω=K. The phase plot is a straight line at +90o. 
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Figure 3.2.4 Bode plot of derivative factor, K x jω 

[Source: “Control Systems” by A Nagoor Kani, Page: 3.11] 

First order factor in denominator 

Let 𝐺(𝑠) =
1

1+𝑠𝑇
 

𝐺(𝑗𝜔) =
1

1 + 𝑗𝜔𝑇
=

1

√1 + 𝜔2𝑇2
∠ − tan−1 𝜔𝑇 

𝐴 = |𝐺(𝑗𝜔)|𝑖𝑛 𝑑𝑏 = 20 log (
1

√1 + 𝜔2𝑇2
) 

𝜙 = ∠𝐺(𝑗𝜔) = ∠ − tan−1 𝜔𝑇 

The magnitude plot of the first order factor can be approximated by two straight lines, 

one is a straight line at zero db for the frequency range, 0<ω<1/T, and the other is a 

straight line with slope -20db/dec for the frequency range, 1/T<ω<∞. The corner 

frequency is ωc=1/T and the loss in db at the corner frequency is -3db. The phase angle 

of the first order factor varies from 0o to -90o as ω is varied from zero to infinity. The 

phase plot is a curve passing through -45o at ωc. 
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Figure 3.2.5 Bode plot of first order factor in denominator, 1/(1+jωT) 

[Source: “Control Systems” by A Nagoor Kani, Page: 3.13] 

First order factor in numerator 

Let 𝐺(𝑠) = 1 + 𝑠𝑇 

𝐺(𝑗𝜔) = 1 + 𝑗𝜔𝑇 = √1 + 𝜔2𝑇2∠ tan−1 𝜔𝑇 

𝐴 = |𝐺(𝑗𝜔)|𝑖𝑛 𝑑𝑏 = 20 log (√1 + 𝜔2𝑇2) 

𝜙 = ∠𝐺(𝑗𝜔) = ∠ tan−1 𝜔𝑇 

The magnitude plot of the first order factor can be approximated by two straight lines, 

one is a straight line at zero db for the frequency range, 0<ω<1/T, and the other is a 

straight line with slope 20db/dec for the frequency range, 1/T<ω<∞. The corner 

frequency is ωc=1/T and the loss in db at the corner frequency is +3db. The phase angle 

of the first order factor varies from 0o to +90o as ω is varied from zero to infinity. The 

phase plot is a curve passing through +45o at ωc. 
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Figure 3.2.6 Bode plot of first order factor in numerator, (1+jωT) 

[Source: “Control Systems” by A Nagoor Kani, Page: 3.14] 

Quadratic factor in denominator 

Second order closed loop transfer function is given by 

𝐺(𝑠) =
𝜔𝑛

2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2

=
1

(
𝑠

𝜔𝑛
)

2
+ 2𝜁

𝑠
𝜔𝑛

+ 1
 

𝐺(𝑗𝜔) =
1

(
𝑗𝜔
𝜔𝑛

)
2

+ 2𝜁
𝑗𝜔
𝜔𝑛

+ 1

=
1

− (
𝜔

𝜔𝑛
)

2
+ 2𝜁

𝑗𝜔
𝜔𝑛

+ 1
 

𝐺(𝑗𝜔) =
1

√(1 −
𝜔2

𝜔𝑛
2) + 4𝜁2 𝜔2

𝜔𝑛
2

∠ −tan−1 (
2𝜁

𝜔
𝜔𝑛

1 −
𝜔2

𝜔𝑛
2

) 

At low frequencies when ω<<ωn, the magnitude is, 

𝐴 = −20 log √1 −
𝜔2

𝜔𝑛
2

(2 − 4𝜁2) +
𝜔4

𝜔𝑛
4

≅ −20 log 1 = 0 

At high frequencies when ω>>ωn, the magnitude is, 

𝐴 = −20 log √1 −
𝜔2

𝜔𝑛
2

(2 − 4𝜁2) +
𝜔4

𝜔𝑛
4
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𝐴 ≅ −20 log √
𝜔4

𝜔𝑛
4

= − 20 log
𝜔2

𝜔𝑛
2

= −20 log (
𝜔

𝜔𝑛
)

2

 

𝜙 = ∠𝐺(𝑗𝜔) = − tan−1 (
2𝜁

𝜔
𝜔𝑛

1 −
𝜔2

𝜔𝑛
2

) 

The magnitude plot of the quadratic factor in the denominator can be approximated by 

two straight lines, one is a straight line at zero db for the frequency range, 0<ω< ωn, and 

the other is a straight line with slope -40db/dec for the frequency range, ωn<ω<∞. The 

frequency at which the two asymptotes meet is called the corner frequency. For the 

quadratic factor, the frequency, ωn is the corner frequency, ωc. The phase angle of the 

quadratic factor varies from 0o to -180o as ω is varied from zero to infinity. The phase 

plot is a curve passing through -90o at ωc. At the corner frequency, phase angle is -90o 

and independent of 𝜁, but at all other frequency it depends on 𝜁. 

 

Figure 3.2.7 Bode plot of quadratic factor in denominator 

[Source: “Control Systems” by A Nagoor Kani, Page: 3.15] 
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Quadratic factor in the numerator 

𝐺(𝑠) =
𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛

2

𝜔𝑛
2

= (
𝑠

𝜔𝑛
)

2

+ 2𝜁
𝑠

𝜔𝑛
+ 1 

𝐺(𝑗𝜔) = (
𝑗𝜔

𝜔𝑛
)

2

+ 2𝜁
𝑗𝜔

𝜔𝑛
+ 1 = − (

𝜔

𝜔𝑛
)

2

+ 2𝜁
𝑗𝜔

𝜔𝑛
+ 1 

𝐺(𝑗𝜔) = √(1 −
𝜔2

𝜔𝑛
2

) + 4𝜁2
𝜔2

𝜔𝑛
2

∠ tan−1 (
2𝜁

𝜔
𝜔𝑛

1 −
𝜔2

𝜔𝑛
2

) 

At low frequencies when ω<<ωn, the magnitude is, 

𝐴 = 20 log √1 −
𝜔2

𝜔𝑛
2

(2 − 4𝜁2) +
𝜔4

𝜔𝑛
4

≅ 20 log 1 = 0 

At high frequencies when ω>>ωn, the magnitude is, 

𝐴 = 20 log √1 −
𝜔2

𝜔𝑛
2

(2 − 4𝜁2) +
𝜔4

𝜔𝑛
4
 

𝐴 ≅ 20 log √
𝜔4

𝜔𝑛
4

= 20 log
𝜔2

𝜔𝑛
2

= 20 log (
𝜔

𝜔𝑛
)

2

 

𝜙 = ∠𝐺(𝑗𝜔) = tan−1 (
2𝜁

𝜔
𝜔𝑛

1 −
𝜔2

𝜔𝑛
2

) 

The magnitude plot of the quadratic factor in the denominator can be approximated by 

two straight lines, one is a straight line at zero db for the frequency range, 0<ω< ωn, and 

the other is a straight line with slope +40db/dec for the frequency range, ωn<ω<∞. The 

frequency at which the two asymptotes meet is called the corner frequency. For the 

quadratic factor, the frequency, ωn is the corner frequency, ωc. The phase angle of the 

quadratic factor varies from 0o to +180o as ω is varied from zero to infinity. The phase 

plot is a curve passing through +90o at ωc. At the corner frequency, phase angle is +90o 

and independent of 𝜁, but at all other frequency it depends on 𝜁. 
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Figure 3.2.8 Bode plot of quadratic factor in numerator 

[Source: “Control Systems” by A Nagoor Kani, Page: 3.16] 
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PROCEDURE FOR MAGNITUDE PLOT OF BODE PLOT 

Step 1: Convert the transfer function into Bode form or time constant form. 

Step 2: List the corner frequencies in the increasing order and prepare a table as shown 

Term 
Corner frequency 

rad/sec 

Slope 

db/dec 

Change in Slope 

db/dec 
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In the above table, enter K or K/(jω)n or K(jω)n as the first term and the other terms in the 

increasing order of corner frequencies. Then enter the corner frequency, slope contributed 

by each term and change in slope at every corner frequency. 

Step 3: Choose an arbitrary frequency ωl which is lesser than the lowest corner frequency. 

Calculate the db magnitude of K or K/(jω)n or K(jω)n at ωl and at the lowest corner 

frequency. 

Step 4: Then calculate the gain (db magnitude) at every corner frequency one by one by 

using the formula, 

Gain at ωy = change in gain from ωx to ωy + Gain at ωx 

Ay = (Slope from ωx to ωy x log(ωy/ ωx) + Gain at ωx 

Step 5: Choose an arbitrary frequency ωh which is greater than the highest corner 

frequency. Calculate the gain at ωh by using the formula in step 4. 

Step 6: In a semilog graph sheet mark the required range of frequency on x-axis (log 

scale) and the range of db magnitude on y-axis (ordinary scale) after choosing proper 

units. 

Step 7: Mark all the points obtained in steps 3, 4, 5 on the graph and join the points by 

straight lines. Mark the slope at every part of the graph. 

PROCEDURE FOR PHASE PLOT OF BODE PLOT 

 The phase plot is an exact plot obtained with exact phase angles of G(jω) computed 

for various values of ω and is then tabulated. The choice of frequencies are preferably the 

frequencies chosen for magnitude plot. Usually the magnitude plot and phase plot are 

drawn in a single semilog sheet on a common frequency scale. Take another y-axis in the 

graph where the magnitude plot is drawn and, in this y-axis, mark the desired range of 

phase angles after choosing proper units. From the tabulated values of ω and phase angles, 

mark all the points on the graph. Join the points by a smooth curve. 

DETERMINATION OF GAIN MARGIN AND PHASE MARGIN FROM BODE PLOT 

 The gain margin in db is given by the negative of db magnitude of G(jω) at the 

phase crossover frequency, ωpc. The ωpc is the frequency at which phase of G(jω) is 180o. 

if the db magnitude of G(jω) at ωpc is negative then gain margin is positive and vice versa. 

 Let Φgc be the phase angle of G(jω) at gain cross over frequency, ωgc. The ωgc is 

the frequency at which the db magnitude of G(jω) is zero. Now the phase margin, γ is 
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given by, γ = 180o+ Φgc. If Φgc is less negative than -180o, then phase margin is positive 

and vice versa. The positive and negative gain margins and phase margins are illustrated 

in figure 3.2.9. 

 

Figure 3.2.9 Gain margin and Phase margin in Bode plot 

[Source: “Control Systems” by A Nagoor Kani, Page: 3.20] 
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3.3 POLAR PLOT 

The polar plot of a sinusoidal transfer function G(jω) is a plot of the magnitude 

G(jω) versus the phase angle of G(jω) on polar coordinates as ω is varied from zero to 

infinity. Thus, the polar plot is the locus of vectors |G(jω)| < as ω is varied from zero to 

infinity. The polar plot is also called Nyquist plot. It is a graphical method of determining 

stability of feedback control systems by using the polar plot of their open-loop transfer 

functions. Polar plot is a plot to be drawn between magnitude and phase. Polar plot is a 

plot of magnitude of G(jω) versus the phase of G(jω) in polar co-ordinates. But the 

magnitudes are presented with normal values only. The Polar plot is a plot, which can be 

drawn between the magnitude and the phase angle of G(jω) H(jω) by differentiating g ω 

from zero to ∞. The polar graph sheet is described in below mentioned image. This graph 

sheet includes various concentric circles and radial lines. The concentric circles and the 

radial lines are considered as the magnitudes and phase angles.  

•  Angles are highlighted with positive values in anti-clock wise direction.  

•  Mark angles with negative values in clockwise direction. 

The polar plot is usually plotted on a polar graph sheet. The polar graph sheet has 

concentric circles and radial lines. The circles represent the magnitude and the radial lines 

represent the phase angles. Each point on the polar graph has a magnitude and phase 

angle. The magnitude of a point is given by the value of the circle passing through that 

point and the phase angle is given by the radial line passing through that point. In polar 

graph sheet a positive phase angle is measured in anticlockwise from the reference axis 

(0º) and a negative angle is measured clockwise from the reference axis (0º). In order to 

plot the polar plot, magnitude and phase of G(jω) are computed for various values of ω 

and tabulated. Usually the choice of frequencies are corner frequencies and frequencies 

around corner frequencies. Choose proper scale for the magnitude circles. Fix all the 

points on polar graph sheet and join the points by smooth curve, write the frequency 

corresponding to each point of the plot. Alternatively, if G(jω) can be expressed in 

rectangular coordinates as, 

G(jω) = GR(jω) + jGi(jω) 

where, GR(jω) = Real part of G(jω), Gi(jω) = Imaginary part of G(jω) 
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Then the polar plot can be plotted in ordinary graph sheet between GR(jω) and Gi(jω) by 

varying ω from 0 to infinity. In order to plot the polar plot on ordinary graph sheet, the 

magnitude and phase if G(jω) are computed for various values of ω. Then convert the 

polar coordinates to rectangular coordinates using P  R conversion (polar to rectangular 

conversion) in the calculator. Sketch the polar plot using rectangular coordinates. For 

minimum phase transfer function with only poles, type number of the system determines 

the quadrant at which the polar plot starts and the order of the system determines quadrant 

at which the polar plot ends. The minimum phase systems are systems with all poles and 

zeros on left half of s-plane. The start and end of polar plot of all pole minimum phase 

system are shown in figures respectively. Some typical sketches of polar plot are shown 

in table. The change in shape of polar plot can be predicted due to addition of a pole or 

zero. 

1. When a pole is added to s system, the polar plot end point will shift by -90º. 

2. When a zero is added to s system, the polar plot end point will shift by +90º. 

 

Figure 3.3.1 Start and end of polar plot of all pole minimum phase system 

[Source: “Control Systems” by A Nagoor Kani, Page: 3.38] 

RULES FOR DRAWING POLAR PLOT 

 Substitute, s=jω in the open loop transfer function. 

 Write the expressions for magnitude and the phase of G(jω) H(jω). 

 Find the starting magnitude and the phase of G(jω) H(jω) by substituting 

ω=0. So, the polar plot starts with this magnitude and the phase angle. 

 Find the ending magnitude and the phase of G(jω) H(jω) by substituting 

ω=∞. So, the polar plot ends with this magnitude and the phase angle. 

 Check whether the polar plot intersects the real axis, by making the 

imaginary term of G(jω) H(jω) equal to zero and find the value(s) of ω. 
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 Check whether the polar plot intersects the imaginary axis, by making real 

term of G(jω) H(jω) equal to zero and find the value(s) of ω. 

 For drawing polar plot more clearly, find the magnitude and phase of G(jω) 

H(jω) by considering the other value(s) of ω. 

DETERMINATION OF GAIN MARGIN AND PHASE MARGIN FROM POLAR 

PLOT 

The gain margin is defined as the inverse of the magnitude of G(jω) at phase 

crossover frequency. The phase crossover frequency is the frequency at which the phase 

of G(jω) is 180º. Let the polar plot cut the 180º axis at point B and the magnitude circle 

passing through the point B be GB. Now the gain margin, Kg = 1/ GB. If the point B lies 

within unity circle, the gain margin is positive otherwise negative. If the polar plot is 

drawn in ordinary graph sheet using rectangular coordinates then the point B is the cutting 

point of G(jω) locus with negative real axis and Kg = 1/|GB| where GB is the magnitude 

corresponding to point B). The phase margin is defined as, phase margin, γ = 180o+ Φgc 

is the phase angle of G(jω) at gain crossover frequency. The gain crossover frequency is 

the frequency at which the magnitude of G(jω) is unity. Let the polar plot cut the unity 

circle at point A as shown in figures. Now the phase margin, γ is given by ∠AOP, i.e., 

∠AOP is below -180º axis then the phase margin is positive and if it is above -180º axis 

then the phase margin is negative. 

 

Figure 3.3.2 Polar plot with positive and negative gain and phase margins 

[Source: “Control Systems” by A Nagoor Kani, Page: 3.41] 
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GAIN ADJUSTMENT USING POLAR PLOT 

To determine K for specified GM 

 Draw G(jω) locus with K = 1. Let it cut the -180º axis at point B corresponding to gain 

of GB. Let the specified gain margin be x db. For this gain margin, the G(jω) locus will 

cut         -180º at point A whose magnitude is GA. 

20 log
1

𝐺𝐴
= 𝑥 

log
1

𝐺𝐴
=

𝑥

20
 

1

𝐺𝐴
= 10

𝑥
20 

𝐺𝐴 =
1

10
𝑥
20

 

Now the value of K is given by, K = GA/GB 

If, K>1, then the system gain should be increased. 

If K<1, then the system gain should be reduced. 

To determine K for specified PM 

 Draw G(jω) locus with K = 1. Let it cut the unity circle at point B. (The gain at point B 

is GB and equal to unity). Let the specified phase margin be xº. For a phase margin of xº, 

let Φgcx be the phase angle of G(jω) at gain crossover frequency. 

𝑥𝑜 = 180𝑜 + ϕ𝑔𝑐𝑥 

ϕ𝑔𝑐𝑥 = 𝑥𝑜 − 180𝑜 

In the polar plot, the radial line corresponding to will cut the locus of G(jω) with K = 1 

at point A and the magnitude corresponding to that point be GA. 

Now, K = GB/GA = 1/GA (since GB = 1) 
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3.4 DETERMINATION OF CLOSED LOOP RESPONSE FROM OPEN LOOP 

RESPONSE 

M and N circles 

Peak magnitude 

𝑀𝑟 = 20 log |
𝐶(𝑗𝜔)

𝑅(𝑗𝜔)
| 𝑑𝐵 

where, 3 dB is considered good. 

M-CIRCLES 

𝑀(𝑗𝜔) =
𝐺(𝑗𝜔)

1 + 𝐺(𝑗𝜔)
 

𝐺(𝑗𝜔) = 𝑋 + 𝑗𝑌 

         𝑀(𝑗𝜔) =
𝑋 + 𝑗𝑌

1 + 𝑋 + 𝑗𝑌
=

√𝑋2 + 𝑌2∠ tan−1 (
𝑌
𝑋)

√(1 + 𝑋)2 + 𝑌2∠ tan−1 (
𝑌

1 + 𝑋)

=
√𝑋2 + 𝑌2

√(1 + 𝑋)2 + 𝑌2
∠ tan−1 (

𝑌

𝑋
) − tan−1 (

𝑌

1 + 𝑋
) 

Let, M = Magnitude of M(jω) 

|𝑀(𝑗𝜔)| =
√𝑋2 + 𝑌2

√(1 + 𝑋)2 + 𝑌2
 

𝑀2(1 + 𝑋)2 + 𝑀2𝑌2 = 𝑋2 + 𝑌2 

𝑋2(1 − 𝑀2) + (1 − 𝑀2)𝑌2 − 2𝑀2𝑋 = 𝑀2 

𝑋2 + 𝑌2 − 2
𝑀2

(1 − 𝑀2)
𝑋 =

𝑀2

(1 − 𝑀2)
 

Adding (
𝑀2

(1−𝑀2)
)

2

on both sides, we get, 

(𝑋 −
𝑀2

(1 − 𝑀2)
)

2

+ 𝑌2 = (
𝑀

(1 − 𝑀2)
)

2

 

The above equation represents a family of circles with its  

centre at (
𝑀2

(1−𝑀2)
, 0) and radius 

𝑀

(1−𝑀2)
 

Family of M-circles corresponding to the closed loop magnitudes, M of a unit feedback 

system is given by the figure 3.4.1. 
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Figure 3.4.1 Constant M-circles in the polar co-ordinates 

[Source: “Automatic Control Systems” by Benjamin C. Kuo, Page: 487] 

N-CIRCLES 

∠𝑀(𝑗𝜔) = 𝛼 =
∠𝐺(𝑗𝜔)

∠(1 + 𝐺(𝑗𝜔))
 

𝛼 = tan−1
𝑌

𝑋
− tan−1

𝑌

1 + 𝑋
 

tan 𝛼 = 𝑁 = tan (tan−1
𝑌

𝑋
− tan−1

𝑌

1 + 𝑋
) 

We know, 

tan(𝐴 − 𝐵) =
tan 𝐴 − tan 𝐵

1 + tan 𝐴 tan 𝐵
 

N = (
𝑌

𝑋2 + 𝑋 + 𝑌2
) 

(𝑋 +
1

2
)

2

+ (𝑌 −
1

2𝑁
)

2

=
1

4
+ (

1

2𝑁
)

2

 

The above equation represents the family of circles with its 

Centre at (−
1

2
,

1

2𝑁
) and radius √

1

4
+ (

1

2𝑁
)

2
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Figure 3.4.2 Constant N-circles in the polar co-ordinates 

[Source: “Automatic Control Systems” by Benjamin C. Kuo, Page: 490] 
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3.5 CORRELATION BETWEEN FREQUENCY DOMAIN AND TIME DOMAIN 

SPECIFICATIONS 

For a second order system, 

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 

Put s=jω 

𝐶(𝑗𝜔)

𝑅(𝑗𝜔)
=

𝜔𝑛
2

−𝜔2 + 2𝜁𝜔𝑛𝑗𝜔 + 𝜔𝑛
2 

𝐶(𝑗𝜔)

𝑅(𝑗𝜔)
=

1

−
𝜔2

𝜔𝑛
2 + 2𝜁𝑗

𝜔
𝜔𝑛
+ 1

 

Let 𝑢 =
𝜔

𝜔𝑛
, then 

𝐶(𝑗𝜔)

𝑅(𝑗𝜔)
=

1

(1 − 𝑢2) + 2𝜁𝑗𝑢
 

We know, 

𝑀(𝑗𝜔) = |𝑀(𝑗𝜔)|∠𝑀(𝑗𝜔) 

|𝑀(𝑗𝜔)| =
1

√(1 − 𝑢2)2 + (2𝜁𝑢)2
 

𝜃 = − tan−1 (
2𝜁𝑢

1− 𝑢2
) 

Now, 

𝑀𝑟 =
1

2𝜁√1− 𝜁2
 

𝜔𝑟 = 𝜔𝑛√1− 2𝜁
2
 

𝜔𝑏 = 𝜔𝑛√1 − 2𝜁
2+ √4𝜁4− 4𝜁2+ 2 

𝑃𝑀 = −180𝑜 + 𝜙 

where, 

𝜙 = tan−1

(

 
 
 2𝜁

√√4𝜁2+1−2𝜁2
)
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3.6 NYQUIST STABILITY CRITERION 

Nyquist criterion is a graphical method of determining stability of feedback control 

systems by using the Nyquist plot of their open-loop transfer functions. 

Feedback transfer function 

𝐶(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠)
 

Poles and zeros of the open loop transfer function 

𝐺(𝑠)𝐻(𝑠) =
𝐾(𝑠 − 𝑧1)(𝑠 − 𝑧2)… (𝑠 − 𝑧𝑚)

(𝑠 − 𝑝1)(𝑠 − 𝑝2)… (𝑠 − 𝑝𝑛)
 

1 + 𝐺(𝑠)𝐻(𝑠) =
(𝑠 − 𝑝1)(𝑠 − 𝑝2)… (𝑠 − 𝑝𝑛) + 𝐾(𝑠 − 𝑧1)(𝑠 − 𝑧2)… (𝑠 − 𝑧𝑚)

(𝑠 − 𝑝1)(𝑠 − 𝑝2)… (𝑠 − 𝑝𝑛)
 

Number of closed loop poles – Number of zeros of 1+GH = Number of open loop poles 

1 + 𝐺(𝑠)𝐻(𝑠) =
(𝑠 − 𝑧𝑐1)(𝑠 − 𝑧𝑐2)… (𝑠 − 𝑧𝑐𝑚)

(𝑠 − 𝑝1)(𝑠 − 𝑝2)… (𝑠 − 𝑝𝑛)
 

where, zc1, zc2, ….., zcm = zeros of 1+G(s)H(s) 

These are also poles of the closed loop transfer function 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒, |1 + 𝐺(𝑠)𝐻(𝑠)| =
|(𝑠 − 𝑧𝑐1)||(𝑠 − 𝑧𝑐2)|… |(𝑠 − 𝑧𝑐𝑚)|

|(𝑠 − 𝑝1)||(𝑠 − 𝑝2)|… |(𝑠 − 𝑝𝑛)|
 

𝐴𝑛𝑔𝑙𝑒, ∠1 + 𝐺(𝑠)𝐻(𝑠) =
∠(𝑠 − 𝑧𝑐1)∠(𝑠 − 𝑧𝑐2)…∠(𝑠 − 𝑧𝑐𝑚)

∠(𝑠 − 𝑝1)∠(𝑠 − 𝑝2)…∠(𝑠 − 𝑝𝑛)
 

The s-plane to 1+GH plane mapping phase angle of the 1+G(s)H(s) vector, 

corresponding to a point on the s-plane is the difference between the sum of the phase 

of all vectors drawn from zeros of 1+GH (closed loop poles) and open loops on the s 

plane. If this point s is moved along a closed contour enclosing any or all of the above 

zeros and poles, only the phase of the vector of each of the enclosed zeros or open-loop 

poles will change by 3600. The direction will be in the same sense of the contour 

enclosing zeros and in the opposite sense for the contour enclosing open-loop poles. A 

stability test for time invariant linear systems can also be derived in the frequency 

domain. It is known as Nyquist stability criterion. It is based on the complex analysis 

result known as Cauchy’s principle of argument. Note that the system transfer function 

is a complex function. By applying Cauchy’s principle of argument to the open-loop 

system transfer function, we will get information about stability of the closed-loop 
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system transfer function and arrive at the Nyquist stability criterion (Nyquist, 1932). 

The importance of Nyquist stability lies in the fact that it can also be used to determine 

the relative degree of system stability by producing the so-called phase and gain stability 

margins. These stability margins are needed for frequency domain controller design 

techniques. Only the essence of the Nyquist stability criterion is presented and the phase 

and gain stability margins are defined. The Nyquist method is used for studying the 

stability of linear systems with pure time delay. 

For a SISO feedback system the closed-loop transfer function is given by, 

𝑀(𝑠) =
𝐺(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠)
 

where, G(s) represents the system and H(s) is the feedback element. Since the system 

poles are determined as those values at which its transfer function becomes infinity, it 

follows that the closed-loop system poles are obtained by solving the following 

equation. 

1 + 𝐺(𝑠)𝐻(𝑠) = 0 = ∆(𝑠) 

which, in fact, represents the system characteristic equation. 

Principles of Argument 

When a closed contour in the s-plane encloses a certain number of poles and zeros of 

1+G(s)H(s) in the clockwise direction, the number of encirclements of the origin by the 

corresponding contour in the G(s)H(s) plane will encircle the point (-1,0) a number of 

times given by the difference between the number of its zeros and poles of 1+G(s)H(s) it 

enclosed on the s-plane. Let F(s) be an analytic function in a closed region of the complex 

plane given in figure 3.6.1 except at a finite number of points (namely, the poles of 

F(s)). It is also assumed that F(s) is analytic at every point on the contour. Then, as 

s travels around the contour in the s - plane in the clockwise direction, the function

 encircles the origin in the (Re{F(s)}, Im{F(s)}) - plane in the same direction times 

(see figure 4.3.1), with given by, 

N = Z – P 

where Z and P stand for the number of zeros and poles (including their multiplicities) of 

the function F(s) inside the contour. 

𝑎𝑟𝑔{𝐹(𝑠)} = (𝑍 − 𝑃)2𝜋 = 2𝜋𝑁 
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Figure 3.6.1 s-plane and F(s) plane contours 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.27] 

Contour in the s-plane 

The Nyquist plot is a polar plot of the function D(s) = 1+G(s)H(s) when ‘s’ travels around 

the contour given in figure 3.6.2. 

 

Figure 3.6.2 Nyquist contour when the poles are on imaginary axis and at origin 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.33] 

Phase and Gain Stability Margins 

Two important notions can be derived from the Nyquist diagram: phase and gain stability 

margins. The phase and gain stability margins are presented in figure 3.6.3. 
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Figure 3.6.3 Gain and Phase margin 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.33] 

They give the degree of relative stability; in other words, they tell how far the given 

system is from the instability region. Their formal definitions are given by 

𝑃𝑀 = 180𝑜 + 𝑎𝑟𝑔{𝐺(𝑗𝜔𝑔𝑐)𝐻(𝑗𝜔𝑔𝑐)} 

𝐺𝑀(𝑑𝐵) = 20 log
1

|𝐺(𝑗𝜔𝑝𝑐)𝐻(𝑗𝜔𝑝𝑐)|
, (𝑑𝐵) 

where, ωgc and ωpc stand for gain and phase crossover frequency respectively. 

|𝐺(𝑗𝜔𝑔𝑐)𝐻(𝑗𝜔𝑔𝑐)| = 1 ⇒ 𝜔𝑔𝑐 

𝑎𝑟𝑔{𝐺(𝑗𝜔𝑝𝑐)𝐻(𝑗𝜔𝑝𝑐)} = 180𝑜 ⇒ 𝜔𝑝𝑐 

PROCEDURE FOR INVESTIGATING STABILITY USING NYQUIST CRITERION 

The following procedure can be followed to investigate the stability of closed loop system 

from the knowledge of open loop system, using Nyquist stability criterion. 

1. Choose a Nyquist contour as shown in figure, which encloses the entire right half s-

plane except the singular points. The Nyquist contour encloses all the right half s-

plane poles and zeros of G(s)H(s). [The poles on imaginary axis are singular points 

and so they are avoided by taking a detour around it as shown in figures. 

2. The Nyquist contour should be mapped in the G(s)H(s)-plane using the function 

G(s)H(s) to determine the encirclement -1 + j0 point in the G(s)H(s)-plane. The 
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Nyquist contour of the figure can be divided into four sections C1.C2.C3 and C4. The 

mapping of the four sections in the G(s)H(s)-plane can be carried sectionwise and then 

combined together to get entire G(s)H(s)-contour. 

3. In section C1, the value of ω varies from 0 to + infinite. The mapping of section C1 is 

obtained by letting s = jω in G(s)H(s) and varying ω from 0 to + infinite. 

The locus of G(jω)H(jω) as ω is varied from 0 to + infinite will be the G(s)H(s)-

contour in G(s)H(s)-plane corresponding to section  C1 in s-plane. This locus is the 

plot of G(jω)H(jω). There are three ways of mapping this section of G(s)H(s)-contour, 

they are, 

(i) Calculate the values of G(jω)H(jω) for various values of ω and sketch the actual 

locus of G(jω)H(jω). 

(or) 

(ii) Separate the real part and imaginary part of G(jω)H(jω). Equate the imaginary 

part to zero, to find the frequency at which the G(jω)H(jω) locus crosses real axis 

( to find phase crossover frequency). Substitute this frequency on real part and 

find the crossing point of the locus on real axis. Sketch the approximate locus of 

G(jω)H(jω) from the knowledge of type number and order of the system (or from 

the value of G(jω)H(jω) at ω = 0 and ω = infinite). 

(or) 

(iii) Separate the magnitude and phase of G(jω)H(jω). Equate the phase of 

G(jω)H(jω) to -180º and solve for ω. This value of ω is the phase crossover 

frequency and the magnitude at this frequency is the crossing point on real axis. 

Sketch the approximate root locus as mentioned in method (ii). 

4. The section C2 of Nyquist contour has a semicircle of infinite radius. Therefore, every 

point on section C2 has infinite magnitude but the argument varies from +π/2 to - π/2. 

Consider the loop transfer function in time constant form and with y number of poles 

at origin, as shown below. Let G(s)H(s) has m zeros & n poles including poles at 

origin. For practical systems, n>m. From the above two equations we can conclude 

that the section C2 of Nyquist contour in s-plane is mapped as circles/circular are 

around origin with radius tending to zero in the G(s)H(s)-plane.  
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5. In section C3, the value of ω varies from -∞ to 0. The mapping of section C3 is 

obtained by letting s=jω in G(s)H(s) and varying ω from -∞ to 0. The locus of 

G(jω)H(jω) as ω is varied from -∞ to 0 will be the G(s)H(s)-contour in G(s)H(s)-plane 

corresponding to section C3 in s-plane. This locus is the inverse polar plot of 

G(jω)H(jω). The inverse polar plot is given by the mirror image of polar plot with 

respect to real axis. 

6. The section C4 of Nyquist contour has a semicircle of zero radius. Therefore, every 

point on semicircle has zero magnitude but the argument varies from -π/2 to π/2. 

Hence the mapping of section C4 from s-plane to G(s)H(s)-plane can be obtained by 

letting in G(s)H(s) and varying θ from -π/2 to π/2. 

PERFORMANCE CRITERIA 

For ordinary random inputs (i.e. inputs such that the error E is a stationary random 

function of time t), it is usual to adopt the mean -square- error as the performance 

criterion. This is the analogue of integral- square-error for simple transient inputs. 
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4.1 CONCEPT OF STATE VARIABLES 

State space analysis is an excellent method for the design and analysis of control 

systems. The conventional and old method for the design and analysis of control systems 

is the transfer function method. The transfer function method for design and analysis had 

many drawbacks.  

Drawbacks of transfer function model analysis: 

a. Transfer function is defined under zero initial conditions 

b. Transfer function is applicable to linear time invariant systems 

c. Transfer function analysis is restricted to single input and single output systems 

d. Does not provide information regarding the internal state of the system 

Advantages of state variable analysis:  

o It can be applied to linear system 

o It can be applied to non-linear system 

o It can be applied to time varying system 

o It can be applied to time invariant system 

o It can be applied to multiple input multiple output system 

o Its gives idea about the internal state of the system 

A state variable is one of the set of variables that are used to describe the mathematical 

"state" of a dynamical system. Intuitively, the state of a system describes enough about 

the system to determine its future behaviour in the absence of any external forces 

affecting the system. The state variable analysis can be applied for any type of systems. 

In this method of analysis, it is not necessary that the state variables represent physical 

quantities of the system, but variables that do not represent physical quantities and those 

that are neither measurable nor observable may be chosen as state variables. 
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STATE SPACE FORMULATION 

State:  

The state of a dynamic system is the minimal set of variables called state variables such 

that the knowledge of these variables at time t = t0 (initial condition), together with the 

knowledge of input for t ≥ 𝑡0, completely determines the behaviour of the system for any 

time 𝑡 > 𝑡0. (or) A set of variables which describes the system at any time instant are 

called state variables. In the state variable formulation of a system, in general, a system 

consists of m-inputs, p-outputs and n-state variables. The state space representation of 

the system may be visualized as shown in figure 4.1.1. 

 

Figure 4.1.1 State space representation of a system 

[Source: “Control Systems” by A. Nagoor Kani, Page: 5.2] 

Let us consider a multi input & multi output (MIMO) system is having 

m inputs:     u1(t), u2(t), ……., um(t) 

p number of outputs:   y1(t), y2(t), ……., yp(t) 

n number of state variables:  x1(t), x2(t), ……., xn(t) 

The different variables may be represented by the vectors (column matrix) as shown 

below: 

Input vector 

𝑈(𝑡) = [

𝑢1(𝑡)
𝑢2(𝑡)
⋮

𝑢𝑚(𝑡)

] 
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Output vector 

𝑌(𝑡) = [

𝑦1(𝑡)

𝑦2(𝑡)
⋮

𝑦𝑝(𝑡)

] 

State variable vector 

𝑋(𝑡) = [

𝑥1(𝑡)
𝑥2(𝑡)
⋮

𝑥𝑛(𝑡)

] 

State vector:  

If n state variables are needed to completely describe the behaviour of a given system, 

then these n state variables can be considered the n components of a vector X. Such a 

vector is called a state vector.  

State space:  

The n-dimensional space whose co-ordinate axes consists of the x1 axis, x2 axis……….. 

xn axis, where x1, x2, ....., xn are state variables is called a state space. 
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4.2 STATE MODELS FOR LINEAR AND TIME INVARIANT SYSTEMS  

State model is given by state and output equation 

State equation: 

�̇�(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑈(𝑡) 

Output equation: 

𝑌(𝑡) = 𝐶𝑋(𝑡) + 𝐷𝑈(𝑡) 

where, 

 A is state matrix of size (n x n) 

 B is the input matrix of size (n x m) 

 C is the output matrix of size (p x n) 

 D is the direct transmission matrix of size (p x m) 

 X(t) is the state vector of size (n x 1) 

 Y(t) is the output vector of size (p x 1) 

 U(t) is the input vector of size (m x 1) 

 

Figure 4.2.1 State space model diagram 

[Source: “Modern Control Engineering” by Katsuhiko Ogata, Page: 828] 
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STATE SPACE REPRESENTATION USING PHYSICAL VARIABLES 

 In state-space modelling of systems, the choice of state variables is arbitrary. One 

of the possible choices of state variables. The physical variables of electrical systems are 

current or voltage in the R, L and C elements. The physical variables of mechanical 

systems are displacement, velocity and acceleration. The advantages of choosing the 

physical variables (or quantities) of the system as state variables are the following, 

1. The state variables can be utilized for the purpose of feedback 

2. The implementation of design with state variable feedback becomes straight 

forward 

3. The solution of state equation gives time variation of variables which have direct 

relevance to the physical system. 

The drawback in choosing the physical quantities as state variables is that the solution of 

state equation may be a difficult task. In state space modelling using physical variables, 

the state equations are obtained from a basic model of the system which is developed 

using the fundamental elements of the system. 

Electrical System 

The basic model of an electrical system can be obtained by using the fundamental 

elements Resistor, Capacitor and Inductor. Using these elements, the electrical network 

or equivalent circuit of the system is drawn. Then the differential equations governing 

the electrical systems can be formed by writing Kirchhoff’s Current Law equations by 

choosing various nodes in the network or Kirchhoff’s Voltage Law by choosing various 

closed path in the network. A minimal number of state variables are chosen for obtaining 

the state model of the system. The best choice of state variables in electrical system are 

currents and voltages in energy storage elements. The energy storage elements are 

inductance and capacitance. The physical variables in the differential equations are 

replaced by state variables and the equations are rearranged as first order differential 

equations. These set of first order equations constitutes the state equation of the system. 

The inputs to the system are voltage sources or current sources. The outputs in electrical 

system are usually voltages or currents in energy dissipating elements. The resistance is 

energy dissipating element in electrical network. In general, the output variables can be 

any voltage or current in the network. 
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Mechanical Translational System 

 The basic model of mechanical translational system can be obtained by using three 

basic elements; mass, spring and dash-pot. When a force is applied to a mechanical 

translational system, it is opposed by opposing forces due to mass, friction and elasticity 

of the system. The forces acting on a body are governed by Newton’s second law of 

motion. The differential equations governing the system are obtaining by writing force 

balance equations at various nodes in the system. A node is a meeting points of elements. 

Guidelines to form the state model of mechanical translational systems 

1. For each node in the system one differential equation can be framed by equating the 

sum of applied forces to the sum of opposing forces. Generally, the nodes are mass 

elements of the system, but in some cases the nodes may be without mass element. 

2. Assign a displacement to each node and draw a free body diagram for each node. The 

free body diagram is obtained by drawing each mass of node separately and them 

marking all the forces acting on it. 

3. In the free body diagram, the opposing forces due to mass, spring and dash –pot are 

always act in a direction opposite to applied force. The displacement, velocity and 

acceleration will be in the direction of applied force or in the direction opposite to that 

of opposing force. 

4. For each free body diagram write one differential equation by equating the sum of 

applied forces to the sum of opposing forces. 

5. Choose a minimum number of state variables. The choice of state variables are 

displacement, velocity or acceleration. 

6. The physical variables in differential equations are replaced by state variables and the 

equations are rearranged as first order differential equations. These set of first order 

equations constitute the state equation of the system. 

7.  The inputs are the applied forces and the outputs are the displacement, velocity or 

acceleration of the desired nodes. 
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Mechanical Rotational System 

 The basic model of mechanical rotational system can be obtained by using three 

basic elements moment of inertia of mass, rotational dash-pot and rotational spring. When 

a torque is applied to a mechanical rotational system, it is opposed by opposing torques 

due to moment of inertia, friction and elasticity of the system. The torque acting on a 

body are governed by Newton’s second law of motion. The differential equations 

governing the system are obtained by writing torque balance equations at various nodes 

in the system. A node is a meeting point of elements. 

Guidelines to form the state model of mechanical rotational systems 

1. For each node in the system one differential equation can be framed by equating the 

sum of applied torques to the sum of opposing torques. Generally, the nodes are mass 

elements of the system, but in some cases the nodes may be without mass element. 

2. Assign an angular displacement to each node and draw a free body diagram for each 

node. The free body diagram is obtained by drawing each mass of node separately and 

them marking all the torques acting on it. 

3. In the free body diagram, the opposing torques due to mass of inertia, spring and 

dashpot are always act in a direction opposite to applied force. The angular 

displacement, velocity and acceleration will be in the direction of applied torque or in 

the direction opposite to that of opposing torque. 

4. For each free body diagram write one differential equation by equating the sum of 

applied torques to the sum of opposing torques. 

5. Choose a minimum number of state variables. The choice of state variables are angular 

displacement, velocity or acceleration. 

6. The physical variables in differential equations are replaced by state variables and the 

equations are rearranged as first order differential equations. These set of first order 

equations constitute the state equation of the system. 

7. The inputs are the applied torques and the outputs are the angular displacement, 

velocity or acceleration of the desired nodes. 
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STATE SPACE REPRESENTATION USING PHASE VARIABLES 

The phase variables are defined as those particular state variables which are obtained 

from one of the system variables and its derivatives. There are three methods of modelling 

a system using phase variables. They are, 

METHOD 1 

Consider the following nth order linear differential equation relating the output y(t) to the 

input u(t) of a system, 

�̇�𝑛 + 𝑎1�̇�
𝑛−1 + 𝑎2�̇�

𝑛−2 + ⋯+ 𝑎𝑛−2�̈� + 𝑎𝑛−1�̇� + 𝑎𝑛𝑦 = 𝑏𝑢 

By choosing the output, y and their derivatives as state variables, we get, 

𝑥1 = 𝑦 

𝑥2 = �̇� 

𝑥3 = �̈� 

⋮ 

𝑥𝑛 = �̇�𝑛−1 

𝑥�̇� = �̇�𝑛 

𝑥�̇� + 𝑎1𝑥𝑛 + 𝑎2𝑥𝑛−1 + ⋯+ 𝑎𝑛−2𝑥3 + 𝑎𝑛−1𝑥2 + 𝑎𝑛𝑥1 = 𝑏𝑢 

𝑥�̇� = −𝑎1𝑥𝑛 − 𝑎2𝑥𝑛−1 − ⋯− 𝑎𝑛−2𝑥3 − 𝑎𝑛−1𝑥2 − 𝑎𝑛𝑥1 + 𝑏𝑢 

The state equations of the system are  

𝑥1̇ = 𝑥2 

𝑥2̇ = 𝑥3 

𝑥3̇ = 𝑥4 

⋮ 

�̇�𝑛−1 = 𝑥𝑛 

𝑥�̇� = −𝑎1𝑥𝑛 − 𝑎2𝑥𝑛−1 − ⋯− 𝑎𝑛−2𝑥3 − 𝑎𝑛−1𝑥2 − 𝑎𝑛𝑥1 + 𝑏𝑢 

On arranging the above equations in the matrix form, we get, 

[
 
 
 
 
 

𝑥1̇

𝑥2̇

𝑥3̇

⋮
�̇�𝑛−1

𝑥�̇� ]
 
 
 
 
 

=

[
 
 
 
 

0
0
0
⋮
0

−𝑎𝑛

1
0
0
⋮
0

−𝑎𝑛−1

0
1
0
⋮
0

−𝑎𝑛−2

0
0
1
⋮
0

−𝑎𝑛−3

⋮
⋮
⋮
⋮
⋮
⋮

0
0
0
⋮
1

−𝑎1]
 
 
 
 

[
 
 
 
 

𝑥1

𝑥2
𝑥3

⋮
𝑥𝑛−1

𝑥𝑛 ]
 
 
 
 

+

[
 
 
 
 
 
0
0
0
⋮
0
𝑏]
 
 
 
 
 

𝑢 

�̇� = 𝐴𝑋 + 𝐵𝑈 
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This form of matrix A is known as Bush form (or) Companion form. 

𝑦 = [1 0 0 ⋯ 0 0]

[
 
 
 
 

𝑥1

𝑥2
𝑥3

⋮
𝑥𝑛−1

𝑥𝑛 ]
 
 
 
 

 

𝑌 = 𝐶𝑋 

METHOD 2 

Consider the following nth order linear differential equation relating the output y(t) to the 

input u(t) of a system, 

�̇�𝑛 + 𝑎1�̇�
𝑛−1 + 𝑎2�̇�

𝑛−2 + ⋯+ 𝑎𝑛−2�̈� + 𝑎𝑛−1�̇� + 𝑎𝑛𝑦 = 𝑏𝑢 

Let n = m = 3 

𝑦 + 𝑎1�̈� + 𝑎2�̇� + 𝑎3𝑦 = 𝑏0𝑢 + 𝑏1�̈� + 𝑏2�̇� + 𝑏3𝑢 

On taking Laplace transform with zero initial conditions, we get, 

𝑠3𝑌(𝑠) + 𝑎1𝑠
2𝑌(𝑠) + 𝑎2𝑠𝑌(𝑠) + 𝑎3𝑌(𝑠)

= 𝑏0𝑠
3𝑈(𝑠) + 𝑏1𝑠

2𝑈(𝑠) + 𝑏2𝑠𝑈(𝑠) + 𝑏3𝑈(𝑠) 

[𝑠3 + 𝑎1𝑠
2 + 𝑎2𝑠 + 𝑎3]𝑌(𝑠) = [𝑏0𝑠

3 + 𝑏1𝑠
2 + 𝑏2𝑠 + 𝑏3]𝑈(𝑠) 

𝑌(𝑠)

𝑈(𝑠)
=

[𝑏0𝑠
3 + 𝑏1𝑠

2 + 𝑏2𝑠 + 𝑏3]

[𝑠3 + 𝑎1𝑠
2 + 𝑎2𝑠 + 𝑎3]

=
𝑠3[𝑏0 +

𝑏1

𝑠
+

𝑏2

𝑠2 +
𝑏3

𝑠3]

𝑠3[1 +
𝑎1

𝑠
+

𝑎2

𝑠2 +
𝑎3

𝑠3]
=

[𝑏0 +
𝑏1

𝑠
+

𝑏2

𝑠2 +
𝑏3

𝑠3]

1 − [−
𝑎1

𝑠
−

𝑎2

𝑠2 −
𝑎3

𝑠3]
 

From Mason’s gain formula, the transfer function of the system is given by, 

𝑇(𝑠) =
1

∆
∑𝑃𝐾

𝐾

∆𝐾 

where, PK – path gain of Kth forward path 

  Δ = 1 – (sum of loop gain of all individual loops) + (sum of gain products of all  

                  possible combinations of two non-touching loops) – …….. 

 ΔK = Δ for that part of the graph which is not touching Kth forward path 

The transfer function of the system with four forward paths and three feedback loops 

(touching each other) is given by, 

𝑇(𝑠) =
𝑃1 + 𝑃2 + 𝑃3 + 𝑃4

1 − (𝑃11 + 𝑃12 + 𝑃13)
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By comparing the above equations, 

𝑃1 = 𝑏0;  𝑃2 =
𝑏1

𝑠
; 𝑃3 =

𝑏2

𝑠2
;  𝑃4 =

𝑏3

𝑠3
;  𝑃11 = −

𝑎1

𝑠
; 𝑃12 = −

𝑎2

𝑠2
;  𝑃13 = −

𝑎3

𝑠3
 

On arranging the above equations in the matrix form, we get, 

[
 
 
 
 
 

𝑥1̇

𝑥2̇

𝑥3̇

⋮
�̇�𝑛−1

𝑥�̇� ]
 
 
 
 
 

=

[
 
 
 
 

−𝑎1
−𝑎2
−𝑎3

⋮
−𝑎𝑛−1

−𝑎𝑛

1
0
0
⋮
0
0

0
1
0
⋮
0
0

0
0
1
⋮
0
0

⋮
⋮
⋮
⋮
⋮
⋮

0
0
0
⋮
1
0]
 
 
 
 

[
 
 
 
 

𝑥1

𝑥2
𝑥3

⋮
𝑥𝑛−1

𝑥𝑛 ]
 
 
 
 

+

[
 
 
 
 
 

𝑏1 − 𝑎1𝑏0

𝑏2 − 𝑎2𝑏0

𝑏3 − 𝑎3𝑏0

⋮
𝑏𝑛−1 − 𝑎𝑛−1𝑏0

𝑏𝑛 − 𝑎𝑛𝑏0 ]
 
 
 
 
 

𝑢 

�̇� = 𝐴𝑋 + 𝐵𝑈 

𝑦 = [1 0 0 ⋯ 0 0]

[
 
 
 
 

𝑥1

𝑥2
𝑥3

⋮
𝑥𝑛−1

𝑥𝑛 ]
 
 
 
 

+ 𝑏0𝑢 

𝑌 = 𝐶𝑋 + 𝐷𝑈 

METHOD 3 

Consider the following nth order linear differential equation relating the output y(t) to the 

input u(t) of a system, 

�̇�𝑛 + 𝑎1�̇�
𝑛−1 + 𝑎2�̇�

𝑛−2 + ⋯+ 𝑎𝑛−2�̈� + 𝑎𝑛−1�̇� + 𝑎𝑛𝑦 = 𝑏𝑢 

Let n = m = 3 

𝑦 + 𝑎1�̈� + 𝑎2�̇� + 𝑎3𝑦 = 𝑏0𝑢 + 𝑏1�̈� + 𝑏2�̇� + 𝑏3𝑢 

On taking Laplace transform with zero initial conditions, we get, 

𝑠3𝑌(𝑠) + 𝑎1𝑠
2𝑌(𝑠) + 𝑎2𝑠𝑌(𝑠) + 𝑎3𝑌(𝑠)

= 𝑏0𝑠
3𝑈(𝑠) + 𝑏1𝑠

2𝑈(𝑠) + 𝑏2𝑠𝑈(𝑠) + 𝑏3𝑈(𝑠) 

[𝑠3 + 𝑎1𝑠
2 + 𝑎2𝑠 + 𝑎3]𝑌(𝑠) = [𝑏0𝑠

3 + 𝑏1𝑠
2 + 𝑏2𝑠 + 𝑏3]𝑈(𝑠) 

𝑌(𝑠)

𝑈(𝑠)
=

[𝑏0𝑠
3 + 𝑏1𝑠

2 + 𝑏2𝑠 + 𝑏3]

[𝑠3 + 𝑎1𝑠
2 + 𝑎2𝑠 + 𝑎3]
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Let, 

𝑌(𝑠)

𝑈(𝑠)
=

𝑌(𝑠)

𝑋1(𝑠)
.
𝑋1(𝑠)

𝑈(𝑠)
 

𝑋1(𝑠)

𝑈(𝑠)
=

1

[𝑠3 + 𝑎1𝑠
2 + 𝑎2𝑠 + 𝑎3]

 

𝑌(𝑠)

𝑋1(𝑠)
= [𝑏0𝑠

3 + 𝑏1𝑠
2 + 𝑏2𝑠 + 𝑏3] 

State Equation 

On cross multiplying the equation, we get, 

𝑋1(𝑠)[𝑠
3 + 𝑎1𝑠

2 + 𝑎2𝑠 + 𝑎3] = 𝑈(𝑠) 

𝑠3𝑋1(𝑠) + 𝑎1𝑠
2𝑋1(𝑠) + 𝑎2𝑠𝑋1(𝑠) + 𝑎3𝑋1(𝑠) = 𝑈(𝑠) 

𝑥1⃛ + 𝑎1𝑥1̈ + 𝑎2𝑥1̇ + 𝑎3𝑥1 = 𝑢 

Let the state variable be x1, x2, x3. 

𝑥2 = �̇�1 

𝑥3 = 𝑥1̈ = �̇�2 

�̇�3 = 𝑥1 

On substituting the state variables, we get, 

�̇�3 + 𝑎1𝑥3 + 𝑎2𝑥2 + 𝑎3𝑥1 = 𝑢 

The state equations are 

�̇�1 = 𝑥2 ; �̇�2 = 𝑥3 

�̇�3 = −𝑎1𝑥3 − 𝑎2𝑥2 − 𝑎3𝑥1 + 𝑢 

Output Equation 

On cross multiplying the equation, we get, 

𝑌(𝑠) = [𝑏0𝑠
3𝑋1(𝑠) + 𝑏1𝑠

2𝑋1(𝑠) + 𝑏2𝑠𝑋1(𝑠) + 𝑏3𝑋1(𝑠)] 

Taking inverse Laplace transform, we get, 

𝑦 = 𝑏0𝑥1⃛ + 𝑏1𝑥1̈ + 𝑏2𝑥1̇ + 𝑏3𝑥1 

On substituting the state variables, we get, 

𝑦 = 𝑏0�̇�3 + 𝑏1𝑥3 + 𝑏2𝑥2 + 𝑏3𝑥1 

Substituting �̇�3 = −𝑎1𝑥3 − 𝑎2𝑥2 − 𝑎3𝑥1 + 𝑢, we get, 

𝑦 = 𝑏0(−𝑎1𝑥3 − 𝑎2𝑥2 − 𝑎3𝑥1 + 𝑢) + 𝑏1𝑥3 + 𝑏2𝑥2 + 𝑏3𝑥1 

𝑦 = (𝑏3−𝑎3𝑏0)𝑥1 + (𝑏2−𝑎2𝑏0)𝑥2 + (𝑏1−𝑎1𝑏0)𝑥3 + 𝑏0𝑢 
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Framing the state and output equation in matrix form, we get, 

[
 
 
 
 
 

𝑥1̇

𝑥2̇

𝑥3̇

⋮
�̇�𝑛−1

𝑥�̇� ]
 
 
 
 
 

=

[
 
 
 
 

0
0
0
⋮
0

−𝑎𝑛

1
0
0
⋮
0

−𝑎𝑛−1

0
1
0
⋮
0

−𝑎𝑛−2

0
0
1
⋮
0

−𝑎𝑛−3

⋮
⋮
⋮
⋮
⋮
⋮

0
0
0
⋮
1

−𝑎1]
 
 
 
 

[
 
 
 
 

𝑥1

𝑥2
𝑥3

⋮
𝑥𝑛−1

𝑥𝑛 ]
 
 
 
 

+

[
 
 
 
 
 
0
0
0
⋮
0
1]
 
 
 
 
 

𝑢 

�̇� = 𝐴𝑋 + 𝐵𝑈 

This form of matrix A is known as Bush form (or) Companion form. 

𝑦 = [𝑏𝑛 − 𝑎𝑛𝑏0 𝑏𝑛−1 − 𝑎𝑛−1𝑏0 ⋯ ⋯ 𝑏2 − 𝑎2𝑏0 𝑏1 − 𝑎1𝑏0]

[
 
 
 
 
 

𝑥1

𝑥2

⋮
⋮

𝑥𝑛−1

𝑥𝑛 ]
 
 
 
 
 

+ 𝑏0𝑢 

𝑌 = 𝐶𝑋 
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STATE SPACE REPRESENTATION USING CANONICAL VARIABLES 

 In canonical form (or normal form) of state model, the system matrix A will be a 

diagonal matrix. The elements on the diagonal are the poles of the transfer function of 

the system. By partial fraction expansion, the transfer function Y(s)/U(s) of the nth order 

system can be expressed as, 

𝑌(𝑠)

𝑈(𝑠)
= 𝑏0 +

𝐶1

𝑠 + 𝜆1
+

𝐶2

𝑠 + 𝜆2
+ ⋯+

𝐶𝑛

𝑠 + 𝜆𝑛
 

where, C1, C2, C3, ….., Cn are residues and λ1, λ2, λ3, ….., λn are roots of denominator 

polynomial (or poles of the system). 

𝑌(𝑠)

𝑈(𝑠)
= 𝑏0 +

𝐶1/𝑠

1 + 𝜆1/𝑠
+

𝐶2/𝑠

1 + 𝜆2/𝑠
+ ⋯+

𝐶𝑛/𝑠

1 + 𝜆𝑛/𝑠
 

𝑌(𝑠) = 𝑏0𝑈(𝑠) +
𝐶1/𝑠

1 + 𝜆1/𝑠
𝑈(𝑠) +

𝐶2/𝑠

1 + 𝜆2/𝑠
𝑈(𝑠) + ⋯+

𝐶𝑛/𝑠

1 + 𝜆𝑛/𝑠
𝑈(𝑠) 

The state equation can be framed as, 

�̇�1 = −𝜆1𝑥1 + 𝑢 

�̇�2 = −𝜆2𝑥2 + 𝑢 

⋮ 

�̇�𝑛 = −𝜆𝑛𝑥𝑛 + 𝑢 

The output equation can be framed as, 

𝑦 = 𝐶1𝑥1 + 𝐶2𝑥2 + ⋯+ 𝐶𝑛𝑥𝑛 + 𝑏0𝑢 

The canonical form of state model in the matrix form is given by, 

[
 
 
 
 
 

𝑥1̇

𝑥2̇

𝑥3̇

⋮
�̇�𝑛−1

𝑥�̇� ]
 
 
 
 
 

=

[
 
 
 
 
−𝜆1

0
0
⋮
0
0

0
−𝜆2

0
⋮
0
0

0
0

−𝜆3

⋮
0
0

0
0
0
⋮
0
0

⋮
⋮
⋮
⋮
⋮
⋮

0
0
0
⋮
0

−𝜆𝑛]
 
 
 
 

[
 
 
 
 

𝑥1

𝑥2
𝑥3

⋮
𝑥𝑛−1

𝑥𝑛 ]
 
 
 
 

+

[
 
 
 
 
 
1
1
1
⋮
1
1]
 
 
 
 
 

𝑢 

𝑦 = [𝐶1 𝐶2 𝐶3 ⋯ 𝐶𝑛−1 𝐶𝑛]

[
 
 
 
 

𝑥1

𝑥2
𝑥3

⋮
𝑥𝑛−1

𝑥𝑛 ]
 
 
 
 

+ 𝑏0𝑢 
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JORDAN CANONICAL FORM 

𝐴 = 𝐽 =

[
 
 
 
 
−𝜆1

0
0
⋮
0
0

0
−𝜆1

0
⋮
0
0

0
0

−𝜆1

⋮
0
0

0
0
0
⋮
0
0

⋮
⋮
⋮
⋮
⋮
⋮

0
0
0
⋮
0

−𝜆𝑛]
 
 
 
 

 

𝐵 =

[
 
 
 
 
 
0
0
1
⋮
1
1]
 
 
 
 
 

 

�̇� = 𝐽𝑍 + �̃�𝑈 

𝑌 = �̃�𝑍 + 𝐷𝑈 

where,  

𝐽 = 𝑀−1𝐴𝑀;    �̃� = 𝑀−1𝐵;     �̃� = 𝐶𝑀 
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4.3 SOLUTION OF STATE AND OUTPUT EQUATION IN CONTROLLABLE  

CANONICAL FORM 

Consider the state equation of a linear time invariant system as, 

�̇�(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑈(𝑡) 

The matrices A and B are constant matrices. This state equation can be of two types, 

1. Homogeneous 

2. Non-homogeneous 

HOMOGENEOUS EQUATION 

If A is a constant matrix and input control forces are zero then the equation takes the form 

�̇�(𝑡) = 𝐴𝑋(𝑡) 

Such an equation is called homogeneous equation. The obvious equation is considered if 

input is zero. In such systems, the driving force is provided by the initial conditions of 

the system to produce the output. For example, consider a series RC circuit in which a 

capacitor is initially charged to V volts. The current is the output. Now there is no input 

control force, i.e., external voltage applied to the system. But the initial voltage on the 

capacitor drives the current through the system and capacitor starts discharging through 

the resistance, R. such a system works on the initial conditions without any input applied 

to it is called homogeneous system. 

NON-HOMOGENEOUS EQUATION 

If A is a constant matrix and matrix U(t) is non-zero vector i.e. the input control forces 

are applied to the system then the equation takes normal form as, 

�̇�(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑈(𝑡) 

Such an equation is called non-homogeneous equation. Most of the practical systems 

require inputs to dive them. Such systems arc nonhomogeneous linear systems. The 

solution of the state equation is obtained by considering basic method of finding the 

solution of homogeneous equation. 
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STATE TRANSITION MATRIX 

Properties of State Transition Matrix 

1. 𝜙(0) = 𝑒𝐴×0 = 𝐼(𝑢𝑛𝑖𝑡 𝑚𝑎𝑡𝑟𝑖𝑥) 

2. 𝜙(𝑡) = 𝑒𝐴𝑡 = (𝑒−𝐴𝑡)−1 = [𝜙(−𝑡)]−1 

or 𝜙−1(𝑡) = 𝜙(−𝑡) 

3. 𝜙(𝑡1 + 𝑡2) = 𝑒𝐴(𝑡1+𝑡2) = 𝑒𝐴𝑡1𝑒𝐴𝑡2 = 𝜙(𝑡1)𝜙(𝑡2) 

Computation of State transition matrix 

The state transition matrix, eAt can be computed by any one of the following two methods: 

Method 1: Computation of eAt using matrix exponential 

If the system matrix ‘A’ is an (n×n) square matrix, then each of these exponentials is an 

(n×n) square matrix of time functions, and one of the consequences of a theorem 

developed in linear algebra, known as the Cayley-Hamilton theorem, shows that such a 

matrix may be expressed as an (n−1)st degree polynomial in the matrix A.  

That is,  

𝑒𝐴𝑡 = 𝐼 + 𝐴𝑡 +
1

2!
𝐴2𝑡2 +

1

3!
𝐴3𝑡3 + ⋯ +

1

𝑖!
𝐴𝑖𝑡𝑖 

where, eAt – State transition matrix of order n x n 

 A – System matrix of order n x n 

 I – Unit matrix of order n x n 

Method 2: Computation of eAt using Laplace transform 

The theorem also states that the equation remains an equality if I is replaced by unity and 

A is replaced by any one of the scalar roots sI of the nth-degree scalar equation,           

det(sI-A) = 0. The expression det(sI-A) indicates the determinant of the matrix (sI-A). 

This determinant is an nth-degree polynomial ins. Let us assume that then roots are all 

different. This equation is called the characteristic equation of the matrix a, and the values 

of s which are the roots of the equation are known as the eigen values of A. 
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Consider the state equation without input vector, 

�̇�(𝑡) = 𝐴𝑋(𝑡) 

On taking Laplace transform, we get, 

𝑠𝑋(𝑠) − 𝑋(0) = 𝐴𝑋(𝑠) 

𝑠𝑋(𝑠) − 𝐴𝑋(𝑠) = 𝑋(0) 

𝑠𝐼𝑋(𝑠) − 𝐴𝑋(𝑠) = 𝑋(0) 

(𝑠𝐼 − 𝐴)𝑋(𝑠) = 𝑋(0) 

Pre-multiplying both sides by (sI-A)-1, 

𝑋(𝑠) = (𝑠𝐼 − 𝐴)−1𝑋(0) 

On taking inverse Laplace transform, 

𝑥(𝑡) = 𝐿−1[(𝑠𝐼 − 𝐴)−1]𝑥(0) 

On comparing with solution of state equation, 

𝑒𝐴𝑡 = 𝐿−1[(𝑠𝐼 − 𝐴)−1] 

Also, 

𝑒𝐴𝑡 = 𝜙(𝑡) 

where,  

𝜙(𝑠) = (𝑠𝐼 − 𝐴)−1 

which is the resolvent matrix. 

Consider the state equation with input vector, 

�̇�(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑈(𝑡) 

On taking Laplace transform, we get, 

𝑠𝑋(𝑠) − 𝑋(0) = 𝐴𝑋(𝑠) + 𝐵𝑈(𝑠) 

𝑠𝐼𝑋(𝑠) − 𝐴𝑋(𝑠) = 𝑋(0) + 𝐵𝑈(𝑠) 

(𝑠𝐼 − 𝐴)𝑋(𝑠) = 𝑋(0) + 𝐵𝑈(𝑠) 

Pre-multiplying both sides by (sI-A)-1, 

𝑋(𝑠) = (𝑠𝐼 − 𝐴)−1𝑋(0)+(𝑠𝐼 − 𝐴)−1𝐵𝑈(𝑠) 

𝑋(𝑠) = 𝜙(𝑠)𝑋(0) + 𝜙(𝑠)𝐵𝑈(𝑠) 

On taking inverse Laplace transform, 

𝑥(𝑡) = 𝜙(𝑡)𝑥(0) + 𝐿−1[𝜙(𝑠)𝐵𝑈(𝑠)] 
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Solution of output equation by Laplace Transform 

𝑌(𝑠) = 𝐶𝑋(𝑠) + 𝐷𝑈(𝑠) 

𝑦(𝑡) = 𝐿−1[𝐶𝑋(𝑠) + 𝐷𝑈(𝑠)] 

CONTROLLABLE CANONICAL FORM (CCF) 

Probably the most straightforward method for converting from the transfer function of a 

system to a state space model is to generate a model in "controllable canonical form." 

Consider a system defined by, 

𝑦(𝑛) + 𝑎1𝑦
(𝑛−1) + ⋯ + 𝑎𝑛−1�̇� + 𝑎𝑛𝑦 = 𝑏0𝑢

(𝑛) + 𝑏1𝑢
(𝑛−1) + ⋯ + 𝑏𝑛−1�̇� + 𝑏𝑛𝑢 

where u is the control input and y is the output. It can be written as, 

𝑌(𝑠)

𝑈(𝑠)
=

[𝑏0𝑠
𝑛 + 𝑏1𝑠

𝑛−1 + ⋯+ 𝑏𝑛−1𝑠 + 𝑏𝑛]

[𝑠𝑛 + 𝑎1𝑠
𝑛−1 + 𝑎𝑛−1𝑠 + 𝑎𝑛]

 

Controllable canonical form of this system is given by, 

[
 
 
 
 
 

𝑥1̇

𝑥2̇

𝑥3̇

⋮
�̇�𝑛−1

𝑥�̇� ]
 
 
 
 
 

=

[
 
 
 
 

0
0
0
⋮
0

−𝑎𝑛

1
0
0
⋮
0

−𝑎𝑛−1

0
1
0
⋮
0

−𝑎𝑛−2

0
0
1
⋮
0

−𝑎𝑛−3

⋮
⋮
⋮
⋮
⋮
⋮

0
0
0
⋮
1

−𝑎1]
 
 
 
 

[
 
 
 
 

𝑥1

𝑥2
𝑥3

⋮
𝑥𝑛−1

𝑥𝑛 ]
 
 
 
 

+

[
 
 
 
 
 
0
0
0
⋮
0
1]
 
 
 
 
 

𝑢 

𝑦 = [𝑏𝑛 − 𝑎𝑛𝑏0 𝑏𝑛−1 − 𝑎𝑛−1𝑏0 ⋯ ⋯ 𝑏2 − 𝑎2𝑏0 𝑏1 − 𝑎1𝑏0]

[
 
 
 
 
 

𝑥1

𝑥2

⋮
⋮

𝑥𝑛−1

𝑥𝑛 ]
 
 
 
 
 

+ 𝑏0𝑢 
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OBSERVABLE CANONICAL FORM 

The observable canonical form of the state-space representation of this system is given 

by 

[
 
 
 
 
 

𝑥1̇

𝑥2̇

𝑥3̇

⋮
�̇�𝑛−1

𝑥�̇� ]
 
 
 
 
 

=

[
 
 
 
 
0
1
0
⋮
0
0

0
0
1
⋮
0
0

0
0
0
⋮
0
0

⋮
⋮
⋮
⋮
⋮
⋮

0
0
0
⋮
0
1

−𝑎𝑛
−𝑎𝑛−1
−𝑎𝑛−2

⋮
−𝑎2

−𝑎1 ]
 
 
 
 

[
 
 
 
 

𝑥1

𝑥2
𝑥3

⋮
𝑥𝑛−1

𝑥𝑛 ]
 
 
 
 

+

[
 
 
 
 
 

𝑏𝑛 − 𝑎𝑛𝑏0

𝑏𝑛−1 − 𝑎𝑛−1𝑏0

𝑏𝑛−2 − 𝑎𝑛−2𝑏0

⋮
𝑏2 − 𝑎2𝑏0

𝑏1 − 𝑎1𝑏0 ]
 
 
 
 
 

𝑢 

𝑦 = [0 0 0 ⋯ 0 1]

[
 
 
 
 

𝑥1

𝑥2
𝑥3

⋮
𝑥𝑛−1

𝑥𝑛 ]
 
 
 
 

+ 𝑏0𝑢 

DIAGONAL CANONICAL FORM 

There are cases where the dominator polynomial involves only distinct roots. For the 

distinct root case, we can write the equation in the form of 

𝑌(𝑠)

𝑈(𝑠)
=

[𝑏0𝑠
𝑛 + 𝑏1𝑠

𝑛−1 + ⋯ + 𝑏𝑛−1𝑠 + 𝑏𝑛]

(𝑠 + 𝑝1)(𝑠 + 𝑝2). . . (𝑠 + 𝑝𝑛)
= 𝑏0 +

𝑐1

𝑠 + 𝑝1
+

𝑐2

𝑠 + 𝑝2
+ ⋯ +

𝑐𝑛

𝑠 + 𝑝𝑛
 

The diagonal canonical form of the state-space representation of this system is given by 

[
 
 
 
 
 

𝑥1̇

𝑥2̇

𝑥3̇

⋮
�̇�𝑛−1

𝑥�̇� ]
 
 
 
 
 

=

[
 
 
 
 
−𝑝1

0
0
⋮
0
0

0
−𝑝2

0
⋮
0
0

0
0

−𝑝3

⋮
0
0

0
0
0
⋮
0
0

⋮
⋮
⋮
⋮
⋮
⋮

0
0
0
⋮
0

−𝑝𝑛]
 
 
 
 

[
 
 
 
 

𝑥1

𝑥2
𝑥3

⋮
𝑥𝑛−1

𝑥𝑛 ]
 
 
 
 

+

[
 
 
 
 
 
1
1
1
⋮
1
1]
 
 
 
 
 

𝑢 

𝑦 = [𝑐1 𝑐2 𝑐3 ⋯ 𝑐𝑛−1 𝑐𝑛]

[
 
 
 
 

𝑥1

𝑥2
𝑥3

⋮
𝑥𝑛−1

𝑥𝑛 ]
 
 
 
 

+ 𝑏0𝑢 
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4.4 CONCEPTS OF CONTROLLABILITY AND OBSERVABILITY 

CONCEPT OF CONTROLLABILITY 

A system is said to be completely controllable, if it is possible to transfer the system 

state from any initial state x(t0) to any desired state x(t) in specified finite time by a 

control vector u(t). 

If any of the state variable is independent of the control u(t), there would be no 

way of driving this particular state variable to desired state in finite time by means of 

control effort. Therefore, this particular state is said to be uncontrollable. As long as there 

is at least one uncontrollable state, the system is said to be not completely controllable or 

'uncontrollable'. 

Consider a single input, linear time invariant system: 

�̇�(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑈(𝑡) 

Let the initial system state be x(0) and the final state be x(tf). The system is controllable 

if it is possible to construct a control signal, which in finite time interval 0 < t <= tf, will 

transfer the system state from x(0) to x(tf ). The above equation is completely controllable 

if and only if the rank of the composite matrix is n. 

𝑄𝐶 = [𝐵 ⋮ 𝐴𝐵 ⋮ ⋯ ⋮ 𝐴𝑛−1𝐵] 

Since only matrices A and B are involved, we may say that the pair (A;B) is controllable 

if rank of QC is n. 

CONCEPT OF OBSERVABILITY 

A system is said to be completely observable, if every state x(t0) can be completely 

identified by measurement of outputs y(t) over a finite time interval. Given a LTI system 

that is described by the dynamic equations, the state x(t0) is said to be observable if given 

any input u(t), there exists a finite time tf >= t0 such that knowledge of u(t) for                          

t0 <= t < tf, matrices A,B,C, & D and the output y(t); for t0 <= t < tf are sufficient to 

determine x(t0). The necessary and sufficient condition for the system to be completely 

observable it is necessary and sufficient that the following n x np observability matrix has 

rank of n. 

𝑄𝑂 = [𝐶𝑇 𝐴𝑇𝐶𝑇 (𝐴2)𝑇𝐶𝑇 ⋯ (𝐴𝑛−1)𝑇𝐶𝑇] 
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5.1 CHARACTERISTIC EQUATION 

 The characteristic equation is nothing more than setting the denominator of the 

closed-loop transfer function to zero. In control theory, there are two main methods of 

analyzing feedback systems: the transfer function (or frequency domain) method and the 

state space method. The characteristic equation is the equation which is solved to find a 

matrix's eigenvalues, also called the characteristic polynomial. Characteristic equation is 

used to solve linear differential equations. Characteristic equations of auxiliary 

differential equations are used to solve a partial differential equation.  

The properties of transfer function are given below:  

 The ratio of Laplace transform of output to Laplace transform of input assuming 

all initial conditions to be zero. 

 The transfer function of a system does not depend on the inputs to the system.  

 The system poles and zeros can be determined from its transfer function. 

Closed loop transfer function: 

𝐶(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)

1 ± 𝐺(𝑠)𝐻(𝑠)
 

Characteristic Equation: 

1 ± 𝐺(𝑠)𝐻(𝑠) = 0 
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5.2 EFFECT OF LAG, LEAD AND LAG-LEAD COMPENSATION ON  

          FREQUENCY RESPONSE 

Every control system which has been designed for a specific application should 

meet certain performance specification. There are always some constraints which are 

imposed on the control system design in addition to the performance specification. The 

choice of a plant is not only dependent on the performance specification but also on the 

size, weight & cost. Although the designer of the control system is free to choose a new 

plant, it is generally not advised due to the cost & other constraints. Under this 

circumstance, it is possible to introduce some kind of corrective sub-systems in order to 

force the chosen plant to meet the given specification. We refer to these sub-systems as 

compensator whose job is to compensate for the deficiency in the performance of the 

plant. 

Necessary of Compensation 

1. In order to obtain the desired performance of the system, we use compensating 

networks. Compensating networks are applied to the system in the form of feed 

forward path gain adjustment. 

2. Compensate a unstable system to make it stable. 

3. A compensating network is used to minimize overshoot. 

4. These compensating networks increase the steady state accuracy of the system. An 

important point to be noted here is that the increase in the steady state accuracy 

brings instability to the system. 

5. Compensating networks also introduces poles and zeros in the system thereby 

causes changes in the transfer function of the system. Due to this, performance 

specifications of the system change. 

 

 

 

 

 

 

 

EnggTree.com

Downloaded From EnggTree.com



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

EE3503 CONTROL SYSTEMS 

EFFECT OF LAG COMPENSATION ON FREQUENCY RESPONSE 

The Lag Compensator is an electrical network which produces a sinusoidal output having 

the phase lag when a sinusoidal input is applied. The lag compensator circuit in the ‘s’ 

domain is shown in the following figure.  

 

Figure 5.2.1 Electrical lag compensator 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.65] 

Here, the capacitor is in series with the resistor R2 and the output is measured across this 

combination. The transfer function of this lag compensator is 

𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
=
1

𝛽
(
𝑠 +

1
𝜏

𝑠 +
1
𝛽𝜏

) 

𝜏 = 𝑅2𝐶 

𝛽 =
𝑅1 + 𝑅2
𝑅2

 

𝛽 > 1 

Pole, 𝑠 = −
1

𝛽𝜏
 

Zero, 𝑠 = −
1

𝜏
 

Let s = jω, 

𝑉𝑜(𝑗𝜔)

𝑉𝑖(𝑗𝜔)
=
1

𝛽
(
𝑗𝜔 +

1
𝜏

𝑗𝜔 +
1
𝛽𝜏

) 

Phase angle, 

𝜙 = tan−1𝜔𝜏 − tan−1 𝛽𝜔𝜏 
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Figure 5.2.2 Pole-zero plot of lag compensator 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.65] 

 

Figure 5.2.3 Bode plot of lag compensator 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.67] 

The phase of the output sinusoidal signal is equal to the sum of the phase angles of input 

sinusoidal signal and the transfer function. So, in order to produce the phase lag at the 

output of this compensator, the phase angle of the transfer function should be negative. 

This will happen when β > 1. 
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Effect of Phase Lag Compensation 

1. Gain crossover frequency increases. 

2. Bandwidth decreases. 

3. Phase margin will be increase. 

4. Response will be slower before due to decreasing bandwidth, the rise time and the 

settling time become larger. 

Advantages of Phase Lag Compensation 

1. Phase lag network allows low frequencies and high frequencies are attenuated. 

2. Due to the presence of phase lag compensation the steady state accuracy increases. 

Disadvantages of Phase Lag Compensation 

1. Due to the presence of phase lag compensation the speed of the system decreases. 
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EFFECT OF LEAD COMPENSATION ON FREQUENCY RESPONSE 

The lead compensator is an electrical network which produces a sinusoidal output having 

phase lead when a sinusoidal input is applied. The lead compensator circuit in the ‘s’ 

domain is shown in the following figure. Lead compensator are used to improve the 

transient response of a system. 

 

Figure 5.2.4 Electrical lead compensator 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.70] 

Taking i2=0 and applying Laplace Transform, we get, 

𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
=

𝑅2(𝑅1𝐶𝑠 + 1)

𝑅1 + 𝑅2 + 𝑅2𝑅1𝐶𝑠
 

𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
= 𝛼 (

𝜏𝑠 + 1

𝛼𝜏𝑠 + 1
) 

𝜏 = 𝑅1𝐶 

𝛼 =
𝑅2

𝑅1 + 𝑅2
 

𝛼 < 1 

Pole, 𝑠 = −
1

𝛼𝜏
 

Zero, 𝑠 = −
1

𝜏
 

Let s = jω, 

𝑉𝑜(𝑗𝜔)

𝑉𝑖(𝑗𝜔)
= 𝛼 (

𝜏𝑗𝜔 + 1

𝛼𝜏𝑗𝜔 + 1
) 

Phase angle, 

𝜙 = tan−1𝜔𝜏 − tan−1 𝛼𝜔𝜏 
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Figure 5.2.5 Pole-zero plot of lead compensator 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.69] 

 

 

Figure 5.2.6 Bode plot of lead compensator 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.71] 

The phase of the output sinusoidal signal is equal to the sum of the phase angles of input 

sinusoidal signal and the transfer function. So, in order to produce the phase lead at the 

output of this compensator, the phase angle of the transfer function should be positive. 

This will happen when 0<α<1. Therefore, zero will be nearer to origin in pole-zero 

configuration of the lead compensator. 
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Bode plot of lead compensator 

Maximum phase lead occurs at  

𝜔𝑚 =
1

𝜏√𝛼
 

Let Φm = maximum phase lead 

sin𝜙𝑚 =
1 − 𝛼

1 + 𝛼
 

𝛼 =
1 − sin𝜙𝑚
1 + sin𝜙𝑚

 

Magnitude at maximum phase lead  

|𝐺𝑐(𝑗𝜔)| =
1

√𝛼
 

Effect of Phase Lead Compensation 

1. The velocity constant Kv increases. 

2. The slope of the magnitude plot reduces at the gain crossover frequency so that 

relative stability improves and error decrease due to error is directly proportional to 

the slope. 

3. Phase margin increases. 

4. Response becomes faster. 

Advantages of Phase Lead Compensation 

1. Due to the presence of phase lead network the speed of the system increases because 

it shifts gain crossover frequency to a higher value. 

2. Due to the presence of phase lead compensation maximum overshoot of the system 

decreases. 

Disadvantages of Phase Lead Compensation 

1. Steady state error is not improved. 
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EFFECT OF LAG-LEAD COMPENSATION ON FREQUENCY RESPONSE 

Lag-Lead compensator is an electrical network which produces phase lag at one 

frequency region and phase lead at other frequency region. It is a combination of both the 

lag and the lead compensators. The lag-lead compensator circuit in the ‘s’ domain is 

shown in the following figure. 

 

Figure 5.2.7 Electrical lag-lead compensator 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.73] 

This circuit looks like both the compensators are cascaded. So, the transfer function of 

this circuit will be the product of transfer functions of the lead and the lag compensators. 

𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
= 𝛽 (

𝜏1𝑠 + 1

𝛽𝜏1𝑠 + 1
)
1

𝛼
(
𝑠 +

1
𝜏2

𝑠 +
1
𝛼𝜏2

) 

We know, αβ=1 

𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
= (

𝑠 +
1
𝜏1

𝑠 +
1
𝛽𝜏1

)(
𝑠 +

1
𝜏2

𝑠 +
1
𝛼𝜏2

) 

where,  

𝜏1 = 𝑅1𝐶1 

𝜏2 = 𝑅2𝐶2 

Advantages of Phase Lag Lead Compensation 

1. Due to the presence of phase lag-lead network the speed of the system increases 

because it shifts gain crossover frequency to a higher value. 

2. Due to the presence of phase lag-lead network accuracy is improved. 
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Figure 5.2.8 Pole-zero plot of lag-lead compensator 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.73] 
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5.3 DESIGN OF LAG, LEAD AND LAG LEAD COMPENSATOR USING 

BODE PLOTS 

DESIGN PROCEDURE OF LAG COMPENSATOR USING BODE PLOTS 

1. Determine the compensator gain K to meet the steady state error requirement. 

2. Draw the Bode plots of KG(s). 

3. From the Bode plots, find the frequency ωg at which the phase of KG(s) is 

∠𝐾𝐺(𝜔𝑔) = 𝑃𝑀 − 180
𝑜 + 5𝑜~10𝑜 

4. Calculate β to make ωg the gain crossover frequency, 

20 log 𝛽 = 20 log𝐾 + 20 log|𝐺(𝑗𝜔𝑔)| 

5. Choose T to be much greater than 1/ ωg, for example, T=10/ ωg. 

6. Verify the results using MATLAB. 

DESIGN PROCEDURE OF LEAD COMPENSATOR USING BODE PLOTS 

1. Draw the Bode plot for the uncompensated system and obtain the current phase 

margin available. 

2. Calculate the phase margin required to meet the damping coefficient or percent 

overshoot requirement. Don’t forget to add some extra phase margin to compensate 

for imperfections in the controller design (approximately 10 degrees of phase is 

good). 

𝑃𝑀 = tan−1

(

 
2𝜁

√−2𝜁2 + √1 + 4𝜁4)

  

𝜁 ≅
𝑃𝑀

100
 

3. Calculate the value of alpha from the following equation. Use the phase margin 

obtained in Step (4) as the maximum phase value: 

𝛼 =
1 − sin 𝜙𝑚𝑎𝑥
1 + sin 𝜙𝑚𝑎𝑥

 

4. Calculate the gain corresponding to the maximum phase frequency using the equation 

below. We are going to look for the new phase margin frequency that we want to 

design for by looking for places where this gain is present on the Bode plot. 
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|𝐺(𝑗𝜔𝑚𝑎𝑥)| =
1

√𝛽
 

5. Find the new maximum phase margin frequency by looking for the point where the 

uncompensated system’s magnitude curve is the negative value of the gain calculated 

in Step (4). 

6. Select the break frequencies, T and beta*T using the maximum frequency equation 

given below: 

𝜔𝑚𝑎𝑥 =
1

𝑇√𝛽
 

7. Reset the system gain to adjust for the compensator’s gain. 

8. Check that the bandwidth still meets design requirements. Simulate the system and 

repeat the design as necessary. 

DESIGN PROCEDURE OF LAG-LEAD COMPENSATOR USING BODE PLOTS 

The lag-lead compensator is the analog to the PID controller. The lag-lead compensator 

can meet multiple design requirements: the lag component reduces high frequency gain, 

stabilizes the system and meets steady state requirements, while the lead component is 

used to meet transient response design requirements.  

The general equation for this kind of compensator is given below: 

𝐺𝑙𝑎𝑔−𝑙𝑒𝑎𝑑(𝑠) = 𝐺𝑙𝑒𝑎𝑑(𝑠)𝐺𝑙𝑎𝑔(𝑠) = (
𝑠 +

1
𝑇1

𝑠 +
𝛾
𝑇1

)(
𝑠 +

1
𝑇2

𝑠 +
1
𝛾𝑇2

) , 𝛾 > 1 

(1) Calculate the required bandwidth to meet the transient performance requirement 

(usually expressed in terms of the settling time, rise time or peak time). Use the 

equation provided above. 

(2) Set the DC gain of the uncompensated system to meet the steady state requirements 

(this requires use of the Final Value Theorem). 

(3) Draw the Bode plot for the uncompensated system and obtain the current phase 

margin available. 

(4) Calculate the phase margin required to meet the damping coefficient or percent 

overshoot requirement. Don’t forget to add some extra phase margin to compensate 
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for imperfections in the controller design (approximately 10 degrees of phase is 

good). 

(5) Select a new phase margin frequency that is slightly less than the bandwidth. 

(6) At this new phase margin frequency, calculate the phase lead required to obtained 

the phase margin from Step (4). Add some additional phase to adjust for the lag 

compensator’s effects, if you have not already done so in Step (4). 

(7) Design the lag compensator. Choose the higher breakpoint frequency as the phase 

margin frequency divided by 10. A plot of the interaction between beta and the phase 

margin is used to select beta, but for our purposes, I think that spacing the pole and 

zero of the lag compensator apart by a factor of 10 is sufficient for our design 

purposes. 

(8) We can calculate gamma as the inverse of beta, so now we are ready to design the 

lead compensator. Use the equation given below to find T. 

(9) Check that the bandwidth still meets design requirements. Simulate the system and 

repeat the design as necessary. 
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5.4   EFFECTS OF P, PI, PID MODES OF FEEDBACK CONTROL 

PROPORTIONAL CONTROLLER (P-Controller) 

The proportional controller is a device that produces a control signal, u(t) proportional to 

the input error signal, e(t) 

𝑢(𝑡) ∝ 𝑒(𝑡) 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) 

where, Kp = Proportional gain or constant 

On taking Laplace transform of equation, we get, 

𝑈(𝑠) = 𝐾𝑝𝐸(𝑠) 

Transfer function,  

𝑈(𝑠)

𝐸(𝑠)
= 𝐾𝑝 

The equation gives the output of the P-controller for the input E(s) and it is the transfer 

function of P-controller. The block diagram of the P-controller is shown in the figure 

5.4.1. 

 

Figure 5.4.1 Block diagram of proportional controller 

[Source: “Control Systems” by Nagoor Kani, Page: 2.79] 

From the equation, we can conclude that the proportional controller amplifies the error 

signal by an amount Kp. Also the introduction of the controller on the system increases 

the loop gain by an amount Kp. The increase in loop gain improves the steady state 

tracking accuracy, disturbance signal rejection and the relative stability and also makes 

the system less sensitive to parameter variations. But increasing the gain to very large 

values mau lead to instability of the system. The drawback in P-controller is that it leads 

to a constant steady state error. 

Example of Electronic P-controller 

 The proportional controller can be realized by an amplifier with adjustable gain. 

Either the non- inverting operational amplifier or the inverting operational amplifier 
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followed by sign changer will work as a proportional controller. The op-amp proportional 

controller is shown in the figures 5.4.2. 

 

Figure 5.4 

5.4.2 P-controller using non-inverting and inverting amplifier 

[Source: “Control Systems” by Nagoor Kani, Page: 2.80] 

 By deriving the transfer function of the controller shown in figures and comparing 

with the transfer function of P-controller defined by equation, it can be shown that they 

work as P-controllers. 

Analysis of P-controller 

In figure 2.8.2, the input e(t) is applied to positive input. By symmetry of op-amp the 

voltage of negative input is also e(t). Also, we assume an ideal op-amp so that input 

current is zero. Based on the above assumptions the equivalent circuit of the controller is 

shown in figure 5.4.3. 

 

Figure 5.4.3 Equivalent circuit of P-controller 

[Source: “Control Systems” by Nagoor Kani, Page: 2.80] 

By voltage division rule, 

𝑒(𝑡) =
𝑅1

𝑅1 + 𝑅2
𝑢(𝑡) 
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On taking Laplace transform of equation we get, 

𝑈(𝑠)

𝐸(𝑠)
=
𝑅1 + 𝑅2

𝑅1
 

The equation is the transfer function of op-amp P-controller. On comparing, we get, 

𝐾𝑝 =
𝑅1 + 𝑅2

𝑅1
 

Therefore, by adjusting the values of R1 and R2 the value of gain, Kp can be varied. 

Analysis of P-controller  

The assumption made in op-amp circuit analysis are, 

1. The voltages at both inputs are equal 

2. The input current is zero 

Based on the above assumptions, the equivalent circuit of op-amp amplifier and sign 

changer are shown in figure 5.4.4. 

 

Fig 5.4.4 Equivalent circuit of amplifier and sign changer 

[Source: “Control Systems” by Nagoor Kani, Page: 2.81] 

From the circuit, 

𝑒(𝑡) = 𝑖1𝑅1 

𝑢1(𝑡) = −𝑖1𝑅2 

Substitute for i1,  

𝑢1(𝑡) = −
𝑒(𝑡)

𝑅1
𝑅2 

Also, from the circuit, 

𝑢(𝑡) = −𝑖2𝑅 

𝑢1(𝑡) = 𝑖2𝑅 

Substitute for i2,  
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𝑢1(𝑡) = −𝑢(𝑡) 

On equating the equations we get, 

𝑢(𝑡) =
𝑒(𝑡)

𝑅1
𝑅2 

On taking Laplace transform of equation we get, 

𝑈(𝑠)

𝐸(𝑠)
=
𝑅2
𝑅1

 

The equation is the transfer function of op-amp P-controller. On the comparing equations, 

Proportional gain,  

𝐾𝑝 =
𝑅2
𝑅1

 

Therefore, by adjusting the values of R1 and R2 the value of gain Kp can be varied. 
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INTEGRAL CONTROLLER (I-Controller) 

The integral controller is a device that produces a control signal u(t) which is proportional 

to integral of the input error signal, e(t). 

In I-controller 

𝑢(𝑡) ∝ ∫𝑒(𝑡)𝑑𝑡 

𝑢(𝑡) = 𝐾𝑖∫𝑒(𝑡)𝑑𝑡 

where Ki = integral gain or constant 

On taking Laplace transform of equation with zero initial conditions we get, 

𝑈(𝑠)

𝐸(𝑠)
=
𝐾𝑖
𝑠

 

The equation gives the output of the I-controller for the input E(s) and equation is the 

transfer function of the I-controller, the block diagram of I-controller is shown in the 

figure 5.4.5. 

 

Figure 5.4.5 Block diagram of integral controller 

[Source: “Control Systems” by Nagoor Kani, Page: 2.82] 

The integral controller removes or reduces the steady error without the need for manual 

reset. Hence the I-controller is sometimes called automatic reset. The drawback in 

integral controller is that it may lead to oscillatory response of increasing or decreasing 

amplitude which is undesirable and the system may become unstable. 

Example of electronic I-controller 

 The integral controller can be realized by an integrator using op-amp followed by 

a sign changer as shown in figure 2.8.6. 
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Figure 5.4.6 I-controller using inverting amplifier 

[Source: “Control Systems” by Nagoor Kani, Page: 2.82] 

 By deriving the transfer function of the controller shown in figure and comparing 

with the transfer function of I-controller defined by equation. 

Analysis of I-controller 

The assumptions made in op-amp circuit analysis are, 

1. The voltages of both inputs are equal 

2. The input current is zero. 

 Based on the above assumptions, the equivalent circuit of op-amp amplifier and sign 

changer are shown in figure 5.4.7. 

 

Figure 5.4.7 Equivalent circuit of amplifier and sign changer 

[Source: “Control Systems” by Nagoor Kani, Page: 2.83] 

From the circuit, 

𝑒(𝑡) = 𝑖1𝑅1 

𝑢1(𝑡) = −
1

𝐶1
∫ 𝑖1 𝑑𝑡 

 

 

EnggTree.com

Downloaded From EnggTree.com



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

EE3503 CONTROL SYSTEMS 

Substitute for i1,  

𝑢1(𝑡) = −
1

𝑅1𝐶1
∫𝑒(𝑡)𝑑𝑡 

Also, from the circuit, 

𝑢(𝑡) = −𝑖2𝑅 

𝑢1(𝑡) = 𝑖2𝑅 

Substitute for i2,  

𝑢1(𝑡) = −𝑢(𝑡) 

On equating equations we get 

𝑢(𝑡) =
1

𝑅1𝐶1
∫𝑒(𝑡)𝑑𝑡 

On taking Laplace transform of equation we get, 

𝑈(𝑠)

𝐸(𝑠)
=

1

𝑠𝑅1𝐶1
 

The equation is the transfer function of op-amp P-controller. On the comparing equations, 

Integral gain,  

𝐾𝑖 =
1

𝑅1𝐶1
 

Therefore, by adjusting the values of R1 and C1 the value of gain Ki can be varied. 
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PROPORTIONAL PLUS INTEGRAL CONTROLLER (PI-CONTROLLER) 

 The proportional plus integral controller (PI controller) produces and output signal 

consisting of two terms: one proportional to error signal and the other proportional to 

the integral of error signal. 

In PI controller, 

𝑢(𝑡) ∝ [𝑒(𝑡) + ∫𝑒(𝑡)𝑑𝑡] 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) +
𝐾𝑝

𝑇𝑖
∫𝑒(𝑡)𝑑𝑡 

On taking Laplace transform of equation with zero initial conditions, we get, 

𝑈(𝑠)

𝐸(𝑠)
= 𝐾𝑝 (1 +

1

𝑇𝑖𝑠
) 

The equation gives the output of the PI-controller for the input E(s) and it is the transfer 

function of PI-controller. The block diagram of PI-controller is shown in figure 5.4.8. 

 

Figure 5.4.8 Block diagram of PI controller 

[Source: “Control Systems” by Nagoor Kani, Page: 2.84] 

The advantages of both P-controller and I –controller is combined in PI-controller. The 

proportional action increases the loop gain and makes the system less sensitive to 

variations of system parameters. The integral action eliminates or reduces the steady state 

error. The integral control action is adjusted by varying the integral time. The change in 

value of Kp affects both the proportional and integral parts of control action. The inverse 

of the integral time Ti is called the reset rate. 

Example of Electronic PI-controller 

 The PI controller can be realized by an op-amp differentiator with gain followed 

by a sign changer as shown in figure 5.4.9. 
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Figure 5.4.9 PI-controller using inverting amplifier 

[Source: “Control Systems” by Nagoor Kani, Page: 2.84] 

 

By deriving the transfer function of the controller shown in figure and comparing with 

the transfer function of PI-controller defined by equation, it can be proved that the circuit 

shown in figure will work as PI-controller. 

Analysis of PI-controller 

The assumptions made in op-amp circuit analysis are, 

1. The voltages of both inputs are equal 

2. The input current is zero. 

Based on the above assumptions, the equivalent circuit of op-amp amplifier and sign 

changer are shown in figure 5.4.10. 

 

Figure 5.4.10 Equivalent circuit of amplifier and sign changer 

[Source: “Control Systems” by Nagoor Kani, Page: 2.85] 

From the circuit, 

𝑒(𝑡) = 𝑖1𝑅1 

𝑢1(𝑡) = −𝑖1𝑅2 −
1

𝐶2
∫𝑖1 𝑑𝑡 
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Substitute for i1,  

𝑢1(𝑡) = −
𝑒(𝑡)

𝑅1
𝑅2 −

1

𝑅1𝐶2
∫𝑒(𝑡)𝑑𝑡 

Also, from the circuit, 

𝑢(𝑡) = −𝑖2𝑅 

𝑢1(𝑡) = 𝑖2𝑅 

Substitute for i2,  

𝑢1(𝑡) = −𝑢(𝑡) 

On equating equations we get 

𝑢(𝑡) =
𝑒(𝑡)

𝑅1
𝑅2 +

1

𝑅1𝐶2
∫𝑒(𝑡)𝑑𝑡 

On taking Laplace transform of equation we get, 

𝑈(𝑠)

𝐸(𝑠)
=
𝑅2
𝑅1

(1 +
1

𝑠𝑅2𝐶2
) 

The equation is the transfer function of op-amp P-controller. On the comparing equations, 

Proportional gain,  

𝐾𝑝 =
𝑅2
𝑅1

 

Integral time,  

𝑇𝑖 = 𝑅2𝐶2 

By varying the values of R1 and R2, the value of gain Kp and Ti can be adjusted. 
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PROPORTIONAL PLUS DERIVATIVE CONTROLLER (PD-CONTROLLER) 

The PD controller produces and output signal consisting of two terms: one proportional 

to error signal, the other one proportional to derivatives of error signal. 

In PD controller, 

𝑢(𝑡) ∝ [𝑒(𝑡) +
𝑑

𝑑𝑡
𝑒(𝑡)] 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑝𝑇𝑑
𝑑

𝑑𝑡
𝑒(𝑡) 

On taking Laplace transform of equation with zero initial conditions, we get, 

𝑈(𝑠)

𝐸(𝑠)
= 𝐾𝑝(1 + 𝑇𝑑𝑠) 

The equation gives the output of the PD-controller for the input E(s) and it is the transfer 

function of PD-controller. The block diagram of PD-controller is shown in figure 5.4.11. 

 

Figure 5.4.11 Block diagram of PD controller 

[Source: “Control Systems” by Nagoor Kani, Page: 2.86] 

The derivative control acts on a rate of change of error and not on the actual error signal. 

The derivative control action is effective only during transient periods and so it does not 

produce corrective measures for any constant error. Hence the derivative controller is 

never used alone, but it is employed in association with proportional and integral 

controllers. The derivative controller does not affect the steady-state error directly but 

anticipates the error, initiates an early corrective action and tends to increase the stability 

of the system. While derivative control action has an advantage of being anticipatory it 

has the disadvantage that it amplifies noise signals and may cause a saturation effect in 

the actuator. The derivative control action is adjusting by varying the derivative time. The 

change in the value of Kp affects both the proportional and derivative parts of control 

action. The derivative control is also called rate control. 
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Example of Electronic PD-controller 

 The PD controller can be realized by an op-amp amplifier with integral and 

derivative action followed by a sign changer as shown in figure 5.4.12. 

 

Figure 5.4.12 PD-controller using inverting amplifier 

[Source: “Control Systems” by Nagoor Kani, Page: 2.86] 

By deriving the transfer function of the controller shown in figure and comparing with 

the transfer function of PD-controller defined by equation, it can be proved that the circuit 

shown in figure will work as PD-controller. 

Analysis of PD-controller 

The assumptions made in op-amp circuit analysis are, 

1. The voltages of both inputs are equal 

2. The input current is zero. 

Based on the above assumptions, the equivalent circuit of op-amp amplifier and sign 

changer are shown in figure 5.4.13. 

 

Figure 5.4.13 Equivalent circuit of amplifier and sign changer 

[Source: “Control Systems” by Nagoor Kani, Page: 2.87] 
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From the circuit, 

𝑖1 =
𝑒(𝑡)

𝑅1
+ 𝐶1

𝑑𝑒(𝑡)

𝑑𝑡
 

𝑢1(𝑡) = −𝑖1𝑅2 

Substitute for i1,  

𝑢1(𝑡) = −
𝑒(𝑡)

𝑅1
𝑅2 − 𝑅2𝐶1

𝑑

𝑑𝑡
𝑒(𝑡) 

Also, from the circuit, 

𝑢(𝑡) = −𝑖2𝑅 

𝑢1(𝑡) = 𝑖2𝑅 

Substitute for i2,  

𝑢1(𝑡) = −𝑢(𝑡) 

On equating the equations, we get, 

𝑢(𝑡) =
𝑒(𝑡)

𝑅1
𝑅2 + 𝑅2𝐶1

𝑑

𝑑𝑡
𝑒(𝑡) 

On taking Laplace transform of equation we get, 

𝑈(𝑠)

𝐸(𝑠)
=
𝑅2
𝑅1

(1 + 𝑠𝑅1𝐶1) 

The equation is the transfer function of op-amp P-controller. On the comparing equations, 

Proportional gain,  

𝐾𝑝 =
𝑅2
𝑅1

 

Derivative time,  

𝑇𝑑 = 𝑅1𝐶1 

By varying the values of R1 and R2, the value of Kp  and Td are adjusted. 
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PROPORTIONAL PLUS INTEGRAL PLUS DERIVATIVE (PID) CONTROLLER 

The PID controller produces and output signal consisting of two terms: one proportional 

to error signal, another one proportional to the integral of error signal and the third one 

proportional to derivatives of error signal. 

𝑢(𝑡) ∝ [𝑒(𝑡) + ∫𝑒(𝑡)𝑑𝑡 +
𝑑

𝑑𝑡
𝑒(𝑡)] 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) +
𝐾𝑝

𝑇𝑖
∫𝑒(𝑡)𝑑𝑡 + 𝐾𝑝𝑇𝑑

𝑑

𝑑𝑡
𝑒(𝑡) 

On taking Laplace transform of equation with zero initial conditions, we get, 

𝑈(𝑠)

𝐸(𝑠)
= 𝐾𝑝 (1 +

1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠) 

The equation gives the output of the PID-controller for the input E(s) and it is the transfer 

function of PID-controller. The block diagram of PID-controller is shown in figure 

5.4.14. 

 

Figure 5.4.14 Block diagram of PID controller 

[Source: “Control Systems” by Nagoor Kani, Page: 2.88] 

The combination of proportional control action, integral control action and derivative 

control action is called PID-control action. This combined action has the advantages of 

the each of the three individual control actions. The proportional controller stabilizes the 

gain but produces a steady state error. The integral controller reduces or eliminates the 

steady state error. The derivative controller reduces the rate of change of error. 

Example of Electronic PID-controller 

 The PID controller can be realized by an op-amp amplifier with integral and 

derivative action followed by a sign changer as shown in figure 5.4.15. 
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Figure 5.4.15 PID-controller using inverting amplifier 

[Source: “Control Systems” by Nagoor Kani, Page: 2.88] 

By deriving the transfer function of the controller shown in figure and comparing with 

the transfer function of PID-controller defined by equation, it can be proved that the 

circuit shown in figure will work as PID-controller. 

Analysis of PID-controller 

The assumptions made in op-amp circuit analysis are, 

1. The voltages of both inputs are equal 

2. The input current is zero. 

Based on the above assumptions, the equivalent circuit of op-amp amplifier and sign 

changer are shown in figure 5.4.16. 

 

Figure 5.4.16 Equivalent circuit of amplifier and sign changer 

[Source: “Control Systems” by Nagoor Kani, Page: 2.89] 
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From the circuit, 

𝑖1 =
𝑒(𝑡)

𝑅1
+ 𝐶1

𝑑𝑒(𝑡)

𝑑𝑡
 

On taking Laplace transform of equation with zero initial conditions, we get, 

𝐼1(𝑠) = (
1

𝑅1
+ 𝐶1𝑠) 𝐸(𝑠) 

Also, from the circuit, 

𝑢1(𝑡) = −𝑖1𝑅2 −
1

𝐶2
∫𝑖1 𝑑𝑡 

On taking Laplace transform of equation with zero initial conditions, we get, 

𝑈1(𝑠) = −𝐼1(𝑠)𝑅2 −
1

𝑠𝐶2
𝐼1(𝑠) 

Substitute for i1, from equations 

𝑈1(𝑠) = −(
𝑅2
𝑅1

+
𝐶1
𝐶2

+
1

𝑅1𝐶2𝑠
+ 𝑅2𝐶1𝑠)𝐸(𝑠) 

Also, from the circuit, 

𝑢(𝑡) = −𝑖2𝑅 

𝑢1(𝑡) = 𝑖2𝑅 

Substitute for i2,  

𝑢1(𝑡) = −𝑢(𝑡) 

On equating the equations, we get, 

𝑈(𝑠)

𝐸(𝑠)
=
𝑅2
𝑅1

(1 +
𝑅1𝐶1 + 𝑅2𝐶2

𝑅2𝐶2
+

1

𝑅2𝐶2𝑠
+ 𝑅1𝐶1𝑠) 

 

The equation is the transfer function of op-amp PID-controller. On the comparing, we 

get, 

Proportional gain, 𝐾𝑝 =
𝑅2

𝑅1
 

Derivative time, 𝑇𝑑 = 𝑅1𝐶1  

Integral time, 𝑇𝑖 = 𝑅2𝐶2 

Also, 
𝑅1𝐶1+𝑅2𝐶2

𝑅2𝐶2
= 1 

By varying the values of R1 and R2, the value of Kp , Td and Ti are adjusted. 
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