
lOMoARcPSD|26885763

CS3691 EMBEDDED SYSTEMS AND IOT L T P C

 3 0 2 4
COURSE OBJECTIVES:

 To learn the internal architecture and programming of an embedded processor.

 To introduce interfacing I/O devices to the processor.

 To introduce the evolution of the Internet of Things (IoT).

 To build a small low-cost embedded and IoT system using Arduino/RaspberryPi/ openplatform.

 To apply the concept of Internet of Things in real world scenario.

UNIT I 8-BIT EMBEDDED PROCESSOR 8-Bit
Microcontroller – Architecture – Instruction Set and Programming – Programming Parallel Ports
– Timers and Serial Port – Interrupt Handling.

UNIT II EMBEDDED C PROGRAMMING
Memory And I/O Devices Interfacing – Programming Embedded Systems in C – Need For
RTOS – Multiple Tasks and Processes – Context Switching – Priority Based Scheduling
Policies.

UNIT III IOT AND ARDUINO PROGRAMMING
Introduction to the Concept of IoT Devices – IoT Devices Versus
Computers – IoT Configurations – Basic Components – Introduction to Arduino – Types of
Arduino– Arduino Toolchain – Arduino Programming Structure – Sketches – Pins –
Input/Output From Pins Using Sketches – Introduction to Arduino Shields – Integration of
Sensors and Actuators with Arduino.

UNIT IV IOT COMMUNICATION AND OPEN PLATFORMS
IoT Communication Models and APIs – IoT Communication Protocols – Bluetooth – WiFi –
ZigBee– GPS – GSM modules – Open Platform (like Raspberry Pi) – Architecture –
Programming –Interfacing – Accessing GPIO Pins – Sending and Receiving Signals Using GPIO
Pins –Connecting to the Cloud.

UNIT V APPLICATIONS DEVELOPMENT
Complete Design of Embedded Systems – Development of IoT Applications – Home
Automation –Smart Agriculture – Smart Cities – Smart Healthcare.

1 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

UNIT I

8-BIT EMBEDDED PROCESSOR

 8-Bit Microcontroller

 Architecture

 Instruction Set and Programming

 Programming Parallel Ports

 Timers and Serial Port

 Interrupt Handling.

2 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

1.1. 8051 Microcontroller
8051 microcontroller is an 8-bit microcontroller created in 1981 by Intel Corporation. It has an 8-
bit processor that simply means that it operates on 8-bit data at a time. It is among the most
popular and commonly used microcontroller.
As it is an 8-bit microcontroller thus has 8-bit data bus, 16-bit address bus. Along with that, it
holds 4 KB ROM with 128 bytes RAM.

1.1.1. What a Microcontroller is?
A microcontroller is an integrated chip designed under Very Large Scale Integration technique
that consists of a processor with other peripheral units like memory, I/O port, timer, decoder,
ADC etc. A microcontroller is basically designed in such a way that all the working peripherals
are embedded in a single chip with the processor.

Any programmable device holds a processor, memory, I/O ports and timer within it. But a
microcontroller contains all these components embedded in a single chip. This single-chip
manages the overall operation of the device.
A microprocessor simply contains a CPU that processes the operations with the help of other
peripheral units. Microprocessors are used where huge space is present to inbuilt a large
motherboard like in PCs.

1.2. Architecture of 8051 Microcontroller
The figure below represents the architectural block diagram of 8051 microcontroller:
As we can see that several units are present in the above architecture. And every unit is
embedded to execute the desired operation. Let us now discuss the operation of each unit present
in the architecture.

1.2.1. Central processing unit (CPU): 8051 uses the 8-bit processor. This unit carries out the
operation on 8-bit data. A processor is the heart of microcontroller. As the execution of the
program stored in the memory is performed by the processor.
The unit performs arithmetic and logical operations on 8-bit data as it has ALU, with internal
registers and program counters.
Several logical operations are performed by the ALU according to the program stored in the
memory.
The processor of 8051 microcontrollers possesses a special feature by which it can process single
bit or 8-bit data. This simply means that it has the ability to access each single bit data either to
clear, set or move etc. for any logical computation.

3 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Architecture of 8051 Microcontroller

1.2.2. Memory: Basically 8051 microcontroller consists of on-chip program memory i.e., ROM
and on-chip data memory i.e., RAM.
Let us first understand
 ROM

8051 microcontroller has 4 KB ROM with 0000H to 0FFFH as the addressable space. It is
completely a program or code memory that means used by the programmer to store the
programs that are to be executed by the microcontroller.

 The operations that are executed by the device in which the microcontroller is present are
stored in the ROM of the memory at the time of fabrication. Hence cannot be changed or
modified.

 RAM
8051 holds a 128 bytes RAM. Basically, RAM is used to store data or operands for only a
small time duration. It can be altered anytime according to the need of the user. It is also
known as the data memory as it stores the data temporarily.

Out of the 128-byte RAM, first, 32 bytes is held by the working registers. Basically, these are

4 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

4 banks which separately has 8 registers. These registers are accessed either by its name or
address. It is to be noted here that at a particular time only a single register bank can be used.

 As in 8051, the data and program memory i.e., RAM and ROM hold a definite memory
space. However, for some applications there exist the need for external memory to enhance
the memory space, thus external RAM, ROM/EPROM is used by the 8051 microcontrollers.

1.2.3. Input/ Output port: 8051 consists of 4 parallel ports of 8 bit each thereby providing 32
input-output pins. All the 4 ports function bidirectional i.e., either input or output according to
the software control.

1.2.4. Timer and Control Unit: Timers are used to create a time gap or delay between 2 events.
8051 microcontroller consists of 2 timers of 16 bit each by which the system can produce two
delays simultaneously in order to generate the appropriate delay.

1.2.5. 8051 Flag Bits and PSW Register
The program status word (PSW) register is an 8-bit register, also known as flag register. It is of
8-bit wide but only 6-bit of it is used. The two unused bits are user-defined flags.

1.2.6. The Data Pointer (DPTR) is the 8051's only user-accessible 16-bit (2-byte) register. The
Accumulator, R0–R7 registers and B register are 1-byte value registers. DPTR is meant for
pointing to data. It is used by the 8051 to access external memory using the address indicated by
DPTR.

Basically, microcontrollers use hardware delays in which a physical device is used by the
processor to produce the respective delay. And this physical device is known as a timer.
The timer produces the delay according to the demand of the processor and sends the signal to
the processor once the respective delay gets produced.

1.2.7. Pin diagram of 8051 Microcontroller
Introduction :
The 8051 microcontroller is a popular 8-bit microcontroller widely used in embedded systems. It
is a single-chip microcontroller with a Harvard architecture that includes a CPU, RAM, ROM,
and several peripherals. The 8051 microcontroller has a 40-pin dual in-line package (DIP) that
provides various inputs and outputs for communication with external devices.

8051 microcontroller is a 40 pin Dual Inline Package (DIP). These 40 pins serve different
functions like read, write, I/O operations, interrupts etc. 8051 has four I/O ports wherein each
port has 8 pins which can be configured as input or output depending upon the logic state of the
pins. Therefore, 32 out of these 40 pins are dedicated to I/O ports. The rest of the pins are
dedicated to VCC, GND, XTAL1, XTAL2, RST, ALE, EA’ and PSEN’. Pin diagram of 8051

5 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Description of the Pins :

 Pin 1 to Pin 8 (Port 1) – Pin 1 to Pin 8 are assigned to Port 1 for simple I/O operations. They
can be configured as input or output pins depending on the logic control i.e. if logic zero (0)
is applied to the I/O port it will act as an output pin and if logic one (1) is applied the pin will
act as an input pin. These pins are also referred to as P1.0 to P1.7 (where P1 indicates that it
is a pin in port 1 and the number after ‘.’ tells the pin number i.e. 0 indicates first pin of the
port. So, P1.0 means first pin of port 1, P1.1 means second pin of the port 1 and so on). These
pins are bidirectional pins.

 Pin 9 (RST) – Reset pin. It is an active-high, input pin. Therefore if the RST pin is high for a
minimum of 2 machine cycles, the microcontroller will reset i.e. it will close and terminate
all activities. It is often referred as “power-on-reset” pin because it is used to reset the
microcontroller to it’s initial values when power is on (high).

 Pin 10 to Pin 17 (Port 3) – Pin 10 to pin 17 are port 3 pins which are also referred to as P3.0
to P3.7. These pins are similar to port 1 and can be used as universal input or output pins.
These pins are bidirectional pins. These pins also have some additional functions which are
as follows:

6 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

 P3.0 (RXD) : 10th pin is RXD (serial data receive pin) which is for serial input. Through this
input signal microcontroller receives data for serial communication.

 P3.1 (TXD) : 11th pin is TXD (serial data transmit pin) which is serial output pin. Through
this output signal microcontroller transmits data for serial communication.

 P3.2 and P3.3 (INT0′, INT1′) : 12th and 13th pins are for External Hardware Interrupt 0
and Interrupt 1 respectively. When this interrupt is activated(i.e. when it is low), 8051 gets
interrupted in whatever it is doing and jumps to the vector value of the interrupt (0003H for
INT0 and 0013H for INT1) and starts performing Interrupt Service Routine (ISR) from that
vector location.

 P3.4 and P3.5 (T0 and T1) : 14th and 15th pin are for Timer 0 and Timer 1 external input.
They can be connected with 16 bit timer/counter.

 P3.6 (WR’) : 16th pin is for external memory write i.e. writing data to the external memory.
 P3.7 (RD’) : 17th pin is for external memory read i.e. reading data from external memory.
 Pin 18 and Pin 19 (XTAL2 And XTAL1) – These pins are connected to an external

oscillator which is generally a quartz crystal oscillator. They are used to provide an external
clock frequency of 4MHz to 30MHz.

 Pin 20 (GND) – This pin is connected to the ground. It has to be provided with 0V power
supply. Hence it is connected to the negative terminal of the power supply.

 Pin 21 to Pin 28 (Port 2) – Pin 21 to pin 28 are port 2 pins also referred to as P2.0 to P2.7.
When additional external memory is interfaced with the 8051 microcontroller, pins of port 2
act as higher-order address bytes. These pins are bidirectional.

 Pin 29 (PSEN) – PSEN stands for Program Store Enable. It is output, active-low pin. This is
used to read external memory. In 8031 based system where external ROM holds the program
code, this pin is connected to the OE pin of the ROM.

 Pin 30 (ALE/ PROG) – ALE stands for Address Latch Enable. It is input, active-high pin.
This pin is used to distinguish between memory chips when multiple memory chips are used.
It is also used to de-multiplex the multiplexed address and data signals available at port 0.
During flash programming i.e. Programming of EPROM, this pin acts as program pulse input
(PROG).

 Pin 31 (EA/ VPP) – EA stands for External Access input. It is used to enable/disable
external memory interfacing. In 8051, EA is connected to Vcc as it comes with on-chip ROM
to store programs. For other family members such as 8031 and 8032 in which there is no on-
chip ROM, the EA pin is connected to the GND.

 Pin 32 to Pin 39 (Port 0) – Pin 32 to pin 39 are port 0 pins also referred to as P0.0 to P0.7.
They are bidirectional input/output pins. They don’t have any internal pull-ups. Hence, 10 K?
pull-up registers are used as external pull-ups. Port 0 is also designated as AD0-AD7 because
8051 multiplexes address and data through port 0 to save pins.

 Pin 40 (VCC) – This pin provides power supply voltage i.e. +5 Volts to the circuit.

Uses of pin diagram of the 8051 microcontroller :

7 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

The pin diagram of the 8051 microcontroller is used for various purposes in embedded systems.
Some of the main uses of the pin diagram are:

1. Interfacing with external devices: The 8051 microcontroller has several input/output pins
that can be used for interfacing with external devices such as sensors, actuators, displays, and
communication modules. The pin diagram provides the information about the location of
these pins, their functionalities, and their electrical characteristics.

2. Programming the microcontroller: The 8051 microcontroller can be programmed using
various programming languages such as Assembly, C, and BASIC. The pin diagram provides
the information about the pins that are used for programming the microcontroller, such as the
PSEN pin and the ALE pin.

3. Debugging and testing: The pin diagram provides access to the internal signals of the
microcontroller, such as the address and data buses, which can be used for debugging and
testing the microcontroller. Special hardware tools such as logic analyzers and oscilloscopes
can be connected to the pins to monitor the signals and diagnose any issues in the system.

4. Expansion and customization: The pin diagram provides the flexibility to expand and
customize the functionality of the microcontroller by connecting external devices and
peripherals. For example, additional memory can be added by connecting external RAM or
ROM chips to the address and data buses.

1.2.8. Characteristics of 8051 Microcontroller
1. An 8-bit processor.
2. Data memory or RAM of 128 bytes.
3. Program memory or ROM of 4 KB.
4. 2 timers of 16 bit each.
5. 8-bit data bus.
6. 16-bit address bus.
7. Offers bit addressable format.
8. Special function registers and serial port.
9. 32 input/output lines.

1.3. 8051 Programming in Assembly Language
The assembly language is a low-level programming language used to write program code in
terms of mnemonics. Even though there are many high-level languages that are currently in
demand, assembly programming language is popularly used in many applications. It can be used
for direct hardware manipulations. It is also used to write the 8051 programming code efficiently
with less number of clock cycles by consuming less memory compared to the other high-level
languages.

1.3.1. 8051 Programming in Assembly Language

8 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

The assembly language is a fully hardware related programming language. The embedded
designers must have sufficient knowledge on hardware of particular processor or controllers
before writing the program. The assembly language is developed by mnemonics; therefore, users
cannot understand it easily to modify the program.

8051 Programming in Assembly Language

Assembly programming language is developed by various compilers and the “keiluvison” is best
suitable for microcontroller programming development.

Microcontrollers or processors can understand only binary language in the form of ‘0s or 1s’;
An assembler converts the assembly language to binary language, and then stores it in
the microcontroller memory to perform the specific task.

1.3.2. 8051 Microcontroller Architecture

The 8051 microcontroller is the CISC based Harvard architecture, and it has peripherals like 32
I/O, timers/counters, serial communication and memories. The microcontroller requires a
program to perform the operations that require a memory for saving and to read the functions.
The 8051 microcontroller consists of RAM and ROM memories to store instructions.

9 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

8051 Microcontroller Architecuture

A Register is the main part in the processors and microcontrollers which is contained in the
memory that provides a faster way of collecting and storing the data. The 8051 assembly
language programming is based on the memory registers. If we want to manipulate data to a
processor or controller by performing subtraction, addition, etc., we cannot do that directly in the
memory, but it needs registers to process and to store the data. Microcontrollers contain several
types of registers that can be classified according to their instructions or content that operate in
them.

1.3.3. 8051 Microcontroller Programs in Assembly Language

The assembly language is made up of elements which all are used to write the program
in sequential manner. Follow the given rules to write programming in assembly language.

1.3.3.1. Rules of Assembly Language

 The assembly code must be written in upper case letters
 The labels must be followed by a colon (label:)
 All symbols and labels must begin with a letter

10 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

 All comments are typed in lower case
 The last line of the program must be the END directive
The assembly language mnemonics are in the form of op-code, such as MOV, ADD, JMP, and
so on, which are used to perform the operations.

Op-code: The op-code is a single instruction that can be executed by the CPU. Here the op-code
is a MOV instruction.

Operands: The operands are a single piece of data that can be operated by the op-code.
Example, multiplication operation is performed by the operands that are multiplied by the
operand.

Syntax: MUL a,b;

1.3.4. The Elements of an Assembly Language Programming:

 Assembler Directives
 Instruction Set
 Addressing Modes

1.3.4.1. Assembler Directives:
The assembling directives give the directions to the CPU. The 8051 microcontroller consists of
various kinds of assembly directives to give the direction to the control unit. The most useful
directives are 8051 programming, such as:

 ORG
 DB
 EQU
 END

ORG(origin): This directive indicates the start of the program. This is used to set the register
address during assembly. For example; ORG 0000h tells the compiler all subsequent code
starting at address 0000h.
Syntax: ORG 0000h

11 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

(define byte): The define byte is used to allow a string of bytes. For example, print the
“EDGEFX” wherein each character is taken by the address and finally prints the “string” by the
DB directly with double quotes.

Syntax:
ORG 0000h
MOV a, #00h
————-
————-
DB”EDGEFX”

EQU (equivalent): The equivalent directive is
used to equate address of the variable.

Syntax:
reg equ,09h
—————–
—————–
MOV reg,#2h

END:The END directive is used to indicate the end of the program.
Syntax:
reg equ,09h
—————–
—————–
MOV reg,#2h
END

1.3.4.2. Embedded Systems - Addressing Modes

An addressing mode refers to how you are addressing a given memory location. There are five
different ways or five addressing modes to execute this instruction which are as follows −

 Immediate addressing mode

12 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

 Direct addressing mode
 Register direct addressing mode
 Register indirect addressing mode
 Indexed addressing mode

Immediate Addressing Mode

Let's begin with an example.

MOV A, #6AH

In general, we can write,

MOV A, #data

It is termed as immediate because 8-bit data is transferred immediately to the accumulator
(destination operand).

The above instruction and its execution. The opcode 74H is saved at 0202 address. The data
6AH is saved at 0203 address in the program memory. After reading the opcode 74H, the data at
the next program memory address is transferred to accumulator A (E0H is the address of
accumulator). Since the instruction is of 2-bytes and is executed in one cycle, the program
counter will be incremented by 2 and will point to 0204 of the program memory.

Note − The '#' symbol before 6AH indicates that the operand is a data (8 bit). In the absence of
'#', the hexadecimal number would be taken as an address.

13 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Direct Addressing Mode

This is another way of addressing an operand. Here, the address of the data (source data) is given
as an operand. Let’s take an example.

MOV A, 04H

The register bank#0 (4th register) has the address 04H. When the MOV instruction is executed,
the data stored in register 04H is moved to the accumulator. As the register 04H holds the data
1FH, 1FH is moved to the accumulator.

Note − We have not used '#' in direct addressing mode, unlike immediate mode. If we had used
'#', the data value 04H would have been transferred to the accumulator instead of 1FH.

Now, take a look at the following illustration. It shows how the instruction gets executed.

As shown in the above illustration, this is a 2-byte instruction which requires 1 cycle to
complete. The PC will be incremented by 2 and will point to 0204. The opcode for the
instruction MOV A, address is E5H. When the instruction at 0202 is executed (E5H), the
accumulator is made active and ready to receive data. Then the PC goes to the next address as
0203 and looks up the address of the location of 04H where the source data (to be transferred to
accumulator) is located. At 04H, the control finds the data 1F and transfers it to the accumulator
and hence the execution is completed.

14 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Register Direct Addressing Mode

In this addressing mode, we use the register name directly (as source operand). Let us try to
understand with the help of an example.

MOV A, R4

At a time, the registers can take values from R0 to R7. There are 32 such registers. In order to
use 32 registers with just 8 variables to address registers, register banks are used. There are 4
register banks named from 0 to 3. Each bank comprises of 8 registers named from R0 to R7.

At a time, a single register bank can be selected. Selection of a register bank is made possible
through a Special Function Register (SFR) named Processor Status Word (PSW). PSW is an
8-bit SFR where each bit can be programmed as required. Bits are designated from PSW.0 to
PSW.7. PSW.3 and PSW.4 are used to select register banks.

Now, take a look at the following illustration to get a clear understanding of how it works.

Opcode EC is used for MOV A, R4. The opcode is stored at the address 0202 and when it is
executed, the control goes directly to R4 of the respected register bank (that is selected in PSW).
If register bank #0 is selected, then the data from R4 of register bank #0 will be moved to the
accumulator. Here 2F is stored at 04H. 04H represents the address of R4 of register bank #0.

15 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Data (2F) movement is highlighted in bold. 2F is getting transferred to the accumulator from data
memory location 0C H and is shown as dotted line. 0CH is the address location of Register 4
(R4) of register bank #1. The instruction above is 1 byte and requires 1 cycle for complete
execution. What it means is, you can save program memory by using register direct addressing
mode.

Register Indirect Addressing Mode

In this addressing mode, the address of the data is stored in the register as operand.

MOV A, @R0

Here the value inside R0 is considered as an address, which holds the data to be transferred to the
accumulator. Example: If R0 has the value 20H, and data 2FH is stored at the address 20H, then
the value 2FH will get transferred to the accumulator after executing this instruction. See the
following illustration.

So the opcode for MOV A, @R0 is E6H. Assuming that the register bank #0 is selected, the R0
of register bank #0 holds the data 20H. Program control moves to 20H where it locates the data
2FH and it transfers 2FH to the accumulator. This is a 1-byte instruction and the program counter
increments by 1 and moves to 0203 of the program memory.

Note − Only R0 and R1 are allowed to form a register indirect addressing instruction. In other
words, the programmer can create an instruction either using @R0 or @R1. All register banks
are allowed.

16 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Indexed Addressing Mode

We will take two examples to understand the concept of indexed addressing mode. Take a look
at the following instructions −

MOVC A, @A+DPTR

and

MOVC A, @A+PC

where DPTR is the data pointer and PC is the program counter (both are 16-bit registers).
Consider the first example.

MOVC A, @A+DPTR

The source operand is @A+DPTR. It contains the source data from this location. Here we are
adding the contents of DPTR with the current content of the accumulator. This addition will give
a new address which is the address of the source data. The data pointed by this address is then
transferred to the accumulator.

The opcode is 93H. DPTR has the value 01FE, where 01 is located in DPH (higher 8 bits) and
FE is located in DPL (lower 8 bits). Accumulator has the value 02H. Then a 16-bit addition is
performed and 01FE H+02H results in 0200 H. Data at the location 0200H will get transferred to

17 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

the accumulator. The previous value inside the accumulator (02H) will be replaced with the new
data from 0200H. The new data in the accumulator is highlighted in the illustration.

This is a 1-byte instruction with 2 cycles needed for execution and the execution time required
for this instruction is high compared to previous instructions (which were all 1 cycle each).

The other example MOVC A, @A+PC works the same way as the above example. Instead of
adding DPTR with the accumulator, here the data inside the program counter (PC) is added with
the accumulator to obtain the target address.

1.3.4.3. Instruction Set

 In the sequence of instructions to be executed, it is often necessary to transfer program control to
a different location. There are many instructions in the 8051 to achieve this. This chapter covers
the control transfer instructions available in 8051 Assembly language. In the first section we
discuss instructions used for looping, as well as instructions for conditional and unconditional
jumps. In the second section we examine CALL instructions and their uses. In the third section,
time delay subroutines are described for both the traditional 8051 and its newer generation.

Looping in the 8051
Repeating a sequence of instructions a certain number of times is called a loop. The loop is one
of most widely used actions that any microprocessor performs. In the 8051, the loop action is
performed by the instruction “DJNZ reg, label”. In this instruction, the register is decremented; if
it is not zero, it jumps to the target address referred to by the label. Prior to the start of the loop
the register is loaded with the counter for the number of repetitions. Notice that in this instruction
both the register decrement and the decision to jump are combined into a single instruction.

In the program in Example, the R2 register is used as a counter. The counter is first set to 10. In
each iteration the instruction DJNZ decrements R2 and checks its value. If R2 is not zero, it
jumps to the target address associated with the label “AGAIN”. This looping action continues
until R2 becomes zero. After R2 becomes zero, it falls through the loop and executes the

18 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

instruction immediately below it, in this case the “MOV R5 , A” instruction. Notice in the DJNZ
instruction that the registers can be any of RO – R7. The counter can also be a RAM location

Loop inside a loop
As shown in Example the maximum count is 256. What happens if we want to repeat an action
more times than 256? To do that, we use a loop inside a loop, which is called a nested loop. In a
nested loop, we use two registers to hold the count.

Example
Write a program to (a) load the accumulator with the value 55H, and (b) complement the ACC
700 times.
Solution:
Since 700 is larger than 255 (the maximum capacity of any register), we use two registers to hold
the count. The following code shows how to use R2 and R3 for the count.

In this program, R2 is used to keep the inner loop count. In the instruction “DJNZ R2 , AGAIN”,
whenever R2 becomes 0 it falls through and “DJNZ R3 , NEXT” is executed. This instruction
forces the CPU to load R2 with the count 70 and the inner loop starts again. This process will
continue until R3 becomes zero and the outer loop is finished.

Other conditional jumps
Conditional jumps for the 8051 are summarized in Table 3-1. More details of each instruction are
provided in Appendix A. In Table 3-1, notice that some of the instructions, such as JZ (jump if A
= zero) and JC (jump if carry), jump only if a certain condition is met. Next we examine some
conditional jump instructions with examples.

JZ (jump if A = 0)

19 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

In this instruction the content of register A is checked. If it is zero, it jumps to the target
address. For example, look at the following code.

In this program,. if either RO or Rl is zero, it jumps to the label OVER. Notice that the JZ
instruction can be used only for register A. It can only check to see whether the accumulator is
zero, and it does not apply to any other register. More importantly, you don’t have to perform an
arithmetic instruction such as decrement to use the JNZ instruction. See Example 3-4.

Example

JNC (jump if no carry, jumps if CY = 0)
In this instruction, the carry flag bit in the flag (PSW) register is used to make the decision
whether to jump. In executing “JNC label”, the processor looks at the carry flag to see if it is

20 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

raised (CY =1). If it is not, the CPU starts to fetch and execute instructions from the address of
the label. If CY = 1, it will not jump but will execute the next instruction below JNC.
Note that there is also a “JC label” instruction. In the JC instruction, if CY = 1 it jumps to the
target address. We will give more examples of these instructions in the context of applications in
future chapters.
There are also JB (jump if bit is high) and JNB (jump if bit is low) instructions. These are
discussed in Chapters 4 and 8 when bit manipulation instructions are discussed.

All conditional jumps are short jumps
It must be noted that all conditional jumps are short jumps, meaning that the address of the target
must be within -128 to +127 bytes of the contents of the program counter (PC). This very
important concept is discussed at the end of this section.

Unconditional jump instructions
The unconditional jump is a jump in which control is transferred unconditionally to the target
location. In the 8051 there are two unconditional jumps: LJMP (long jump) and SJMP (short
jump). Each is discussed below.

LJMP (long jump)
LJMP is an unconditional long jump. It is a 3-byte instruction in which the first byte is the
opcode, and the second and third bytes represent the 16-bit address of the target location. The 2-
byte target address allows a jump to any memory location from 0000 to FFFFH.
Remember that although the program counter in the 8051 is 16-bit, thereby giving a ROM
address space of 64K bytes, not all 8051 family members have that much on-chip program
ROM. The original 8051 had only 4K bytes of on-chip ROM for program space; consequently,
every byte was precious. For this reason there is also an SJMP (short jump) instruction, which is
a 2-byte instruction as opposed to the 3-byte LJMP instruction. This can save some bytes of
memory in many applications where memory space is in short supply. SJMP is discussed next.

SJMP (short jump)
In this 2-byte instruction, the first byte is the opcode and the second byte is the relative address
of the target location. The relative address range of 00 – FFH is divided into forward and
backward jumps; that is, within -128 to +127 bytes of memory relative to the address of the
current PC (program counter). If the jump is forward, the target address can be within a space of
127 bytes from the current PC. If the target address is backward, the target address can be within
-128 bytes from the current PC. This is explained in detail next.

Calculating the short jump address
In addition to the SJMP instruction, all conditional jumps such as JNC, JZ, and DJNZ are also
short jumps due to the fact that they are all two-byte instructions. In these instructions the first
byte is the opcode and the second byte is the relative address. The target address is relative to the

21 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

value of the program counter. To calculate the target address, the second byte is added to the PC
of the instruction immediately below the jump.

Shifting Operators

The shift operators are used for sending and receiving the data efficiently. The
8051 microcontroller consist four shift operators:
 RR —> Rotate Right
 RRC —>Rotate Right through carry
 RL —> Rotate Left
 RLC —>Rotate Left through carry

Rotate Right (RR):
In this shifting operation, the MSB becomes LSB and all bits shift towards right side bit-by-bit,
serially.

Syntax:
MOV A, #25h
RR A

Rotate Left (RL):
In this shifting operation, the MSB becomes LSB and all bits shift towards Left side bit-by-bit,
serially.

Syntax:
MOV A, #25h
RL A

22 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

RRC Rotate Right through Carry:
In this shifting operation, the LSB moves to carry and the carry becomes MSB, and all the bits
are shift towards right side bit by bit position.

Syntax:
MOV A, #27h
RRC A

RLC Rotate Left through Carry:
In this shifting operation, the MSB moves to carry and the carry becomes LSB and all the bits
shift towards left side in a bit-by-bit position.

Syntax:
MOV A, #27h
RLC A

Basic Embedded C Programs:

The microcontroller programming differs for each type of operating system. There are many
operating systems such as Linux, Windows, RTOS and so on. However, RTOS has several
advantages for embedded system development. Some of the Assembly levels programming
examples are given below.

1.3.5. Example Program for LED blinking using with 8051 microcontroller:
 Number Displaying on 7-segment display using 8051 microcontroller
 Timer/Counter calculations and program using 8051 microcontroller
 Serial Communication calculations and program using 8051 microcontroller

LED programs with 8051 Microcontrller

1. WAP to toggle the PORT1 LEDs
ORG 0000H
TOGLE: MOV P1, #01 //move 00000001 to the p1 register//
CALL DELAY //execute the delay//
MOV A, P1 //move p1 value to the accumulator//
CPL A //complement A value //
MOV P1, A //move 11111110 to the port1 register//
CALL DELAY //execute the delay//
SJMP TOGLE
DELAY: MOV R5, #10H //load register R5 with 10//

23 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

TWO: MOV R6, #200 //load register R6 with 200//
ONE: MOV R7, #200 //load register R7 with 200//
DJNZ R7, $ //decrement R7 till it is zero//
DJNZ R6, ONE //decrement R7 till it is zero//
DJNZ R5, TWO //decrement R7 till it is zero//
RET //go back to the main program //
END

1.4. Programming Parallel port
1.4.1. 8051 Microcontroller port programming

There are four ports P0, P1, P2 and P3 each use 8 pins, making them 8-bit ports. All the ports upon
RESET are configured as output, ready to be used as output ports. To use any of these ports as an input
port, it must be programmed.

1.4.2. Pin configuration of 8051/8031 microcontroller.

24 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Pin configuration of 8951

Port 0: Port 0 occupies a total of 8 pins (pins 32-39) .It can be used for input or output. To use the pins of
port 0 as both input and output ports, each pin must be connected externally to a 10K ohm pull-up
resistor. This is due to the fact that P0 is an open drain, unlike P1, P2, and P3.Open drain is a term used
for MOS chips in the same way that open collector is used for TTL chips. With external pull-up resistors
connected upon reset, port 0 is configured as an output port. For example, the following code will
continuously send out to port 0 the alternating values 55H and AAH

MOV A,#55H
BACK: MOV P0,A
ACALL DELAY
CPL A
SJMP BACK

25 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Port 0 as Input : With resistors connected to port 0, in order to make it an input, the port must be
programmed by writing 1 to all the bits. In the following code, port 0 is configured first as an input port
by writing 1’s to it, and then data is received from the port and sent to P1.

8051 I/O Ports

MOV A,#0FFH ; A = FF hex
MOV P0,A ; make P0 an input port
BACK: MOV A,P0 ;get data from P0
MOV P1,A ;send it to port 1
SJMP BACK

Dual role of port 0: Port 0 is also designated as AD0-AD7, allowing it to be used for both address and
data. When connecting an 8051/31 to an external memory, port 0 provides both address and data. The
8051 multiplexes address and data through port 0 to save pins. ALE indicates if P0 has address or data.
When ALE = 0, it provides data D0-D7, but when ALE =1 it has address and data with the help of a
74LS373 latch.

Port 1: Port 1 occupies a total of 8 pins (pins 1 through 8). It can be used as input or output. In contrast to
port 0, this port does not need any pull-up resistors since it already has pull-up resistors internally. Upon
reset, Port 1 is configured as an output port. For example, the following code will continuously send out
to port1 the alternating values 55h & AAh

MOV A,#55H ; A = 55 hex
BACK: MOV P1,A ;send it to Port 1
ACALL DELAY ;call delay routine
CPL A ;make A=0
SJMP BACK

Port 1 as input: To make port1 an input port, it must programmed as such by writing 1 to all its bits. In
the following code port1 is configured first as an input port by writing 1’s to it, then data is received from
the port and saved in R7 ,R6 & R5.

26 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

MOV A,#0FFH ;A=FF HEX
MOV P1,A ;make P1 an input port by writing all 1’s to it
MOV A,P1 ;get data from P1
MOV R7,A ;save it in register R7
ACALL DELAY ;wait
MOV A,P1 ;get another data from P1
MOV R6,A ;save it in register R6
ACALL DELAY ;wait
MOV A,P1 ;get another data from P1
MOV R5,A ;save it in register R5

Port 2 : Port 2 occupies a total of 8 pins (pins 21- 28). It can be used as input or output. Just like P1, P2
does not need any pull-up resistors since it already has pull-up resistors internally. Upon reset,Port 2 is
configured as an output port. For example, the following code will send out continuously to port 2 the
alternating values 55h and AAH. That is all the bits of port 2 toggle continuously.

MOV A,#55H ; A = 55 hex
BACK: MOV P2,A ;send it to Port 2
ACALL DELAY ;call delay routine
CPL A ;make A=0
SJMP BACK

Port 2 as input : To make port 2 an input, it must programme as such by writing 1 to all its bits. In the
following code, port 2 is configured first as an input port by writing 1’s to it. Then data is received from
that port and is sent to P1 continuously.

MOV A,#0FFH ;A=FF hex
MOV P2,A ;make P2 an input port by writing all 1’s to it
BACK: MOV A,P2 ;get data from P2
MOV P1,A ;send it to Port1
SJMP BACK ;keep doing that

Dual role of port 2 : In systems based on the 8751, 8951, and DS5000, P2 is used as simple I/O.
However, in 8031-based systems, port 2 must be used along with P0 to provide the 16-bit address for the
external memory. As shown in pin configuration 8051, port 2 is also designed as A8-A15, indicating the
dual function. Since an 8031 is capable of accessing 64K bytes of external memory, it needs a path for the
16 bits of the address. While P0 provides the lower 8 bits via A0-A7, it is the job of P2 to provide bits
A8-A15 of the address. In other words, when 8031 is connected to external memory, P2 is used for the
upper 8 bits of the 16 bit address, and it cannot be used for I/O.

Port 3 : Port 3 occupies a total of 8 pins, pins 10 through 17. It can be used as input or output. P3 does
not need any pull-up resistors, the same as P1 and P2 did not. Although port 3 is configured as an output
port upon reset. Port 3 has the additional function of providing some extremely important signals such as
interrupts. This information applies both 8051 and 8031 chips.

27 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Read-modify-write feature : The ports in the 8051 can be accessed by the read-modify-write technique.
This feature saves many lines of code by combining in a single instruction all three action of (1) reading
the port, (2) modifying it, and (3) writing to the port. The following code first places 01010101 (binary)
into port 1. Next, the instruction “XLR P1,#0FFH” performs an XOR logic operation on P1 with 1111
1111 (binary), and then writes the result back into P1.

MOV P1,#55H ;P1=01010101
AGAIN: XLR P1,#0FFH ;EX-OR P1 with 1111 1111
ACALL DELAY
SJMP AGAIN

1.4.3. Addition of two 8-bit numbers in 8051 Microcontroller Using Ports Introduction:
To perform addition of two 8-bit numbers using ports in 8051 microcontroller, we need

to connect the two 8-bit numbers to be added to two ports of the microcontroller. We can use any
two ports of the microcontroller, for example, P1 and P2.

The first step is to load the two numbers into two different ports. For example, we can
load the first number into port P1 and the second number into port P2. We can use the MOV
instruction to load the numbers into the ports.

Once the numbers are loaded into the ports, we can use the ADD instruction to add the
two numbers. The ADD instruction adds the contents of the accumulator and the specified
operand and stores the result in the accumulator. Since the two numbers are already loaded into
the ports, we can simply use the ADD instruction with the accumulator and the appropriate port.

After the addition is complete, we can retrieve the result from the accumulator and store
it in another port or memory location for further processing or display. 8051 microcontroller is a
microcontroller designed by Intel in 1981. It is an 8-bit microcontroller with 40 pins DIP (dual
inline package), 4kb of ROM storage and 128 bytes of RAM storage, 16-bit timers. It consists of
four parallel 8-bit ports, which are programmable as well as addressable as per the requirement.

Issues in Addition of two 8-bit numbers 8051 Microcontroller Using Ports :
There are several issues that can arise when performing addition of two 8-bit numbers in 8051
microcontroller using ports:
1. Overflow: If the result of the addition exceeds 8 bits, the carry flag (CY) in the program

status word (PSW) will be set. If this flag is not checked before storing the result, the result
may be incorrect.

2. Input validation: Before performing the addition, it is important to validate the input to
ensure that the numbers are within the range of 0 to 255. If the input is not validated, the
result may be incorrect.

28 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

3. Port initialization: The ports used for input and output must be properly initialized before
use. If the ports are not properly initialized, the data may not be transferred correctly.

4. Endianness: The order in which the bytes of the numbers are stored in memory can affect the
result of the addition. It is important to ensure that the bytes are stored in the correct order
before performing the addition.

5. Interrupts: If interrupts are enabled during the addition operation, the result may be affected.
It is important to disable interrupts during critical operations to ensure the correct result.

6. Timing: The timing of the addition operation can affect the result. It is important to ensure
that the necessary delays are added between instructions to ensure correct operation.

7. Code optimization: The code used to perform the addition should be optimized to ensure that
it uses the least number of instructions and takes the least amount of time. This is important
to avoid potential timing issues and to ensure that the microcontroller can perform other tasks
while the addition is being performed.

Problem: To write an assembly language program to add two 8 bit numbers in 8051
microcontroller using ports.
Example:

Block diagram:

29 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Algorithm:
 Initialize Ports P0 and P1 as input ports.
 Initialize Ports P2 and P3 as output ports.
 Initialize the R1 register.
 Move the contents from Port 0 to B register.
 Move the contents from Port 1 to A register.
 Add contents in A and B.
 If carry is present increment R1.
 Move contents in R1 to Port 2.
 Move the sum in step 6 to Port 3.

Program:
ORG 00H // Indicates starting address

MOV P0,#0FFH // Initializes P0 as input port
MOV P1,#0FFH // Initializes P1 as input port
MOV P2,#00H // Initializes P2 as output port
MOV P3,#00H // Initializes P3 as output port

L1:MOV R1, #00H // Initializes Register R1
MOV B,P0 // Moves content of P0 to B
MOV A,P1 // Moves content of P1 to A
CLR C // Clears carry flag
ADD A,B // Add the content of A and B and store result in A
JNC L2 // If carry is not set, jump to label L2

30 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

INC R1 // Increment Register R1 if carry present

L2: MOV P2, R1 // Moves the content from Register R1 to Port2
MOV P3,A // Moves the content from A to Port3
SJMP L1 // Jumps to label L1
END

Explanation:
 ORG 00H is the starting address of the program.
 Giving the values as #0FFH and #00H initializes the ports as input and output ports

respectively.
 R1 register is initialized to 0 so as to store any carry produced during the sum.
 MOV B, P0 moves the value present in P0 to the B register.
 MOV A, P1 moves the value present in P1 to Accumulator.
 ADD AB adds the values present in Accumulator and B register and stores the result in

Accumulator.
 JNC L2 refers to jump to label L2 if no carry is present by automatically checking whether

the carry bit is set or not.
 If the carry bit is set to increment register R1.
 MOV P2, R1, and MOV P3, A refers to moving the carry bit to P2 and result in Accumulator

to P3.

1.5. 8051 Timers
1.5.1. Introduction to 8051 Timers
8051 microcontrollers have two timers and counters which work on the clock
frequency. Timer/counter can be used for time delay generation, counting external events, etc.

8051 Clock

Every Timer needs a clock to work, and 8051 provides it from an external crystal which is the
main clock source for Timer. The internal circuitry in the 8051 microcontrollers provides a clock
source to the timers which is 1/12th of the frequency of crystal attached to the microcontroller,
also called Machine cycle frequency.

8051 Timer Clock

For example, suppose we have a crystal frequency of 11.0592 MHz then the microcontroller will
provide 1/12th i.e.

31 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Timer clock frequency= (Xtal Osc.frequency)/12 = (11.0592 MHz)/12 = 921.6 KHz
 period T= 1/(921.6 kHz)=1.085 μS

1.5.2. 8051 Timer
8051 has two timers Timer0 (T0) and Timer1 (T1), both are 16-bit wide. Since 8051 has 8-bit
architecture, each of these is accessed by two separate 8-bit registers as shown in the figure
below. These registers are used to load timer count.

8051 has a Timer Mode Register and Timer Control Register for selecting a mode of operation
and controlling purpose.
Let's see these registers,

1.5.2.1.TMOD register
TMOD is an 8-bit register used to set timer mode of timer0 and timer1.

Its lower 4 bits are used for Timer0 and the upper 4 bits are used for Timer1
Bit 7,3 – GATE:
 1 = Enable Timer/Counter only when the INT0/INT1 pin is high and TR0/TR1 is set.
 0 = Enable Timer/Counter when TR0/TR1 is set.
Bit 6,2 - C/ (Counter/Timer): Timer or Counter select bit
 1 = Use as Counter
 0 = Use as Timer

Bit 5:4 & 1:0 - M1:M0: Timer/Counter mode select bit
These are Timer/Counter mode select bit as per the below table

32 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

M1 M0 Mode Operation

0 0 0 (13-bit timer mode) 13-bit timer/counter, 8-bit of THx & 5-bit of TLx

0 1 1 (16-bit timer mode) 16-bit timer/counter, THx cascaded with TLx

1 0 2 (8-bit auto-reload mode)
8-bit timer/counter (auto-reload mode), TLx reload
with the value held by THx each time TLx overflow

1 1 3 (split timer mode)
Split the 16-bit timer into two 8-bit timers i.e. THx
and TLx like two 8-bit timer

1.5.2.2.TCON Register

TCON is an 8-bit control register and contains a timer and interrupt flags.
Bit 7 - TF1: Timer1 Overflow Flag
 1 = Timer1 overflow occurred (i.e. Timer1 goes to its max and roll over back to zero).
 0 = Timer1 overflow not occurred.
It is cleared through software. In the Timer1 overflow interrupt service routine, this bit will get
cleared automatically while exiting from ISR.

Bit 6 - TR1: Timer1 Run Control Bit
 1 = Timer1 start.
 0 = Timer1 stop.
It is set and cleared by software.

Bit 5 – TF0: Timer0 Overflow Flag
 1 = Timer0 overflow occurred (i.e. Timer0 goes to its max and roll over back to zero).
 0 = Timer0 overflow not occurred.
It is cleared through software. In the Timer0 overflow interrupt service routine, this bit will get
cleared automatically while exiting from ISR.

Bit 4 – TR0: Timer0 Run Control Bit
 1 = Timer0 start.
 0 = Timer0 stop.
It is set and cleared by software.

Bit 3 - IE1: External Interrupt1 Edge Flag
 1 = External interrupt1 occurred.
 0 = External interrupt1 Processed.
It is set and cleared by hardware.

33 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Bit 2 - IT1: External Interrupt1 Trigger Type Select Bit
 1 = Interrupt occurs on falling edge at INT1 pin.
 0 = Interrupt occur on a low level at the INT1 pin.

Bit 1 – IE0: External Interrupt0 Edge Flag
 1 = External interrupt0 occurred.
 0 = External interrupt0 Processed.
It is set and cleared by hardware.

Bit 0 – IT0: External Interrupt0 Trigger Type Select Bit
 1 = Interrupt occurs on falling edge at INT0 pin.
 0 = Interrupt occur on a low level at INT0 pin.

Let's see the timers modes

1.5.3. 8051 Timer Modes
Timers have their operation modes which are selected in the TMOD register using M0 & M1 bit
combinations.

Mode 0 (13-bit timer mode)

The Mode 0 operation is the 8-bit timer or counter with a 5-bit pre-scaler. So it is a 13-bit
timer/counter. It uses 5 bits of TL0 or TL1 and all of the 8-bits of TH0 or TH1.

In this example the Timer1is selected, in this case, every 32 (25)event for counter operations or
32 machine cycles for timer operation, the TH1 register will be incremented by 1. When the
TH1overflows from FFH to 00H, then the TF1 of TCON register will be high, and it stops the
timer/counter. So for an example, we can say that if the TH1 is holding F0H, and it is in timer
mode, then TF1will be high after 10H * 32 = 512 machine cycles.

MOVTMOD, #00H

MOVTH1, #0F0H

MOVIE, #88H

SETB TR1

34 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

In the above program, the Timer1 is configured as timer mode 0. In this case Gate = 0. Then the
TH1 will be loaded with F0H, then enable the Timer1 interrupt. At last set the TR1 of TCON
register, and start the timer.

 Mode1 (16-bit timer mode)

The Mode 1 operation is the 16-bit timer or counter. In the following diagram, we are using
Mode 1 for Timer0.

In this case every event for counter operations or machine cycles for timer operation, the TH0–
TL0 register-pair will be incremented by 1. When the register pair overflows from FFFFH to
0000H, then the TF0 of TCON register will be high, and it stops the timer/counter. So for an
example, we can say that if the TH0 – TL0 register pair is holding FFF0H, and it is in timer
mode, then TF0 will be high after 10H = 16 machine cycles. When the clock frequency is
12MHz, then the following instructions generate an interrupt 16 µs after Timer0 starts running.

MOVTMOD, #01H

MOVTL0, #0F0H

MOVTH0, #0FFH

MOVIE, #82H

SETB TR0

In the above program, the Timer0 is configured as timer mode 1. In this case Gate = 0. Then the
TL0 will be loaded with F0H and TH0 is loaded with FFH, then enable the Timer0 interrupt. At
last set the TR0 of TCON register, and start the timer.

Mode2 (8-bit auto-reload timer mode)

The Mode 2 operation is the 8-bit auto reload timer or counter. In the following diagram, we are
using Mode 2 for Timer1.

In this case every event for counter operations or machine cycles for timer operation, the
TL1register will be incremented by 1. When the register pair overflows from FFH to 00H, then
the TF1 of TCON register will be high, also theTL1 will be reloaded with the content of TH1
and starts the operation again.

35 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

So for an example, we can say that if the TH1 and TL1 register both are holding F0H and it is in
timer mode, then TF1 will be high after 10H= 16 machine cycles. When the clock frequency is
12MHz this happens after 16 µs, then the following instructions generate an interrupt once every
16 µs after Timer1 starts running.

MOVTMOD, #20H

MOVTL1, #0F0H

MOVTH1, #0F0H

MOVIE, #88H

SETBTR1

In the above program, the Timer1 is configured as timer mode 2. In this case Gate = 0. Then the
TL1 and TH1 are loaded with F0H. then enable the Timer1 interrupt. At last set the TR1 of
TCON register, and start the timer.

Mode 3 of Timer/Counter

Mode 3 is different for Timer0 and Timer1. When the Timer0 is working in mode 3, the TL0
will be used as an 8-bit timer/counter. It will be controlled by the standard Timer0 control bits,
T0 and INT0 inputs. The TH0 is used as an 8-bit timer but not the counter. This is controlled by
Timer1 Control bit TR1. When the TH0 overflows from FFH to 00H, then TF1 is set to 1. In the
following diagram, we can Timer0 in Mode 3.

36 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

When the Timer1 is working in Mode 3, it simply holds the count but does not run. When
Timer0 is in mode 3, the Timer1 is configured in one of the mode 0, 1 and 2. In this case, the
Timer1 cannot interrupt the microcontroller. When the TF1 is used by TH0 timer, the Timer1 is
used as Baud Rate Generator.

The meaning of gate bit in Timer0 and Timer1 for mode 3 is as follows

It controls the running of 8-bit timer/counter TL0 as like Mode 0, 1, or 2. The running of TH0 is
controlled by TR1 bit only. So the gate bit in this mode for Timer0 has no specific role.

The mode 3 is present for applications requiring an extra 8-bit timer/counter. In Mode 3 of
Timer0, the 8051 has three timers. One 8-bit timer by TH0, another8-bit timer/counter by TL0,
and one 16-bit timer/counter by Timer1.

If the Timer0 is in mode3, and Timer1 is working on either 0, 1 or 2, then the gun control of the
Timer1 is activated when the gate bit is low or INT1 is high. The run control is deactivated
when the gate is high and INT1 is low.

1.6. Serial Port in 8051
There is a serial port in 8051 as mentioned in the pin diagram of 8051. 8051 has capability to
perform parallel as well as serial communication.

Parallel communication in 8051:
8051 can do 8-bit parallel communication as it has 8-bit ALU. For parallel communication, any
of the ports (P0 / P1 / P2 / P3) is used as a transmission channel between transmitter and
receiver.

Serial communication in 8051:
For serial communication there are two separate pins known as serial port of 8051.

37 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

TxD:
This pin basically acts as a transmitter (sending data), but in some other modes it doesn’t do the
job of transmitter. As it is serial communication, it sends bit by bit, the processor gives 8-bit at 1
time and those 8-bits are stored in a register named SBUF. Processor gives 1 byte of data that is
to be transmitted to SBUF and from there bit by bit is transferred , firstly LSB and then at last
MSB of the byte stored in SBUF. Once the total byte is transmitted, an interrupt is sent to the
processor by making some flag 1, so that the processor can send more data for transmission as
soon as the interrupt is received.

After every bit is transmitted, it requires delay for next bit transmission. So SBUF needs
triggering which is provided by

 Timer T1 (here T1 only needs to trigger, T1 does not require its overflow flag , mode 3
in timers). Here we can vary the delay, so data transmission delay can be varied
(frequency can be varied). It has a variable baud rate.

 There is an internal clock in 8051 (fosc / 12 = 1Mhz) , where delay cannot be varied, this
has fixed trigger delay. So frequency cannot be varied.It has a fixed baud rate.

Whenever SBUF transferred 8bit of data , Ti flag becomes 1. Whenever processors go to ISR(in
other interrupts the flag is auto cleared whenever processor goes to ISR) , in this the T i flag is
not auto cleared.

RxD:
This pin is basically for data reception . It received data bit by bit (as the transmitter sends LSB
first, it received LSB first). There is also a register SBUF which stores 8 received bits. Once the
8 bits are received, instead of sending an interrupt it firstly checks for errors (errors caused due
to transmission). Once there is no error in the received information R i flag is set and an interrupt
is sent to the processor. Processor goes to ISR (here also Ri is not cleared automatically).

38 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

How are SBUF in TxD and RxD different from each other ?
In SBUF of TxD, data is sent from processor to SBUF
In SBUF of RxD, data is sent from SBUF to the processor.
In this way both registers are differentiated by the processor.

There is a bit named SM2 ;
If SM2 = 1, then after SBUF of RxD is filled there will be error check And if not then there will
be no error check, directly an interrupt will be sent to the processor once SBUF in RxD is filled.

1.6.1. Modes in serial communication:
Mode 1 (8-bit UART communication):
UART stands for universal asynchronous receiver-transmitter. It means receiver and transmitter
are asynchronous which mean they don’t have a common clock. Normally 8 bits are transmitted
through the channel, but in this mode 10 bits are transmitted.

Here start and stop bits are system generated.

Significance of start and stop bit:
For eg: There is a transmitter and receiver. First C8H (1100 1000) data is transmitted and then
for 10min there is no transmission and after that again 8EH (1000 1110)is transmitted.
If there is no transmission, last bit transmitted would be remained in the channel

Receiver assumes blue data (when there was no communication) also as data.

39 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Here green is the start bit which is zero. And then the yellow colored is stop bit which is 1.
Whenever the first 0 bit comes, the receiver discards the start bit and accepts the next 8 bits and
stores in SBUF. Then the 9th bit is 1 , this bit is stored in RB8 (will be discussed later). Then
after this whenever the next zero bit comes (that zero bit is discarded and accepts the next 8 bits
and so on).

Stop bit is also used for error checking. Whenever SM2=1, It checks for error, If the RB8 = 1
(which means stop = 1 received, so the data is received correctly) and if RB8=0 (transmitter
generated stop as 1, but received as 0) so there is an error. If there is an error in received data, no
interrupt is sent to the processor.

This mode is variable baud rate, which means it is triggered by timer 1.
Mode 2 (9-bit UART communication):

The 9th bit is a programmable bit and it is given through TB8. Here 9th bit is 1 and it is used for
error checking and stop bit for triggering the data high (so start bit gets 0 and so on).

40 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Why the 9th bit , when the already stop bit exists?
Standard value of 9th bit is 1 and can be made 0.
Whenever SM2 = 1(receiver accepts only errorless data) and if 9th bit is 1, then only errorless
data is accepted or else discarded. Discarding data is a purpose.

Mode 3 (9-bit UART communication):
This mode is completely similar to mode 2, in mode 2 for triggering timer is used Whereas in
this mode internal clock is used for triggering. It has a fixed baud rate.

Mode 0 :
Totally there were four modes in serial port of 8051, but for better understanding mode 0 is
explained after three modes. In this mode data is transferred and received only through the RxD
channel. TxD is used for clocks. This is synchronous mode of communication.
Such a system is also known as half duplex mode. It has fixed baud rate.

SCON register:

SM0 and SM1:
These are used to select the mode.

SM0 SM1 Mode

0 0 0

0 1 1

1 0 2

1 1 3

SM2:
If SM2 = 1, error is checked Or else no error checking is done.
REN:
Receiver enable, If REN=1, receiver will receive the data or else not.
TB8:
This is the 9th bit to be transmitted.
RB8:
This is the 9th bit to be received.
Ti :
When 8-bits are received in SBUF , then Ri = 1, that would send an interrupt to the processor.

41 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Ri :
When 8-bits are sent from SBUF,and SBUF is empty , then Ri = 1, that would send an interrupt
to the processor. Before Ri=1, it checks for error based on SM2.

1.7. 8-Bit Interrupts

Interrupts are events detected by the MCU which cause normal program flow to be pre-empted.
Interrupts pause the current program and transfer control to a specified user-written firmware
routine called the Interrupt Service Routine (ISR). The ISR processes the interrupt event, then
resumes normal program flow.

1.7.1. Overview of Interrupt Process
Program MCU to react to interrupts
The MCU must be programmed to enable interrupts to occur. Setting the Global Interrupt Enable
(GIE) and, in many cases, the Peripheral Interrupt Enable (PEIE), enables the MCU to receive
interrupts. GIE and PEIE are located in the Interrupt Control (INTCON) special function
register.

Enable interrupts from selected peripherals
Each peripheral on the MCU has an individual enable bit. A peripheral's individual interrupt
enable bit must be set, in addition to GIE/PEIE, before the peripheral can generate an interrupt.
The individual interrupt enable bits are located in INTCON, PIE1, PIE2, and PIE3.

Peripheral asserts an interrupt request
When a peripheral reaches a state where program intervention is needed, the peripheral sets an
Interrupt Request Flag (xxIF). These interrupt flags are set regardless of the status of the GIE,
PEIE, and individual interrupt enable bits. The interrupt flags are located in INTCON, PIR1,
PIR2, and PIR3.
The interrupt request flags are latched high when set and must be cleared by the user-written
ISR.

Interrupt occurs
When an interrupt request flag is set and the interrupt is properly enabled, the interrupt process
begins:

1. Global Interrupts are disabled by clearing GIE to 0.
2. The current program context is saved to the shadow registers.
3. The value of the Program Counter is stored on the return stack.
4. Program control is transferred to the interrupt vector at address 04h.

ISR runs
The ISR is a function written by the user and placed at address 04h. The ISR does the following:

42 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

1. Checks the interrupt-enabled peripherals for the source of the interrupt request.
2. Performs the necessary peripheral tasks.
3. Clears the appropriate interrupt request flag.
4. Executes the Return From Interrupt instruction (RETFIE) as the final ISR instruction.

Control is returned to the Main program
When RETFIE is executed:

1. Global Interrupts are enabled (GIE=1).
2. The program context is restored from the Shadow registers.
3. The return address from the stack is loaded into the Program Counter.
4. Execution resumes from point at which it was interrupted.

1.7.2. Registers Used to Process Interrupts
Interrupt Control Register
INTCON register

 GIE - Global Interrupt Enable

 PEIE - Peripheral Interrupt Enable

 TMR0IE - Timer0 Interrupt Enable

 INTE - External Interrupt Enable

 IOCIE - Interrupt on Change Enable

 TMR0IF - Timer0 Interrupt flag

 INTF - External Interrupt flag

 IOCIF - Interrupt on Change flag

INTCON contains global and peripheral interrupt enable flags as well as the individual interrupt
request flags and interrupt enable flags for three of the PIC16F1xxxx interrupts.
Interrupt Enable Registers
PIE1 register

 TMR1GIE - Timer1 Gate Interrupt Enable

 ADIE - Analog-to-Digital Converter (ADC) Interrupt Enable

 RCIE - Universal Synchronous Asynchronous Receiver Tranmsitter (USART) Receive
Interrupt Enable

 TXIE - USART Transmit Interrupt Enable

 SSPIE - Synchronous Serial Port (MSSP) Interrupt Enable

 CCP1IE - CCP1 Interrupt Enable

43 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

https://microchipdeveloper.com/local--files/8bit:emr-interrupts/intcon-reg.png
https://microchipdeveloper.com/local--files/8bit:emr-interrupts/pie1-reg.png

lOMoARcPSD|26885763

 TMR2IE - Timer2 Interrupt Enable

 TMR1IE - Timer1 Interrupt Enable

PIE2 register

 OSFIE - Oscillator Fail Interrupt Enable

 C2IE - Comparator C2 Interrupt Enable

 C1IE - Comparator C1 Interrupt Enable

 EEIE - EEPROM Write Completion Interrupt Enable

 BCLIE - MSSP Bus Collision Interrupt Enable

 LCDIE - LCD Module Interrupt Enable

--- - Unimplemented, read as 0

 CCP2IE - CCP2 Interrupt Enable

PIE3 register

--- - Unimplemented read as 0

 CCP5IE - CCP5 Interrupt Enable

 CCP4IE - CCP4 Interrupt Enable

 CCP3IE - CCP3 Interrupt Enable

 TMR6IE - Timer6 Interrupt Enable

--- - Unimplemented, read as 0

 TMR4IE - Timer4 Interrupt Enable

--- - Unimplemented, read as 0

PIE1, PIE2, and PIE3 contain the individual interrupt enable flags for the MCU's peripherals.

Interrupt Request Registers
PIR1 register

 TMR1GIF - Timer1 Gate Interrupt Flag

 ADIF - ADC Interrupt Flag

 RCIF - USART Receive Interrupt Flag

 TXIF - USART Transmit Interrupt Flag

 SSPIF - MSSP Interrupt Flag

 CCP1IF - CCP1 Interrupt Flag

 TMR2IF - Timer2 Interrupt Flag

 TMR1IF - Timer1 Interrupt Flag

44 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

https://microchipdeveloper.com/local--files/8bit:emr-interrupts/pie2-reg.png
https://microchipdeveloper.com/local--files/8bit:emr-interrupts/pie3-reg.png
https://microchipdeveloper.com/local--files/8bit:emr-interrupts/pir1-reg.png

lOMoARcPSD|26885763

PIR2 register

 OSFIF - Oscillator Fail Interrupt Flag

 C2IF - Comparator C2 Interrupt Flag

 C1IF - Comparator C1 Interrupt Flag

 EEIF - EEPROM Write Completion Interrupt Flag

 BCLIF - MSSP Bus Collision Interrupt Flag

 LCDIF - LCD Module Interrupt Flag

--- - Unimplemented, read as 0

 CCP2IF - CCP2 Interrupt Flag

PIR3 register

--- - Unimplemented, read as 0

 CCP5IF - CCP5 Interrupt Flag

 CCP4IF - CCP4 Interrupt Flag

 CCP3IF - CCP3 Interrupt Flag

 TMR6IF - Timer6 Interrupt Flag

--- - Unimplemented, read as 0

 TMR4IF - Timer4 Interrupt Flag

--- - Unimplemented, read as 0

PIR1, PIR2, and PIR3 contain the individual interrupt request flags for the MCU's peripherals.

OPTION_REG
OPTION_REG

The INTEDG flag in OPTION_REG is used to set a rising or falling edge on the INT pin as the
trigger for an INTE interrupt.
Enabling Interrupts
Core Interrupts
Three interrupt sources (Timer0, External Interrupt, and Interrupt on Change) have interrupt
enable bits located in INTCON. These interrupts are referred to as core interrupts.

45 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

https://microchipdeveloper.com/local--files/8bit:emr-interrupts/pir2-reg.png
https://microchipdeveloper.com/local--files/8bit:emr-interrupts/pir3-reg.png
https://microchipdeveloper.com/local--files/8bit:emr-interrupts/option-reg.png

lOMoARcPSD|26885763

46 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

https://microchipdeveloper.com/local--files/8bit:emr-interrupts/core-enable-reg.png

lOMoARcPSD|26885763

UNIT II

EMBEDDED C PROGRAMMING

 Memory And I/O Devices Interfacing

 Programming Embedded Systems in C

 Need For RTOS

 Multiple Tasks and Processes

 Context Switching

 Priority Based Scheduling Policies

47 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

2.1. Memory and I/O Interfacing
Several memory chips and I/O devices are connected to a microprocessor. The following figure
shows a schematic diagram to interface memory chips and I/O devices to a microprocessor.

2.1.1. Memory Interfacing
When we are executing any instruction, the address of memory location or an I/O device is sent
out by the microprocessor. The corresponding memory chip or I/O device is selected by a
decoding circuit.
Memory requires some signals to read from and write to registers and microprocessor transmits
some signals for reading or writing data.
The interfacing process includes matching the memory requirements with the microprocessor
signals. Therefore, the interfacing circuit should be designed in such a way that it matches the
memory signal requirements with the microprocessor's signals.

2.1.2. I/O interfacing
As we know, keyboard and displays are used as communication channel with outside world.
Therefore, it is necessary that we interface keyboard and displays with the microprocessor. This
is called I/O interfacing. For this type of interfacing, we use latches and buffers for interfacing
the keyboards and displays with the microprocessor.
But the main drawback of this interfacing is that the microprocessor can perform only one
function.

48 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

8051 Microcontroller Memory Organization

In the 8051 Microcontroller, we have seen the 8051 Microcontroller Introduction and Basics, Pin
Diagram, Pin Description and the Architecture overview. we will continue exploring 8051
Microcontroller by understanding the 8051 Microcontroller Memory Organization, Program
Memory (ROM), Data Memory (RAM), External Memory.

Differences between microprocessor and microcontroller
 The main difference can be stated as on-chip memory i.e., a Microcontroller has both Program
Memory (ROM) and Data Memory (RAM) on the same chip (IC), whereas a Microprocessor has
to be externally interfacing with the memory modules.

Hence, it is clear that the memory is an important part of the 8051 Microcontroller Architecture
(for that matter, any Microcontroller). So, it is important for us to understand the 8051
Microcontroller Memory Organization i.e., how memory is organized, how the processor
accesses each memory and how to interface external memory with 8051 Microcontroller.

Before going in to the details of the 8051 Microcontroller Memory Organization, we will first
see a little bit about the Computer Architecture and then proceed with memory organization of
8051 Microcontroller.

1.2.3. Types of Computer Architecture
Basically, Microprocessors or Microcontrollers are classified based on the two types of
Computer Architecture: Von Neumann Architecture and Harvard Architecture.

Von Neumann Architecture
Von Neumann Architecture or Princeton Architecture is a Computer Architecture, where the
Program i.e., the Instructions and the Data are stored in a single memory. Since the Instruction
Memory and the Data Memory are the same, the Processor or CPU cannot access both
Instructions and Data at the same time as they use a single bus. This type of architecture has
severe limitations to the performance of the system as it creates a bottleneck while accessing the
memory.

49 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Harvard Architecture
Harvard Architecture, in contrast to Von Neumann Architecture, uses separate memory for
Instruction (Program) and Data. Since the Instruction Memory and Data Memory are separate in
a Harvard Architecture, their signal paths i.e., buses are also different and hence, the CPU can
access both Instructions and Data at the same time.
Almost all Microcontrollers, including 8051 Microcontroller implement Harvard Architecture.

1.2.4. 8051 Microcontroller Memory Organization

The 8051 Microcontroller Memory is separated in Program Memory (ROM) and Data Memory
(RAM). The Program Memory of the 8051 Microcontroller is used for storing the program to be
executed i.e., instructions. The Data Memory on the other hand, is used for storing temporary
variable data and intermediate results.

8051 Microcontroller has both Internal ROM and Internal RAM. If the internal memory is
inadequate, you can add external memory using suitable circuits.

1.2.4.1. Program Memory (ROM) of 8051 Microcontroller

50 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

In 8051 Microcontroller, the code or instructions to be executed are stored in the Program
Memory, which is also called as the ROM of the Microcontroller. The original 8051
Microcontroller by Intel has 4KB of internal ROM.

Some variants of 8051 like the 8031 and 8032 series doesn’t have any internal ROM (Program
Memory) and must be interfaced with external Program Memory with instructions loaded in it.

Almost all modern 8051 Microcontrollers, like 8052 Series, have 8KB of Internal Program
Memory (ROM) in the form of Flash Memory (ROM) and provide the option of reprogramming
the memory.

In case of 4KB of Internal ROM, the address space is 0000H to 0FFFH. If the address space i.e.,
the program addresses exceed this value, then the CPU will automatically fetch the code from the
external Program Memory.

For this, the External Access Pin (EA Pin) must be pulled HIGH i.e., when the EA Pin is high,
the CPU first fetches instructions from the Internal Program Memory in the address range of
0000H to 0FFFFH and if the memory addresses exceed the limit, then the instructions are
fetched from the external ROM in the address range of 1000H to FFFFH.

51 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

There is another way to fetch the instructions: ignore the Internal ROM and fetch all the
instructions only from the External Program Memory (External ROM). For this scenario, the EA
Pin must be connected to GND. In this case, the memory addresses of the external ROM will be
from 0000H to FFFFH.

1.2.4.2. Data Memory (RAM) of 8051 Microcontroller
The Data Memory or RAM of the 8051 Microcontroller stores temporary data and intermediate
results that are generated and used during the normal operation of the microcontroller. Original
Intel’s 8051 Microcontroller had 128B of internal RAM.

52 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

 But
almost all modern variants of 8051 Microcontroller have 256B of RAM. In this 256B, the first
128B i.e., memory addresses from 00H to 7FH is divided in to Working Registers (organized as
Register Banks), Bit – Addressable Area and General Purpose RAM (also known as Scratchpad
area).
In the first 128B of RAM (from 00H to 7FH), the first 32B i.e., memory from addresses 00H to
1FH consists of 32 Working Registers that are organized as four banks with 8 Registers in each
Bank.

The 4 banks are named as Bank0, Bank1, Bank2 and Bank3. Each Bank consists of 8 registers
named as R0 – R7. Each Register can be addressed in two ways: either by name or by address.
To address the register by name, first the corresponding Bank must be selected. In order to select
the bank, we have to use the RS0 and RS1 bits of the Program Status Word (PSW) Register (RS0
and RS1 are 3rd and 4th bits in the PSW Register).

When addressing the Register using its address i.e., 12H for example, the corresponding Bank
may or may not be selected. (12H corresponds to R2 in Bank2).

The next 16B of the RAM i.e., from 20H to 2FH are Bit – Addressable memory locations. There
are totally 128 bits that can be addressed individually using 00H to 7FH or the entire byte can be
addressed as 20H to 2FH.

53 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

1.2.5. Interfacing External Memory with 8051 Microcontroller
It is always good to have an option to expand the capabilities of a Microcontroller, whether it is
in terms of Memory or IO or anything else. Such expansion will be useful to avoid design
throttling. We have seen that a typical 8051 Microcontroller has 4KB of ROM and 128B of
RAM (most modern 8051 Microcontroller variants have 8K ROM and 256B of RAM).

The designer of an 8051 Microcontroller based system is not limited to the internal RAM and
ROM present in the 8051 Microcontroller. There is a provision of connecting both external RAM
and ROM i.e., Data Memory and Program.

The reason for interfacing external Program Memory or ROM is that complex programs written
in high – level languages often tend to be larger and occupy more memory.
Another important reason is that chips like 8031 or 8032, which doesn’t have any internal ROM,
have to be interfaced with external ROM.

A maximum of 64KB of Program Memory (ROM) and Data Memory (RAM) each can be
interface with the 8051 Microcontroller.

The following image shows the block diagram of interfacing 64KB of External RAM and 64KB
of External ROM with the 8051 Microcontroller.

An important point to remember when interfacing external memory with 8051 Microcontroller is
that Port 0 (P0) cannot be used as an IO Port as it will be used for multiplexed address and data
bus (A0 – A7 and D0 – D7). Not always, but Port 2 may be used as higher byte of the address
bus.

54 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

2.2. Embedded C Programming with Keil Language
Embedded C is most popular programming language in software field for developing electronic
gadgets. Each processor used in electronic system is associated with embedded software.

Embedded C programming plays a key role in performing specific function by the processor. In
day-to-day life we used many electronic devices such as mobile phone, washing machine, digital
camera, etc. These all device working is based on microcontroller that are programmed by
embedded C.

In embedded system programming C code is preferred over other language. Due to the following
reasons:

o Easy to understand
o High Reliability
o Portability
o Scalability
Let's see the block diagram representation of embedded system programming:

2.2.1. Embedded System Programming:

Basic Declaration
Let's see the block diagram of Embedded C Programming development:

55 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Function is a collection of statements that is used for performing a specific task and a collection
of one or more functions is called a programming language. Every language is consisting of
basic elements and grammatical rules. The C language programming is designed for function
with variables, character set, data types, keywords, expression and so on are used for writing a C
program.

The extension in C language is known as embedded C programming language. As compared to
above the embedded programming in C is also have some additional features like data types,
keywords and header file etc is represented by

#include<microcontroller name.h>

Basic Embedded C Programming Steps
Let's see the block diagram representation of Embedded C Programming Steps:

The microcontroller programming is different for each type of operating system. Even though
there are many operating system are exist such as Windows, Linux, RTOS, etc but RTOS has
several advantage for embedded system development.

2.2.2. Basics of Embedded C Program

56 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Embedded C is one of the most popular and most commonly used Programming Languages in
the development of Embedded Systems. So, we will see some of the Basics of Embedded C
Program and the Programming Structure of Embedded C.

2.2.2.1. What is an Embedded System?
An Embedded System is a combination of Hardware and Software. My desktop computer also
has hardware and software. Does that mean a desktop computer is also an Embedded System?
NO. A desktop computer is considered a general purpose system as it can do many different
tasks that too simultaneously. Some common tasks are playing videos, working on office suites,
editing images (or videos), browsing the web, etc.

An Embedded System is more of an application oriented system i.e. it is dedicated to perform a
single task (or a limited number of tasks, but all working for a single main aim).

An example for embedded system, which we use daily, is a Wireless Router. In order to get
wireless internet connectivity on our mobile phones and laptops, we often use routers. The task
of a wireless router is to take the signal from a cable and transmit it wirelessly. And take wireless
data from the device (like a mobile) and send it through the cable.
We use washing machines almost daily but wouldn’t get the idea that it is an embedded system
consisting of a Processor (and other hardware as well) and software.

It takes some inputs from the user like wash cycle, type of clothes, extra soaking and rinsing,
spin rpm, etc., performs the necessary actions as per the instructions and finishes washing and
drying the clothes. If no new instructions are given for the next wash, then the washing machines
repeats the same set of tasks as the previous wash.

Embedded Systems can not only be stand-alone devices like Washing Machines but also be a
part of a much larger system. An example for this is a Car. A modern day Car has several

57 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

individual embedded systems that perform their specific tasks with the aim of making a smooth
and safe journey.

Some of the embedded systems in a Car are Anti-lock Braking System (ABS), Temperature
Monitoring System, Automatic Climate Control, Tire Pressure Monitoring System, Engine Oil
Level Monitor, etc.

2.2.3. Programming Embedded Systems
As mentioned earlier, Embedded Systems consists of both Hardware and Software. If we
consider a simple Embedded System, the main Hardware Module is the Processor. The Processor
is the heart of the Embedded System and it can be anything like a Microprocessor,
Microcontroller, DSP, CPLD (Complex Programmable Logic Device) or an FPGA (Field
Programmable Gated Array).

All these devices have one thing in common: they are programmable i.e., we can write a program
(which is the software part of the Embedded System) to define how the device actually works.

Embedded Software or Program allow Hardware to monitor external events (Inputs / Sensors)
and control external devices (Outputs) accordingly. During this process, the program for an
Embedded System may have to directly manipulate the internal architecture of the Embedded
Hardware (usually the processor) such as Timers, Serial Communications Interface, Interrupt
Handling, and I/O Ports etc.

From the above statement, it is clear that the Software part of an Embedded System is equally
important as the Hardware part. There is no point in having advanced Hardware Components
with poorly written programs (Software).

There are many programming languages that are used for Embedded Systems like Assembly
(low-level Programming Language), C, C++, JAVA (high-level programming languages), Visual
Basic, JAVA Script (Application level Programming Languages), etc.

In the process of making a better embedded system, the programming of the system plays a vital
role and hence, the selection of the Programming Language is very important.

2.2.4. Factors for Selecting the Programming Language
The following are few factors that are to be considered while selecting the Programming
Language for the development of Embedded Systems.

 Size: The memory that the program occupies is very important as Embedded Processors
like Microcontrollers have a very limited amount of ROM (Program Memory).

58 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

 Speed: The programs must be very fast i.e., they must run as fast as possible. The
hardware should not be slowed down due to a slow running software.

 Portability: The same program can be compiled for different processors.
 Ease of Implementation
 Ease of Maintenance
 Readability

Earlier Embedded Systems were developed mainly using Assembly Language. Even though
Assembly Language is closest to the actual machine code instructions and produces small size
hex files, the lack of portability and high amount of resources (time and man power) spent on
developing the code, made the Assembly Language difficult to work with.

There are other high-level programming languages that offered the above mentioned features but
none were close to C Programming Language. Some of the benefits of using Embedded C as the
main Programming Language:

 Significantly easy to write code in C
 Consumes less time when compared to Assembly
 Maintenance of code (modifications and updates) is very simple
 Make use of library functions to reduce the complexity of the main code
 You can easily port the code to other architecture with very little modifications

2.2.5. Embedded System and Its Real Time Applications
 Embedded System and its Real Time Applications. Focuses on different topics like What

is an Embedded System, What are the Real Time Applications of Embedded Systems,
What is the Future of Embedded Systems, etc.

 The World is filled with Embedded Systems. The development of Microcontroller has
paved path for several Embedded System application and they play a significant role (and
will continue to play in the future as well) in our modern day life in one way or the other.

 Starting from consumer electronics like Digital Cameras, DVD Players to high end and
advanced systems like Flight Controllers and Missile Guidance Systems, embedded
systems are omnipresent and became an important part of our life.

 The way we live our life has been significantly improved with the utilization of
Embedded Systems and they will continue to be an integral part of our lives even
tomorrow.

 Another important concept we are hearing these days is Real – Time Systems. In a real
time system, Real Time Computing takes place, where a computer (an Embedded
System) must generate response to events within certain time limits.

 Before going in to the details of Real Time Applications of Embedded Systems, we will
first see what an Embedded System is, what is a real time system and what is real time
operating system.

59 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

2.2.6. Components of Embedded System
An Embedded System consists of four main components. They are the Processor
(Microprocessor or Microcontroller), Memory (RAM and ROM), Peripherals (Input and Output)
and Software (main program).

Processor: The heart of an Embedded System is the Processor. Based on the functionality of the
system, the processor can be anything like a General Purpose Processor, a single purpose
processor, an Application Specific Processor, a microcontroller or an FPGA.
Memory: Memory is another important part of an embedded system. It is divided in to RAM and
ROM. Memory in an Embedded System (ROM to be specific) stores the main program and
RAM stores the program variables and temporary data.

Peripherals: In order to communicate with the outside world or control the external devices, an
Embedded System must have Input and Output Peripherals. Some of these peripherals include
Input / Output Ports, Communication Interfaces, Timers and Counters, etc.

Software: All the hardware work according to the software (main program) written. Software
part of an Embedded System includes initialization of the system, controlling inputs and outputs,
error handling etc.

NOTE: Many Embedded Systems, usually small to medium scaled systems, generally consists
of a Microcontroller as the main processor. With the help of a Microcontroller, the processor,
memory and few peripherals will be integrated in to a single device.

2.2.7. Introduction to Embedded C Programming Language
Before going in to the details of Embedded C Programming Language and basics of Embedded
C Program, we will first talk about the C Programming Language.

60 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

The C Programming Language became so popular that it is used in a wide range of applications
ranging from Embedded Systems to Super Computers.

Embedded C Programming Language, which is widely used in the development of Embedded
Systems, is an extension of C Program Language. The Embedded C Programming Language
uses the same syntax and semantics of the C Programming Language like main function,
declaration of datatypes, defining variables, loops, functions, statements, etc.

The extension in Embedded C from standard C Programming Language include I/O Hardware
Addressing, fixed point arithmetic operations, accessing address spaces, etc.

2.2.7.1. Difference between C and Embedded C
There is actually not much difference between C and Embedded C apart from few extensions and
the operating environment. Both C and Embedded C programming are ISO Standards that have
almost same syntax, datatypes, functions, etc.

Embedded C is basically an extension to the Standard C Programming Language with additional
features like Addressing I/O, multiple memory addressing and fixed-point arithmetic, etc.

C Programming Language is generally used for developing desktop applications, whereas
Embedded C is used in the development of Microcontroller based applications.

2.2.7.2. Keywords in Embedded C
A Keyword is a special word with a special meaning to the compiler (a C Compiler for example,
is a software that is used to convert program written in C to Machine Code). For example, if we
take the Keil’s Cx51 Compiler (a popular C Compiler for 8051 based Microcontrollers) the
following are some of the keywords:

 bit
 sbit
 sfr
 small
 large

The following table lists out all the keywords associated with the Cx51 C Compiler.

at alien bdata

bit code compact

data far idata

interrupt large pdata

priority reentrant sbit

sfr sfr16 small

task using xdata

61 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Data Types in Embedded C
Data Types in C Programming Language (or any programming language for that matter) help us
declaring variables in the program. There are many data types in C Programming Language like
signed int, unsigned int, signed char, unsigned char, float, double, etc. In addition to these there
few more data types in Embedded C.
The following are the extra data types in Embedded C associated with the Keil’s Cx51 Compiler.

 bit
 sbit
 sfr
 sfr16

The following table shows some of the data types in Cx51 Compiler along with their ranges.
Data Type Bits (Bytes) Range
bit 1 0 or 1 (bit addressable part of RAM)
signed int 16 (2) -32768 to +32767
unsigned int 16 (2) 0 to 65535
signed char 8 (1) -128 to +127
unsigned 8 (1) 0 to 255
float 32 (4) ±1.175494E-38 to ±3.402823E+38
double 32 (4) ±1.175494E-38 to ±3.402823E+38
sbit 1 0 or 1 (bit addressable part of RAM)
sfr 8 (1) RAM Addresses (80h to FFh)
sfr16 16 (2) 0 to 65535

Basic Structure of an Embedded C Program (Template for Embedded C Program)
The next thing to understand in the Basics of Embedded C Program is the basic structure or
Template of Embedded C Program. This will help us in understanding how an Embedded C
Program is written.
The following part shows the basic structure of an Embedded C Program.

o Multiline Comments Denoted using /*……*/
o Single Line Comments Denoted using //
o Preprocessor Directives #include<…> or #define
o Global Variables Accessible anywhere in the program
o Function Declarations Declaring Function
o Main Function Main Function, execution begins here

{
Local Variables Variables confined to main function
Function Calls Calling other Functions

62 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Infinite Loop Like while(1) or for(;;)
Statements
….
….
}

o Function Definitions Defining the Functions
{
Local Variables Local Variables confined to this Function
Statements
….
….
}

Before seeing an example with respect to 8051 Microcontroller, we will first see the different
components in the above structure.

2.2.7.3.Different Components of an Embedded C Program
Comments: Comments are readable text that are written to help us (the reader) understand the
code easily. They are ignored by the compiler and do not take up any memory in the final code
(after compilation).

There are two ways you can write comments: one is the single line comments denoted by // and
the other is multiline comments denoted by /*….*/.

Preprocessor Directive: A Preprocessor Directive in Embedded C is an indication to the
compiler that it must look in to this file for symbols that are not defined in the program.

Global Variables: Global Variables, as the name suggests, are Global to the program i.e., they
can be accessed anywhere in the program.

Local Variables: Local Variables, in contrast to Global Variables, are confined to their
respective function.

Main Function: Every C or Embedded C Program has one main function, from where the
execution of the program begins.

Basic Embedded C Program
Till now, we have seen a few Basics of Embedded C Program like difference between C and
Embedded C, basic structure or template of an Embedded C Program and different components
of the Embedded C Program.

63 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Example of Embedded C Program
The following image shows the circuit diagram for the example circuit. It contains an 8051 based
Microcontroller (AT89S52) along with its basic components (like RESET Circuit, Oscillator
Circuit, etc.) and components for blinking LEDs (LEDs and Resistors).

In order to write the Embedded C Program for the above circuit, we will use the Keil C
Compiler. This compiler is a part of the Keil µVision IDE. The program is shown below.

#include<reg51.h> // Preprocessor Directive
void delay (int); // Delay Function Declaration
void main(void) // Main Function
{
P1 = 0x00;
/* Making PORT1 pins LOW. All the LEDs are OFF.
 * (P1 is PORT1, as defined in reg51.h) */

while(1) // infinite loop
{

P1 = 0xFF; // Making PORT1 Pins HIGH i.e. LEDs are ON.
delay(1000);

64 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

/* Calling Delay function with Function parameter as 1000.
 * This will cause a delay of 1000mS i.e. 1 second */
P1 = 0x00; // Making PORT1 Pins LOW i.e. LEDs are OFF.
delay(1000);

}
}

void delay (int d) // Delay Function Definition
{

unsigned int i=0; // Local Variable. Accessible only in this function.
 /* This following step is responsible for causing delay of 1000mS
 * (or as per the value entered while calling the delay function) */
for(; d>0; d–)
{
for(i=250; i>0; i – -);
for(i=248; i>0; i – -);
}

}

2.2.7.4. LED Blinking using 8051 Microcontroller
LED is a semiconductor device used in many electronic devices, mostly used for indication
purposes. It is used widely as indicator during test for checking the validity of results at different
stages.

It is very cheap and easily available in variety of shape, color and size. The LEDs are also used
in designing of message display boards and traffic control signal lights etc.

Consider the Proteus Software based simulation of LED blinking using 8051
Microcontroller is shown below:-

65 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

In above Proteus based simulation the LEDs are interfaced to the PORT0 of the 8051
microcontroller.

Let's see the Embedded C Program for generating the LED output sequence as shown
below:

00000001
00000010
00000100.....
.... And so on up to 10000000.

#include<reg51.h>
void main()
{
unsigned int k;
unsigned char l,b;
while(1)
{

P0=0x01;
b=P0;
for(l-0;l<3000;l++);
for(k=0;k<8;k++)
{

b=b<<1;

66 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

P0=b;
}

}
}

Consider the Embedded C Program for generating the LED output sequence as shown
below is:-
00000001
00000011
00000111.....
.... And so on up to 11111111.

#include<reg51.h>
void main()
{

unsigned int i;
unsigned char j,b;
while(1)
{

P0=0x01;
b=P0;
for(j-0;j<3000;j++);
for(j=0;j<8;j++)
{

bb=b<<1;
b=0x01;
P0=b;

}
}

}
Displaying Number on 7-Segment Display using 8051 Microcontroller
Electronic display used for displaying alphanumeric character is known as 7-Segment display it
is used in many systems for displaying the information.

It is constructed using eight LEDs which are connected in sequential way so as to display digits
from 0 to 9, when certain combinations of LEDs are switched on. It displays only one digit at a
time.

Consider the Proteus software based simulation of displaying number on 7-segment display
using 8051 microcontroller is:-

67 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Consider the program for displaying the number from '0 to F' on 7-segment display is:- 10s
#include<reg51.h>
sbit a= P3^0;
sbit x= P3^1;
sbit y= P3^2;
sbit z= P3^3;
void main()
{

unsigned char m[10]={0?40,0xF9,0?24,0?30,0?19,0?12,0?02,0xF8,0xE00,0?10};
unsigned int i,j;
a=x=y=z=1;
while(1)
{

for(i=0;i<10;i++)
{

P2=m[i];
for(j=0;j<60000;j++);

}
}

}
Consider the program for displaying numbers from '00 to 10' on a 7segment display is:-
#include<reg51.h>
sbit x= P3^0;
sbit y= P3^1;
void display1();

68 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

void display2();
void delay();
void main()
{

unsigned char m[10]={0?40,0xF9,0?24,0?30,0?19,0?12,0?02,0xF8,0xE00,0?10};
unsigned int i,j;
ds1=ds2=0;
while(1)
{

for(i=0,i<20;i++)
display1();
display2();

}
}
void display1()
{

x=1;
y=0;
P2=m[ds1];
delay();
x=1;
y=0;
P2=m[ds1];
delay();

}
void display2()
{

ds1++;
if(ds1>=10)
{

ds1=0;
ds2++;
if(ds2>=10)
{

ds1=ds2=0;
}

}
}
void delay()
{

unsigned int k;

69 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

for(k=0;k<30000;k++);
}

2.3. RTOS (Real-Time Operating Systems for Embedded Developers)
Embedded developers are often accustomed to bare metal programming or have reservations
towards using an RTOS. Here’s what they are, and why you should consider using one. Today’s
product development cycles are becoming increasingly complex. With available development
time shrinking yet the required feature set expanding, busy developers need to find ways of
doing more in less time. It can often make sense to use a real-time operating system (RTOS) to
gain efficiencies in task management and resource sharing.

2.3.1. What is an RTOS?
Simply put, an RTOS is a piece of software designed to efficiently manage the time of a central
processing unit (CPU). This is especially relevant for embedded systems when time is critical.

The key difference between an operating system such as Windows and an RTOS often found in
embedded systems is the response time to external events. An ordinary OS provides a non-
deterministic response to events with no guarantee with respect to when they will be processed,
albeit while trying to stay responsive. The user perceiving the OS to be responsive is more
important than handling underlying tasks. On the other hand, an RTOS' goal is fast and more
deterministic reaction.

Developers used to OS’s such as Windows or Linux will be quite familiar with the
characteristics of an embedded RTOS. They are designed to run in systems with limited memory,
and to operate indefinitely without the need to be reset.

Because an RTOS is designed to respond to events quickly and perform under heavy loads, it can
be slower at big tasks when compared to another OS.

2.3.2. RTOS scheduling
An RTOS is valued for how quickly it can respond and in that, the advanced scheduling
algorithm is the key component.

The time-criticality of embedded systems vary from soft-real time washing machine control
systems through hard-real time aircraft safety systems. In situations like the latter, the
fundamental demand to meet real-time requirements can only be made if the OS scheduler’s
behavior can be accurately predicted.

Many operating systems give the impression of executing multiple programs at once, but this
multi-tasking is something of an illusion. A single processor core can only run a single thread of
execution at any one time. An operating system’s scheduler decides which program, or thread, to

70 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

run when. By rapidly switching between threads, it provides the illusion of simultaneous
multitasking.

The flexibility of an RTOS scheduler enables a broad approach to process priorities, although an
RTOS is more commonly focused on a very narrow set of applications. An RTOS scheduler
should give minimal interrupt latency and minimal thread switching overhead. This is what
makes an RTOS so relevant for time-critical embedded systems.

2.3.3. The use of RTOS in embedded designs
Many embedded programmers shy away from using an RTOS because they suspect that it adds
too much complexity to their application, or it is simply unknown territory. An RTOS typically
requires anything up to 5% of the CPU’s resources to perform its duties. While there will always
be some resource penalties, an RTOS can make up for it in areas such as simplified determinism,
ease of use though HW abstraction, reduced development time and easier debugging.

Using an RTOS means you can run multiple tasks concurrently, bringing in the basic
connectivity, privacy, security, and so on as and when you need them. An RTOS allows you to
create an optimized solution for the specific requirements of your project.

2.3.4. Introducing the Zephyr RTOS
There are numerous RTOS solutions out there. Many developers in the Nordic world are focused
on low power embedded systems. If that’s you, we’d suggest you check out Zephyr, which is
well-suited for connectivity solutions in which ultra-low power is a requirement.
The modular Zephyr RTOS supports multiple architectures, so developers are able to easily tailor
a solution to meet their needs.

2.3.5. Real-time operating system (RTOS): Components, Types, Examples
Real-time operating system (RTOS) is an operating system intended to serve real time

application that process data as it comes in, mostly without buffer delay. The full form of RTOS
is Real time operating system.

In a RTOS, Processing time requirement are calculated in tenths of seconds increments of time.
It is time-bound system that can be defined as fixed time constraints. In this type of system,
processing must be done inside the specified constraints. Otherwise, the system will fail.

2.3.5. Why use an RTOS?
Here are important reasons for using RTOS:

 It offers priority-based scheduling, which allows you to separate analytical processing
from non-critical processing.

 The Real time OS provides API functions that allow cleaner and smaller application
code.

71 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

 Abstracting timing dependencies and the task-based design results in fewer
interdependencies between modules.

 RTOS offers modular task-based development, which allows modular task-based testing.
 The task-based API encourages modular development as a task, will typically have a

clearly defined role. It allows designers/teams to work independently on their parts of the
project.

 An RTOS is event-driven with no time wastage on processing time for the event which is
not occur

2.3.6. Terms used in RTOS
Here, are essential terms used in RTOS:

 Task – A set of related tasks that are jointly able to provide some system functionality.
 Job – A job is a small piece of work that can be assigned to a processor, and that may or

may not require resources.
 Release time of a job – It’s a time of a job at which job becomes ready for execution.
 Execution time of a job: It is time taken by job to finish its execution.
 Deadline of a job: It’s time by which a job should finish its execution.
 Processors: They are also known as active resources. They are important for the

execution of a job.
 Maximum It is the allowable response time of a job is called its relative deadline.
 Response time of a job: It is a length of time from the release time of a job when the

instant finishes.
 Absolute deadline: This is the relative deadline, which also includes its release time.

2.3.7. Components of RTOS

Components of Real Time Operating System

Here, are important Component of RTOS

72 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

The Scheduler: This component of RTOS tells that in which order, the tasks can be executed
which is generally based on the priority.

Symmetric Multiprocessing (SMP): It is a number of multiple different tasks that can be
handled by the RTOS so that parallel processing can be done.

Function Library: It is an important element of RTOS that acts as an interface that helps you to
connect kernel and application code. This application allows you to send the requests to the
Kernel using a function library so that the application can give the desired results.

Memory Management: this element is needed in the system to allocate memory to every
program, which is the most important element of the RTOS.

Fast dispatch latency: It is an interval between the termination of the task that can be identified
by the OS and the actual time taken by the thread, which is in the ready queue, that has started
processing.
User-defined data objects and classes: RTOS system makes use of programming languages
like C or C++, which should be organized according to their operation.

2.3.8. Features of RTOS
Here are important features of RTOS:

 Occupy very less memory
 Consume fewer resources
 Response times are highly predictable
 Unpredictable environment
 The Kernel saves the state of the interrupted task ad then determines which task it should

run next.
 The Kernel restores the state of the task and passes control of the CPU for that task

Factors for selecting an RTOS
Here, are essential factors that you need to consider for selecting RTOS:

 Performance: Performance is the most important factor required to be considered while
selecting for a RTOS.

 Middleware: if there is no middleware support in Real time operating system, then the
issue of time-taken integration of processes occurs.

 Error-free: RTOS systems are error-free. Therefore, there is no chance of getting an
error while performing the task.

 Embedded system usage: Programs of RTOS are of small size. So we widely use RTOS
for embedded systems.

 Maximum Consumption: we can achieve maximum Consumption with the help of
RTOS.

73 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

 Task shifting: Shifting time of the tasks is very less.
 Unique features: A good RTS should be capable, and it has some extra features like how

it operates to execute a command, efficient protection of the memory of the system, etc.
 24/7 performance: RTOS is ideal for those applications which require to run 24/7.

2.3.9. Difference between in GPOS and RTOS
Here are important differences between GPOS and RTOS:
General-Purpose Operating System
(GPOS)

Real-Time Operating System (RTOS)

It used for desktop PC and laptop. It is only applied to the embedded application.

Process-based Scheduling.
Time-based scheduling used like round-robin
scheduling.

Interrupt latency is not considered as
important as in RTOS.

Interrupt lag is minimal, which is measured in a few
microseconds.

No priority inversion mechanism is
present in the system.

The priority inversion mechanism is current. So it
can not modify by the system.

Kernel’s operation may or may not be
preempted.

Kernel’s operation can be preempted.

Priority inversion remain unnoticed No predictability guarantees

2.3.10. Types of Real Time Operating System (RTOS)

The real-time operating systems can be of 3 types –

RTOS

Hard Real
Time OS

RTOS

Soft Real
Time OS

RTOS

Firm Real-
time OS

 RTOS

1. Hard Real-Time operating system:
These operating systems guarantee that critical tasks be completed within a range of time.
For example, a robot is hired to weld a car body. If the robot welds too early or too late, the
car cannot be sold, so it is a hard real-time system that requires complete car welding by

74 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

robot hardly on the time., scientific experiments, medical imaging systems, industrial control
systems, weapon systems, robots, air traffic control systems, etc.

2. Soft real-time operating system:
This operating system provides some relaxation in the time limit.
For example – Multimedia systems, digital audio systems etc. Explicit, programmer-defined
and controlled processes are encountered in real-time systems. A separate process is changed
with handling a single external event. The process is activated upon occurrence of the related
event signalled by an interrupt.

Multitasking operation is accomplished by scheduling processes for execution independently
of each other. Each process is assigned a certain level of priority that corresponds to the
relative importance of the event that it services. The processor is allocated to the highest
priority processes. This type of schedule, called, priority-based preemptive scheduling is used
by real-time systems.

3. Firm Real-time Operating System:
RTOS of this type have to follow deadlines as well. In spite of its small impact, missing a
deadline can have unintended consequences, including a reduction in the quality of the
product. Example: Multimedia applications.

2.3.11. Advantages of Real Time Operating System (RTOS)
The advantages of real-time operating systems are as follows-
1. Maximum consumption

Maximum utilization of devices and systems. Thus more output from all the resources.

2. Task Shifting
Time assigned for shifting tasks in these systems is very less. For example, in older systems,
it takes about 10 microseconds. Shifting one task to another and in the latest systems, it takes
3 microseconds.

3. Focus On Application –
Focus on running applications and less importance to applications that are in the queue.

4. Real-Time Operating System In Embedded System –
Since the size of programs is small, RTOS can also be embedded systems like in transport
and others.

5. Error Free –
These types of systems are error-free.

75 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

6. Memory Allocation –
Memory allocation is best managed in these types of systems.

2.3.12. Disadvantages of Real Time Operating System (RTOS)
The disadvantages of real-time operating systems are as follows-

1. Limited Tasks –

Very few tasks run simultaneously, and their concentration is very less on few applications to
avoid errors.

2. Use Heavy System Resources –
Sometimes the system resources are not so good and they are expensive as well.

3. Complex Algorithms –
The algorithms are very complex and difficult for the designer to write on.

4. Device Driver And Interrupt signals –
It needs specific device drivers and interrupts signals to respond earliest to interrupts.

5. Thread Priority –
It is not good to set thread priority as these systems are very less prone to switching tasks.

6. Minimum Switching – RTOS performs minimal task switching.

2.3.13. Comparison of Regular and Real-Time operating systems:

Regular OS Real-Time OS (RTOS)

 Complex Simple

 Best effort Guaranteed response

 Fairness Strict Timing constraints

 Average Bandwidth Minimum and maximum limits

 Unknown components Components are known

 Unpredictable behavior Predictable behavior

 Plug and play RTOS is upgradeable

2.4. Multiple Tasks And Multiple Processes

2.4.1. Tasks and Processes

76 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

 Many (if not most) embedded computing systems do more than one thing that is, the
environment can cause mode changes that in turn cause the embedded system to behave quite
differently. For example, when designing a telephone answering machine,

 We can define recording a phone call and operating the user’s control panel as distinct tasks,
because they perform logically distinct operations and they must be performed at very different
rates. These different tasks are part of the system’s functionality, but that application-level
organization of functionality is often reflected in the structure of the program as well.

 A process is a single execution of a program. If we run the same program two different times,
we have created two different processes. Each process has its own state that includes not only its
registers but all of its memory. In some OSs, the memory management unit is used to keep each
process in a separate address space. In others, particularly lightweight RTOSs, the processes run
in the same address space. Processes that share the same address space are often called threads.
 As shown in Figure, this device is connected to serial ports on both ends. The input to the box is
an uncompressed stream of bytes. The box emits a compressed string of bits on the output serial
line, based on a predefined compression table. Such a box may be used, for example, to
compress data being sent to a modem.

 The program’s need to receive and send data at different rates for example, the program may
emit 2 bits for the first byte and then 7 bits for the second byte will obviously find itself reflected
in the structure of the code. It is easy to create irregular, ungainly code to solve this problem; a
more elegant solution is to create a queue of output bits, with those bits being removed from the
queue and sent to the serial port in 8-bit sets.

But beyond the need to create a clean data structure that simplifies the control structure of the
code, we must also ensure that we process the inputs and outputs at the proper rates. For
example, if we spend too much time in packaging and emitting output characters, we may drop
an input character. Solving timing problems is a more challenging problem.

The text compression box provides a simple example of rate control problems. A control panel
on a machine provides an example of a different type of rate control problem,
the asynchronous input.

77 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

The control panel of the compression box may, for example, include a compression mode button
that disables or enables compression, so that the input text is passed through unchanged when
compression is disabled. We certainly do not know when the user will push the compression
mode button the button may be depressed asynchronously relative to the arrival of characters for
compression.
2.4.2. Multirate Systems
 Implementing code that satisfies timing requirements is even more complex when multiple rates
of computation must be handled. Multirate embedded computing systems are very common,
including automobile engines, printers, and cell phones. In all these systems, certain operations
must be executed periodically, and each operation is executed at its own rate.

2.4.3. Timing Requirements on Processes
 Processes can have several different types of timing requirements imposed on them by the
application. The timing requirements on a set of processes strongly influence the type of
scheduling that is appropriate. A scheduling policy must define the timing requirements that it
uses to determine whether a schedule is valid. Before studying scheduling proper, we outline the
types of process timing requirements that are useful in embedded system design.

Figure illustrates different ways in which we can define two important requirements on
processes: release time and deadline.
 The release time is the time at which the process becomes ready to execute; this is not
necessarily the time at which it actually takes control of the CPU and starts to run. An aperiodic

78 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

process is by definition initiated by an event, such as external data arriving or data computed by
another process.

 The release time is generally measured from that event, although the system may want to make
the process ready at some interval after the event itself. For a periodically executed process, there
are two common possibilities.

 In simpler systems, the process may become ready at the beginning of the period. More
sophisticated systems, such as those with data dependencies between processes, may set the
release time at the arrival time of certain data, at a time after the start of the period.

 A deadline specifies when a computation must be finished. The deadline for an aperiodic
process is generally measured from the release time, since that is the only reasonable time
reference. The deadline for a periodic process may in general occur at some time other than the
end of the period.

 Rate requirements are also fairly common. A rate requirement specifies how quickly processes
must be initiated.

 The period of a process is the time between successive executions. For example, the period of a
digital filter is defined by the time interval between successive input samples.

79 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

 The process’s rate is the inverse of its period. In a multirate system, each process executes at its
own distinct rate.

The most common case for periodic processes is for the initiation interval to be equal to the
period. However, pipelined execution of processes allows the initiation interval to be less than
the period. Figure illustrates process execution in a system with four CPUs.

CPU Metrics
 We also need some terminology to describe how the process actually executes.
The initiation time is the time at which a process actually starts executing on the CPU.
The completion time is the time at which the process finishes its work.

 The most basic measure of work is the amount of CPU time expended by a process. The CPU
time of process i is called Ci . Note that the CPU time is not equal to the completion time minus
initiation time; several other processes may interrupt execution. The total CPU time consumed
by a set of processes is

 T= ∑ Ti

 We need a basic measure of the efficiency with which we use the CPU. The simplest and most
direct measure is utilization:

U=CPU time for useful work/total available CPU time

Utilization is the ratio of the CPU time that is being used for useful computations to the total
available CPU time. This ratio ranges between 0 and 1, with 1 meaning that all of the available
CPU time is being used for system purposes. The utilization is often expressed as a percentage. If
we measure the total execution time of all processes over an interval of time t, then the CPU
utilization is

 U=T/t.

80 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

2.4.4. Multiple Tasks and Multiple Processes
 `Most embedded systems require functionality and timing that is too complex to body in
a single program. We break the system in to multiple tasks in order to manage when things
happen. In this section we will develop the basic abstractions that will be manipulated by the
RTOS to build multirate systems.

To understand why these parathion of an application in to tasks may be reflected in the
program structure, consider how we would build a stand-alone compression unit based on the
compression algorithm,this device is connected to serial ports on both ends. The input to the box
is an uncompressed stream of bytes. The box emits a compressed string of bits on the output
serial line, based on a predefined compression table. Such a box may be used, for example, to
compress data being sent to a modem. The program’s need to receive and send data at different
rates—for example, the program may emit 2 bits for the first byte and then 7 bits for the second
byte— will obviously find itself reflected in the structure of the code.

It is easy to create irregular, ungainly code to solve this problem; a more elegant solution
is to create a queue of out put bits, with those bits being removed from the queue and sent to the
serial port in 8-bit sets. But beyond the need to create a clean data structure that simplifies the
control structure of the code, we must also ensure that we process the inputs and outputs at the
proper rates. For example, if we spend too much time in packaging and emitting output
characters, we may drop an input character. Solving timing problems is a more challenging
problem.

The text compression box provides a simple example of rate control problems. A control
panel on a machine provides an example of a different type of rate con- troll problem, the
asynchronous input. The control panel of the compression box may, for example, include a
compression mode button that disables or enables com- pression, so that the input text is passed
through unchanged when compression is disabled. We certainly do not know when the user will
push the compression modebutton— the button may be depressed a synchronously relative to the
arrival of characters for compression. We do know, however, that the button will be depressed at
a much lower rate than characters will be received, since it is not physically possible for a person
to repeatedly depress a button at even slow serial line rates. Keeping up with the input and output
data while checking on the button can introduce some very complex control code in to the
program. Sampling the button’s state too slowly can cause the machine to miss a button
depression entirely, but sampling it too frequently and duplicating a data value can cause the
machine to in correctly compress data.

One solution is to introduce a counter in to the main compression loop, so that a subroutine to
check the input button is called once every times the compression loop is executed. But this
solution does not work when either the compression loop or the button-handling routine has

81 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

highly variable execution times—if the execution time of either varies significantly, it will cause
the other to execute later than expected, possibly causing data to be lost. We need to be able to
keep track of these two different tasks separately, applying different timing requirements to each.

This is the sort of control that processes allow. The above two examples illustrate how
requirements on timing and execution rate can create major problems in programming. When
code is written to satisfy several different timing requirements at once, the control structures
necessary to get any sort of solution become very complex very quickly. Worse, such complex
control is usually quite difficult to verify for either functional or timing properties.

2.4.5. Multi rate Systems
 Implementing code that satisfies timing requirements is even more complex when
multiple rates of computation must be handled. Multi rate embedded computing systems are very
common, including auto mobile engines, printers, and cell phones.In all these systems, certain
operations must be executed periodically, and each oper-ation is executed at its own rate.
Application Example6.1 describes why auto mobile engines require multi rate control.

2.4.6. Timing Requirements on Processes
 Processes can have several different types of timing requirements imposed on them by
the application. The timing requirements on a set of process strongly influence the type of
scheduling that is appropriate. A scheduling policy must define the timing requirements that it
uses to determine whether a schedule is valid. Before studying scheduling proper, we outline the
types of process timing requirements that are useful in embedded system design. Figure
illustrates different ways in which we can define two important requirements on processes: eg.
What happens when a process misses a deadline? The practical effects of a timing violation
depend on the application—the results can be catastrophic in an auto mo- tive control system,
where as a missed deadline in a multimedia system may cause an audio or video glitch. The
system can be designed to take a variety of actions when a deadline is missed. Safety-critical
systems may try to take compensatory measures such as approximating data or switching in to a
special safety mode. Systems for which safety is not as important may take simple measures to
avoid propagating bad data, such as inserting silence in a phone line, or may completely ignore
the failure.Even if the modules are functionally correct, their timing improper behavior can
introduce major execution errors. Application Example6.2 describes a timing problem in space
shuttle software that caused the delay of the first launch of the shuttle. We need a basic measure
of the efficiency with which we use the CPU. The simplest and most direct measure is
utilization:

Utilization is the ratio of the CPU time that is being used for useful computations to the total
available CPUtime. This ratio ranges between 0 and 1, with 1 meaning that all of the available
CPU time is being used for system purposes. The utilization is often expressed as a percentage. If

82 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

we measure the total execution time of all processes over an interval of time t, then the CPU
utilization is U/T

2.4.7. Process State and Scheduling
 The first job of the OS is to determine that process runs next. The work of choosing the
order of running processes is known as scheduling. The OS considers a process to be in one of
three basic scheduling states

 Schedulability means whether there exists a schedule of execution for the processes in a
system that satisfies all their timing requirements. In general, we must construct a schedule to
show schedulability, but in some cases we can eliminate some sets of processes as unschedulable
using some very simple tests. Utilization is one of the key metrics in evaluating a scheduling
policy. Our most basic require- ment is that CPU utilization be no more than 100% since we
can’t use the CPU more than100% of the time.

 When we evaluate the utilization of the CPU, we generally do so over a finite period that covers
all possible combinations of process executions. For periodic processes, the length of time that
must be considered is the hyper period, which is the least-common multiple of the periods of all
the processes. If we evaluate the hyper period, we are sure to have considered all possible
combinations of the periodic processes.

2.4.8. Running Periodic Processes
 We need to find a programming technique that allows us to run periodic processes,
ideally at different rates. For the moment, let’s think of a process as a subroutine; we will call the
mp1(), p2(), etc. for simplicity. Our goal is to run these subroutines at rates determined by the
system

designer. Here is a very simple program that runs our process subroutines repeatedly: A timer is
a much more reliable way to control execution of the loop. We would probably use the timer to
generate periodic interrupts. Let’s assume for the moment that the pall() function is called by the
timer’s interrupt handler. Then this code will execute each process once after a timer interrupt:

83 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

voidpall()
{

 p1();
 p2();

 }
But what happens when a process runs too long? The timer’s interrupt will cause the CPU’s
interrupt system to mask its interrupts, so the interrupt will not occur until after the pall() routine
returns. As a result, the next iteration will start late. This is a serious problem, but we will have
to wait for further refinements before we can fix it.

Our next problem is to execute different processes at different rates. If we have several timers,
we can set each timer to a different rate. We could then use a function to collect all the processes
that run at that rate:

voidpA()
{
 /*processesthatrunatrateA*/

 p1();
 p3();

}
void pB()
{
 /*processesthatrunatrateB*/
 }

This solution allows us to execute processes at rates that are simple multiples of each other.
However, when the rates are n’t related by a simple ratio, the counting process becomes more
complex and more likely to contain bugs. We have developed somewhat more reliable code, but
this programming style is still limited in capability and prone to bugs. To improve both the
capabilities and reliability of our systems, we need to invent the RTOS.

2.5. Context Switch in Operating System
An operating system is a program loaded into a system or computer. and manage all the

other program which is running on that OS Program, it manages the all other application
programs. or in other words, we can say that the OS is an interface between the user and
computer hardware.
we will learn about what is Context switching in an Operating System and see how it works also
understands the triggers of context switching and an overview of the Operating System.

84 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Context Switch
Context switching in an operating system involves saving the context or state of a running
process so that it can be restored later, and then loading the context or state of another. process
and run it.

Context Switching refers to the process/method used by the system to change the process from
one state to another using the CPUs present in the system to perform its job.

Example – Suppose in the OS there (N) numbers of processes are stored in a Process Control
Block(PCB). like The process is running using the CPU to do its job. While a process is running,
other processes with the highest priority queue up to use the CPU to complete their job.

2.5.1. The Need for Context Switching
Context switching enables all processes to share a single CPU to finish their execution and store
the status of the system’s tasks. The execution of the process begins at the same place where
there is a conflict when the process is reloaded into the system.

The operating system’s need for context switching is explained by the reasons listed below.
1. One process does not directly switch to another within the system. Context switching makes

it easier for the operating system to use the CPU’s resources to carry out its tasks and store its
context while switching between multiple processes.

2. Context switching enables all processes to share a single CPU to finish their execution and
store the status of the system’s tasks. The execution of the process begins at the same place
where there is a conflict when the process is reloaded into the system.

3. Context switching enables all processes to share a single CPU to finish their execution and
store the status of the system’s tasks. The execution of the process begins at the same place
where there is a conflict when the process is reloaded into the system.

4. Context switching only allows a single CPU to handle multiple processes requests parallelly
without the need for any additional processors.

2.5.2. Context Changes as a Trigger
The three different categories of context-switching triggers are as follows.
1. Interrupts
2. Multitasking
3. User/Kernel switch

Interrupts: When a CPU requests that data be read from a disc, if any interruptions occur,
context switching automatically switches to a component of the hardware that can handle the
interruptions more quickly.

85 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Multitasking: The ability for a process to be switched from the CPU so that another process can
run is known as context switching. When a process is switched, the previous state is retained so
that the process can continue running at the same spot in the system.

Kernel/User Switch: This trigger is used when the OS needed to switch between the user mode
and kernel mode.

When switching between user mode and kernel/user mode is necessary, operating systems use
the kernel/user switch.

2.5.3. Process Control Block
The Process Control block(PCB) is also known as a Task Control Block. it represents a

process in the Operating System. A process control block (PCB) is a data structure used by a
computer to store all information about a process. It is also called the descriptive process. When
a process is created (started or installed), the operating system creates a process manager.

2.5.3.1. State Diagram of Context Switching

2.5.4. Working Process Context Switching
So the context switching of two processes, the priority-based process occurs in the ready queue
of the process control block. These are the following steps.

86 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

 The state of the current process must be saved for rescheduling.
 The process state contains records, credentials, and operating system-specific information

stored on the PCB or switch.
 The PCB can be stored in a single layer in kernel memory or in a custom OS file.
 A handle has been added to the PCB to have the system ready to run.
 The operating system aborts the execution of the current process and selects a process from

the waiting list by tuning its PCB.
 Load the PCB’s program counter and continue execution in the selected process.
 Process/thread values can affect which processes are selected from the queue, this can be

important.

2.6. Priority Scheduling Algorithm: Preemptive, Non-Preemptive
What is Priority Scheduling?
Priority Scheduling is a method of scheduling processes that is based on priority. In this
algorithm, the scheduler selects the tasks to work as per the priority.
The processes with higher priority should be carried out first, whereas jobs with equal priorities
are carried out on a round-robin or FCFS basis. Priority depends upon memory requirements,
time requirements, etc.

2.6.1. Types of Priority Scheduling
Priority scheduling divided into two main types:

2.6.1.1. Preemptive Scheduling
In Preemptive Scheduling, the tasks are mostly assigned with their priorities. Sometimes it is
important to run a task with a higher priority before another lower priority task, even if the lower
priority task is still running. The lower priority task holds for some time and resumes when the
higher priority task finishes its execution.

2.6.1.2. Non-Preemptive Scheduling
In this type of scheduling method, the CPU has been allocated to a specific process. The process
that keeps the CPU busy, will release the CPU either by switching context or terminating. It is
the only method that can be used for various hardware platforms. That’s because it doesn’t need
special hardware (for example, a timer) like preemptive scheduling.

2.6.2. Characteristics of Priority Scheduling
 A CPU algorithm that schedules processes based on priority.
 It used in Operating systems for performing batch processes.
 If two jobs having the same priority are READY, it works on a FIRST COME, FIRST

SERVED basis.

87 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

 In priority scheduling, a number is assigned to each process that indicates its priority
level.

 Lower the number, higher is the priority.
 In this type of scheduling algorithm, if a newer process arrives, that is having a higher

priority than the currently running process, then the currently running process is
preempted.

2.6.3. Example of Priority Scheduling
Consider following five processes P1 to P5. Each process has its unique priority, burst time, and
arrival time.
Process Priority Burst time Arrival time
P1 1 4 0
P2 2 3 0
P3 1 7 6
P4 3 4 11
P5 2 2 12
Step 0) At time=0, Process P1 and P2 arrive. P1 has higher priority than P2. The execution
begins with process P1, which has burst time 4.

Step 1) At time=1, no new process arrive. Execution continues with P1.

Step 2) At time 2, no new process arrives, so you can continue with P1. P2 is in the waiting
queue.

88 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Step 3) At time 3, no new process arrives so you can continue with P1. P2 process still in the
waiting queue.

Step 4) At time 4, P1 has finished its execution. P2 starts execution.

Step 5) At time= 5, no new process arrives, so we continue with P2.

Step 6) At time=6, P3 arrives. P3 is at higher priority (1) compared to P2 having priority (2). P2
is preempted, and P3 begins its execution.

89 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Process Priority Burst time Arrival time

P1 1 4 0

P2 2 1 out of 3 pending 0

P3 1 7 6

P4 3 4 11

P5 2 2 12

Step 7) At time 7, no-new process arrives, so we continue with P3. P2 is in the waiting queue.

Step 8) At time= 8, no new process arrives, so we can continue with P3.

Step 9) At time= 9, no new process comes so we can continue with P3.

90 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Step 10) At time interval 10, no new process comes, so we continue with P3

Step 11) At time=11, P4 arrives with priority 4. P3 has higher priority, so it continues its
execution.

Process Priority Burst time Arrival time

P1 1 4 0

P2 2 1 out of 3 pending 0

P3 1 2 out of 7 pending 6

P4 3 4 11

P5 2 2 12

Step 12) At time=12, P5 arrives. P3 has higher priority, so it continues execution.

91 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Step 13) At time=13, P3 completes execution. We have P2,P4,P5 in ready queue. P2 and P5
have equal priority. Arrival time of P2 is before P5. So P2 starts execution.

Process Priority Burst time Arrival time

P1 1 4 0

P2 2 1 out of 3 pending 0

P3 1 7 6

P4 3 4 11

P5 2 2 12

Step 14) At time =14, the P2 process has finished its execution. P4 and P5 are in the waiting
state. P5 has the highest priority and starts execution.

Step 15) At time =15, P5 continues execution.

92 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Step 16) At time= 16, P5 is finished with its execution. P4 is the only process left. It starts
execution.

Step 17) At time =20, P5 has completed execution and no process is left.

Step 18) Let’s calculate the average waiting time for the above example.
Waiting Time = start time – arrival time + wait time for next burst
P1 = o - o = o
P2 =4 - o + 7 =11
P3= 6-6=0
P4= 16-11=5
Average Waiting time = (0+11+0+5+2)/5 = 18/5= 3.6

2.6.4. Advantages of priority scheduling
Here, are benefits/pros of using priority scheduling method:

 Easy to use scheduling method
 Processes are executed on the basis of priority so high priority does not need to wait for

long which saves time

93 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

 This method provides a good mechanism where the relative important of each process
may be precisely defined.

 Suitable for applications with fluctuating time and resource requirements.

2.6.5. Disadvantages of priority scheduling
Here, are cons/drawbacks of priority scheduling

 If the system eventually crashes, all low priority processes get lost.
 If high priority processes take lots of CPU time, then the lower priority processes may

starve and will be postponed for an indefinite time.
 This scheduling algorithm may leave some low priority processes waiting indefinitely.
 A process will be blocked when it is ready to run but has to wait for the CPU because

some other process is running currently.
 If a new higher priority process keeps on coming in the ready queue, then the process

which is in the waiting state may need to wait for a long duration of time.

2.6.6. Scheduling policies
To meet the needs of various applications, the QNX Neutrino RTOS provides these scheduling
algorithms:

 FIFO scheduling
 round-robin scheduling
 sporadic scheduling

Each thread in the system may run using any method. The methods are effective on a per-thread
basis, not on a global basis for all threads and processes on a node.

Remember that the FIFO and round-robin scheduling policies apply only when two or more
threads that share the same priority are READY (i.e., the threads are directly competing with
each other). The sporadic method, however, employs a “budget” for a thread's execution. In all
cases, if a higher-priority thread becomes READY, it immediately preempts all lower-priority
threads.

In the following diagram, three threads of equal priority are READY. If Thread A blocks,
Thread B will run. Although a thread inherits its scheduling policy from its parent process, the
thread can request to change the algorithm applied by the kernel.

94 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Thread A blocks; Thread B runs.
Summary:

 Priority scheduling is a method of scheduling processes that is based on priority. In this
algorithm, the scheduler selects the tasks to work as per the priority.

 In Priority Preemptive Scheduling, the tasks are mostly assigned with their priorities.
 In Priority Non-preemptive scheduling method, the CPU has been allocated to a specific

process.
 Processes are executed on the basis of priority so high priority does not need to wait for

long which saves time
 If high priority processes take lots of CPU time, then the lower priority processes may

starve and will be postponed for an indefinite time.

95 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

UNIT III

IOT AND ARDUINO PROGRAMMING

 Introduction to the Concept of IoT Devices

 IoT Devices Versus Computers

 IoT Configurations

 Basic Components

 Introduction to Arduino

 Types of Arduino

 Arduino Toolchain

 Arduino Programming Structure

 Sketches

 Pins

 Input/Output From Pins Using Sketches

 Introduction to Arduino Shields

 Integration of Sensors and Actuators with Arduino

96 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

3.1. IoT (Internet of Things)

IoT stands for Internet of Things, which means accessing and controlling daily usable
equipments and devices using Internet.

3.1.1 What is an Internet of Things (IoT)
Our mobile device which contains GPS Tracking, Mobile Gyroscope, Adaptive brightness,
Voice detection, Face detection etc. These components have their own individual features, but
what about if these all communicate with each other to provide a better environment? For
example, the phone brightness is adjusted based on my GPS location or my direction.

Connecting everyday things embedded with electronics, software, and sensors to internet
enabling to collect and exchange data without human interaction called as the Internet of Things
(IoT).

The term "Things" in the Internet of Things refers to anything and everything in day to day life
which is accessed or connected through the internet.

IoT is an advanced automation and analytics system which deals with artificial intelligence,
sensor, networking, electronic, cloud messaging etc. to deliver complete systems for the product
or services. The system created by IoT has greater transparency, control, and performance.
As we have a platform such as a cloud that contains all the data through which we connect all the
things around us. For example, a house, where we can connect our home appliances such as air
conditioner, light, etc. through each other and all these things are managed at the same platform.
Since we have a platform, we can connect our car, track its fuel meter, speed level, and also track
the location of the car.

97 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

If there is a common platform where all these things can connect to each other would be great
because based on my preference, I can set the room temperature. For example, if I love the room
temperature to to be set at 25 or 26-degree Celsius when I reach back home from my office, then
according to my car location, my AC would start before 10 minutes I arrive at home. This can be
done through the Internet of Things (IoT).

3.1.2. How does Internet of Thing (IoT) Work?
The working of IoT is different for different IoT echo system (architecture). However, the key
concept of there working are similar. The entire working process of IoT starts with the device
themselves, such as smartphones, digital watches, electronic appliances, which securely
communicate with the IoT platform. The platforms collect and analyze the data from all multiple
devices and platforms and transfer the most valuable data with applications to devices.

3.1.3. Features of IOT
The most important features of IoT on which it works are connectivity, analyzing, integrating,
active engagement, and many more. Some of them are listed below:

Connectivity: Connectivity refers to establish a proper connection between all the things of IoT
to IoT platform it may be server or cloud. After connecting the IoT devices, it needs a high speed

98 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

messaging between the devices and cloud to enable reliable, secure and bi-directional
communication.

Analyzing: After connecting all the relevant things, it comes to real-time analyzing the data
collected and use them to build effective business intelligence. If we have a good insight into
data gathered from all these things, then we call our system has a smart system.

Integrating: IoT integrating the various models to improve the user experience as well.
Artificial Intelligence: IoT makes things smart and enhances life through the use of data. For
example, if we have a coffee machine whose beans have going to end, then the coffee machine
itself order the coffee beans of your choice from the retailer.

Sensing: The sensor devices used in IoT technologies detect and measure any change in the
environment and report on their status. IoT technology brings passive networks to active
networks. Without sensors, there could not hold an effective or true IoT environment.

Active Engagement: IoT makes the connected technology, product, or services to active
engagement between each other.

Endpoint Management: It is important to be the endpoint management of all the IoT system
otherwise, it makes the complete failure of the system. For example, if a coffee machine itself
order the coffee beans when it goes to end but what happens when it orders the beans from a
retailer and we are not present at home for a few days, it leads to the failure of the IoT system.
So, there must be a need for endpoint management.

Advantages and Disadvantages of (IoT)
Any technology available today has not reached to its 100 % capability. It always has a gap to
go. So, we can say that Internet of Things has a significant technology in a world that can help
other technologies to reach its accurate and complete 100 % capability as well.

3.1.3.1. Advantages of IoT
Internet of things facilitates the several advantages in day-to-day life in the business sector.
Some of its benefits are given below:

o Efficient resource utilization: If we know the functionality and the way that how each
device work we definitely increase the efficient resource utilization as well as monitor
natural resources.

o Minimize human effort: As the devices of IoT interact and communicate with each
other and do lot of task for us, then they minimize the human effort.

o Save time: As it reduces the human effort then it definitely saves out time. Time is the
primary factor which can save through IoT platform.

99 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

o Enhance Data Collection:
o Improve security: Now, if we have a system that all these things are interconnected then

we can make the system more secure and efficient.

3.1.3.2. Disadvantages of IoT
As the Internet of things facilitates a set of benefits, it also creates a significant set of challenges.
Some of the IoT challenges are given below:

 Security: As the IoT systems are interconnected and communicate over networks. The
system offers little control despite any security measures, and it can be lead the various
kinds of network attacks.

 Privacy: Even without the active participation on the user, the IoT system provides
substantial personal data in maximum detail.

 Complexity: The designing, developing, and maintaining and enabling the large
technology to IoT system is quite complicated.

3.1.4. Embedded Devices (System) in (IoT)
It is essential to know about the embedded devices while learning the IoT or building the projects
on IoT. The embedded devices are the objects that build the unique computing system. These
systems may or may not connect to the Internet.

An embedded device system generally runs as a single application. However, these devices can
connect through the internet connection, and able communicate through other network devices.

100 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

3.1.5. Embedded System Hardware
The embedded system can be of type microcontroller or type microprocessor. Both of these types
contain an integrated circuit (IC).

The essential component of the embedded system is a RISC family microcontroller like
Motorola 68HC11, PIC 16F84, Atmel 8051 and many more. The most important factor that
differentiates these microcontrollers with the microprocessor like 8085 is their internal read and
writable memory. The essential embedded device components and system architecture are
specified below.

Basic Embedded System

3.1.6. Embedded System Software
The embedded system that uses the devices for the operating system is based on the language
platform, mainly where the real-time operation would be performed. Manufacturers build
embedded software in electronics, e.g., cars, telephones, modems, appliances, etc. The embedded
system software can be as simple as lighting controls running using an 8-bit microcontroller. It
can also be complicated software for missiles, process control systems, airplanes etc.

3.1.6.1. IoT Decision Framework
The IoT decision framework provides a structured approach to create a powerful IoT product
strategy. The IoT decision framework is all about the strategic decision making. The IoT
Decision Framework helps us to understand the areas where we need to make decisions and
ensures consistency across all of our strategic business decision, technical and more.

101 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

The IoT decision framework is much more important as the product or services communicates
over networks goes through five different layers of complexity of technology.

1. Device Hardware
2. Device Software
3. Communications
4. Cloud Platform
5. Cloud Application

The IoT decision framework pays attention to six key decision areas in any IoT product. These
decision areas are:

1. User Experience (UX)
2. Data
3. Business
4. Technology
5. Security
6. Standards & Regulations

Each of these decision areas is evaluated at each of the IoT Technology Stack. The User
Experience will be evaluated at Device Hardware, Device Software and so to provide the better
user experience. Then at the next step Data Decision Area, we have to explore data
considerations for all the stages of IoT Technology Stack.r

102 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Let's see each of the Decision Area of IoT Decision Framework in detail:
1. User Experience Decision Area: This is the area where we concentrate about who are

the users, what are their requirements and how to provide a great experience at each step
of IoT stack without worrying about the technical details.

2. Data Decision Area: In this area, we make the overall data strategy such as the data flow
over the entire IoT stack to fulfill the user's requirements.

3. Business Decision Area: Based on the previous decisions area, we make the decision
how product or services will became financial potential. At each of the IoT Stack level
are monetized about the costs of providing services.

4. Technology Decision Area: In this area, we work with the technology for each layer to
facilitate the final solution.

5. Security Decision Area: After going through the implementation of technology it is
important to decide and provide the security at each stage of the IoT Stack.

6. Standards & Regulations Decision Area: At the last stage of IoT Decision Area, we
identify the standards and regulations of product or services that will affect your product
at each layer of the IoT Stack.

3.1.7. IoT Architecture
There is not such a unique or standard consensus on the Internet of Things (IoT) architecture
which is universally defined. The IoT architecture differs from their functional area and their
solutions. However, the IoT architecture technology mainly consists of four major components:
Components of IoT Architecture

o Sensors/Devices
o Gateways and Networks
o Cloud/Management Service Layer
o Application Layer

There are several layers of IoT built upon the capability and performance of IoT elements that
provides the optimal solution to the business enterprises and end-users. The IoT architecture is a
fundamental way to design the various elements of IoT, so that it can deliver services over the
networks and serve the needs for the future.

103 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Stages of IoT Solutions Architecture

Following are the primary stages (layers) of IoT that provides the solution for IoT architecture.
1. Sensors/Actuators: Sensors or Actuators are the devices that are able to emit, accept and

process data over the network. These sensors or actuators may be connected either
through wired or wireless. This contains GPS, Electrochemical, Gyroscope, RFID, etc.
Most of the sensors need connectivity through sensors gateways. The connection of
sensors or actuators can be through a Local Area Network (LAN) or Personal Area
Network.

2. Gateways and Data Acquisition: As the large numbers of data are produced by this
sensors and actuators need the high-speed Gateways and Networks to transfer the data.
This network can be of type Local Area Network (LAN such as WiFi, Ethernet, etc.),
Wide Area Network (WAN such as GSM, 5G, etc.).

3. Edge IT: Edge in the IoT Architecture is the hardware and software gateways that
analyze and pre-process the data before transferring it to the cloud. If the data read from
the sensors and gateways are not changed from its previous reading value then it does not
transfer over the cloud, this saves the data used.

4. Data center/ Cloud: The Data Center or Cloud comes under the Management Services
which process the information through analytics, management of device and security
controls. Beside this security controls and device management the cloud transfer the data
to the end users application such as Retail, Healthcare, Emergency, Environment, and
Energy, etc.

104 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

3.1.8. Difference Between IoT Devices and Computers

we will discuss the overview of the Internet of Things and Computers and mainly will focus on
the difference between IoT devices and Computers. Let’s discuss it one by one.

Internet of Things (IoT):
The Internet of Things (IoT) is the network of physical objects/devices like vehicles, buildings,
cars, and other items embedded with electronics, software, sensors, and network connectivity
that enables these objects to collect and exchange data. IoT devices have made human life easier.
The IoT devices like smart homes, smart cars have made the life of humans very comfortable.
IoT devices are now being a part of our day-to-day life.
Computers:
A computer is a hardware device embedded with software in it. The computer does most of the
work like calculations, gaming, web browsers, word processors, e-mails, etc. The main function
of a computer is to compute the functions, to run the programs. It takes input from the computer
and then computes/processes it and generates the output.

Function of Computer

105 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

3.2. Overview of IoT Vs Computers
One big difference between IoT devices and computers is that the main function of IoT devices
is not to compute(not to be a computer) and the main function of a computer is to compute
functions and to run programs. But on IoT devices that is not its main point, it has some other
function besides that. As an example like in cars, the function of IoT devices are not to compute
anti-lock breaking or to do fuel injection, their main function from the point of view of a user is
to be driven and to move you from place to place and the computer is just to help that function.
For example, The main function of the car is not to compute like anti-lock breaking or to do fuel
injection their main function from the point of view of a user is to drive, to move you from place
to place. But when we embed software in it then the software can be able for fuel limit
detection.

3.2.1. Difference between IoT devices and Computers:

IOT Devices Computers

IoT devices are special-purpose devices. Computers are general-purpose devices.

IoT devices can do only a particular task
for which it is designed.

Computers can do so many tasks.

The hardware and software built-in in the
IoT devices are streamlined for that

particular task.

The hardware and software built-in in the
computers are streamlined to do many

tasks(such as calculation, gaming, music
player, etc.)

IoT devices can be cheaper and faster at a
particular task than computers, as IoT

devices are made to do that particular task.

A computer can be expensive and slower at a
particular task than an IoT device.

Examples: Music Player- iPod, Alexa,
smart cars, etc.

Examples: Desktop computers, Laptops, etc.

Configure IoT Device Discovery and Policy Enforcement
date_range16-Dec-22
arrow_backward
arrow_forward

To get started with IoT device discovery in your network, all you need is a security device
connected to Juniper ATP Cloud.

106 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

https://www.juniper.net/documentation/us/en/software/junos/security-iot/Other/set-services-encrypted-traffic-analysis-policy.html
https://www.juniper.net/documentation/us/en/software/junos/security-iot/topics/topic-map/security-iot-overview.html

lOMoARcPSD|26885763

IoT Device Discovery and Policy Enforcement Topology

As shown in the topology, the network includes some IoT devices connected to an SRX Series
device through wireless access point (AP). The security device is connected to the Juniper Cloud
ATP server, and to a host device.

The security device collects IoT device metadata and streams the relevant information to the
Juniper ATP Cloud. To enable streaming of IoT metadata, you'll need to create security metadata
streaming policies and attach these policies to security policies. Streaming of the IoT device
traffic pauses automatically when Juniper Cloud server has sufficient details to classify the IoT
device.

Juniper ATP cloud discovers and classifies IoT devices. Using the inventory of discovered IoT
devices, you'll create threat feeds in the form of dynamic address groups. Once the security
device downloads dynamic address groups, you can use the dynamic address groups to create
and enforce security policies for the IoT traffic.

Requirements
 SRX Series device or NFX Series device
 Junos OS Release 22.1R1 or later
 Juniper Advanced Threat Prevention Cloud Account. We've verified and tested the

configuration using a vSRX instance with Junos OS Release 22.1R1.

3.3. IoT Configuration

1. Access

o Be sure the device’s access control does not allow unauthorized or

unauthenticated access and that appropriate restrictions are in place.

107 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

o Change the default password to something complex with 16 characters or more if

feasible.

o Make sure no management interface is accessed over an unencrypted channel

(e.g. use HTTPS rather than HTTP and disable the latter).

o For Raspberry Pi Devices:

 Make sudo require a password.

 Modify the sshd configuration to allow only specific users for SSH access.

 Use key-based authentication as an alternative to a password login.

o For printers, disable any unnecessary services. Disable the following where

possible, as they are commonly visible without a username or password:

 Internal storage or job forwarding

 Job logs

 Print queue

 Device management logs

2. Software updates

1. Keep the device software updated with the latest security patches and firmware.

 Some patches can revert or change passwords.

3. Services

1. Disable all unused services, such as telnet, ssh, FTP/TFTP, MySQL, email, web

proxy, SLP/Device Announcement Agent, WS-Discovery/XML Services, Web

Services Print, WINS, LLMNR, IPX/SPX, DLC/LLC, Multicast IPv4, File

Access Settings (JPL Disk Access, SNMP Disk Access, etc.).

2. For printers:

 Automatically delete data after the printing process is complete. Options

can be set for how long data can be resident on the printer – set to lowest

time available.

 Confirm deletion of data upon job completion.

 Disable local use of printer memory if possible.

4. Network

1. IoT devices must use a non-publicly-routable IP address wherever possible.

Exceptions must be approved by the Office of the Chief Information Security

Officer (CISO).

108 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

2. If possible, use a firewall or similar means of restricting access to the IoT device

management services to only the IP address ranges needed. For off-campus

access, the campus VPN range should be included rather than any external IP

addresses.

3. For Raspberry Pi Devices:

 Install and configure fail2ban.

 Install virus protection.

5. Logging

1. Enable logging of IoT device access and configuration changes. Have the logs

sent to an external device.

2. Monitor logs for unusual behavior.

6. Redundancy and backups

1. If the device has a critical function, consider having a backup configured or

purchasing a second device.

2. Regularly back up the device’s configuration, or keep track of its configuration on

an external system.

3. Check with the device’s vendor for security bulletins or configuration.

4. Consider the types of data your device stores or processes and ensure

unauthorized individuals can’t access that data.

3.4. Components of IoT System
What are the major components of Internet of Things?

3.4.1. IoT Components
1. Smart devices and sensors – Device connectivity
Devices and sensors are the components of the device connectivity layer. These smart sensors
are continuously collecting data from the environment and transmit the information to the next

109 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

layer. The latest techniques in semiconductor technology are capable of producing micro smart
sensors for various applications.
Common sensors are:

 Temperature sensors and thermostats
 Pressure sensors
 Humidity / Moisture level
 Light intensity detectors
 Moisture sensors
 Proximity detection
 RFID tags

How are the devices connected?
Most modern smart devices and sensors can be connected to low-power wireless networks like
Wi-Fi, ZigBee, Bluetooth, Z-wave, LoRAWAN, etc. Each of these wireless technologies has its
pros and cons in terms of power, data transfer rate, and overall efficiency.

Developments in low-power, low-cost wireless transmitting devices are promising in the
area of IoT due to their long battery life and efficiency. Many companies have adopted the latest
protocols like 6LoWPAN- IPv6 over Low Power Wireless Personal Area Networks to implement
energy-efficient data transmission for IoT networks. LoWPAN uses reduced transmission time
(typically short time pulses) and thus saves energy.
2. Gateway

IoT Gateway manages the bidirectional data traffic between different networks and
protocols. Another function of the gateway is to translate different network protocols and make
sure interoperability of the connected devices and sensors.

110 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Gateways can be configured to perform pre-processing of the collected data from thousands of
sensors locally before transmitting it to the next stage. In some scenarios, it would be necessary
due to the compatibility of the TCP/IP protocol.

IoT gateway offers a certain level of security for the network and transmitted data with higher-
order encryption techniques. It acts as a middle layer between devices and the cloud to protect
the system from malicious attacks and unauthorized access.

3. Cloud
The Internet of Things creates massive data from devices, applications, and users, which

has to be managed in an efficient way. IoT cloud offers tools to collect, process, manage and
store huge amounts of data in real time. Industries and services can easily access these data
remotely and make critical decisions when necessary.

Basically, the IoT cloud is a sophisticated, high-performance network of servers optimized to
perform high-speed data processing of billions of devices, traffic management, and deliver
accurate analytics. Distributed database management systems are one of the most important
components of the IoT cloud.

Cloud system integrates billions of devices, sensors, gateways, protocols, and data storage and
provides predictive analytics. Companies use these analytics data to improve products and
services, preventive measures for certain steps, and build their new business model accurately.

4. Analytics

Analytics is the process of converting analog data from billions of smart devices and
sensors into useful insights which can be interpreted and used for detailed analysis. Smart
analytics solutions are inevitable for IoT systems for the management and improvement of the
entire system.

One of the major advantages of an efficient IoT system is real-time smart analytics which helps
engineers to find out irregularities in the collected data and act fast to prevent an undesired

111 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

scenario. Service providers can prepare for further steps if the information is collected
accurately at the right time.

Big enterprises use the massive data collected from IoT devices and utilize the insights for their
future business opportunities. Careful analysis will help organizations to predict trends in the
market and plan ahead for a successful implementation.

Information is very significant in any business model, and predictive analysis ensures success in
the concerned area of the business line.

5. User interface
User interfaces are the visible, tangible part of the IoT system which users can access.

Designers will have to make sure of a well-designed user interface for minimum effort for users
and encourage more interactions.

Modern technology offers much interactive design to ease complex tasks into simple touch panel
controls. Multicolor touch panels have replaced hard switches in our household appliances, and
the trend is increasing for almost every smart home device.

The user interface design has higher significance in today’s competitive market; it often
determines the user whether to choose a particular device or appliance. Users will be interested
in buying new devices or smart gadgets if it is very user-friendly and compatible with common
wireless standards.

112 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

3.4.2. Real Life Example Depicting Working of IoT
Here, we will discuss some examples, which states how IoT works in real-life:
i. Say, we have an AC in our room, now the temperature sensor installed in it in the room will be
integrated with a gateway. A gateway’s purpose is to help connect the temperature sensor (inside
the AC) to the Internet by making use of a cloud infrastructure.
ii. A Cloud/server infrastructure has detailed records about each and every device connected to it
such as device id, a status of the device, what time was the device last accessed, number of times
the device has been accessed and much more.
iii. A connection with the cloud then implement by making use of web services such as RESTful.
iv. We in this system, act as end-users and through the mobile app interact with Cloud (and in
turn devices installed in our homes). A request will send to the cloud infrastructure with the
authentication of the device and device information. It requires authentication of the device to
ensure cybersecurity.
v. Once the cloud has authenticated the device, it sends a request to the appropriate sensor
network using gateways.
vi. After receiving the request, the temperature sensor inside the AC will read the current
temperature in the room and will send the response back to the cloud.
vii. Cloud infrastructure will then identify the particular user who has requested the data and will
then push the requested data to the app. So, a user will get the current information about the
temperature in the room, pick up through AC’s temperature sensors directly on his screen.

Real Life Example – Internet of Things works

3.5. Arduino
A decade ago, working around electronics involved knowledge in physics and math, expensive
lab equipment, a laboratory type setup and important of all, love for electronics. But the picture
has changed over the decade or so where the above-mentioned factors became irrelevant to work
around electronics except for the last part: love for electronics. One such product which made
use of the above specified and many other reasons and made electronics be able reach anyone
regardless of their background is “Arduino”.

113 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

3.5.1. Introduction
Arduino is an open-source prototyping platform in electronics based on easy-to-use hardware
and software. Subtly speaking, Arduino is a microcontroller based prototyping board which can
be used in developing digital devices that can read inputs like finger on a button, touch on a
screen, light on a sensor etc. and turning it in to output like switching on an LED, rotating a
motor, playing songs through a speaker etc.

The Arduino board can be programmed to do anything by simply programming the
microcontroller on board using a set of instructions for which, the Arduino board consists of a
USB plug to communicate with your computer and a bunch of connection sockets that can be
wired to external devices like motors, LEDs etc.

The aim of Arduino is to introduce the world of electronics to people who have small to no
experience in electronics like hobbyists, designers, artists etc.

114 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Arduino is based on open source electronics project i.e. all the design specifications, schematics,
software are available openly to all the users. Hence, Arduino boards can bought from vendors as
they are commercially available or else you can make your own board by if you wish i.e. you can
download the schematic from Arduino’s official website, buy all the components as per the
design specification, assemble all the components, and make your own board.

3.5.2. Hardware and Software
Arduino boards are generally based on microcontrollers from Atmel Corporation like 8, 16 or 32
bit AVR architecture based microcontrollers.

The important feature of the Arduino boards is the standard connectors. Using these connectors,
we can connect the Arduino board to other devices like LEDs or add-on modules called Shields.
The Arduino boards also consists of on board voltage regulator and crystal oscillator. They also
consist of USB to serial adapter using which the Arduino board can be programmed using USB
connection.
In order to program the Arduino board, we need to use IDE provided by Arduino. The Arduino
IDE is based on Processing programming language and supports C and C++.

3.5.3. Types of Arduino Boards
There are many types of Arduino boards available in the market but all the boards have one thing
in common: they can be programmed using the Arduino IDE. The reasons for different types of
boards are different power supply requirements, connectivity options, their applications etc.

Arduino boards are available in different sizes, form factors, different no. of I/O pins etc. Some
of the commonly known and frequently used Arduino boards are Arduino UNO, Arduino Mega,
Arduino Nano, Arduino Micro and Arduino Lilypad.

115 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

There are add-on modules called Arduino Shields which can be used to extend the functionalities
of the Arduino boards. Some of the commonly used shields are Arduino Proto shield, Arduino
WiFi Shield and Arduino Yun Shield.

Step 1: Types of Arduino

3.5.3.1. Arduino UNO
The most common version of Arduino is the Arduino Uno. This board is what most

people are talking about when they refer to an Arduino. In the next step, there is a more complete
rundown of its features.

116 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

3.5.3.2. Arduino NG, Diecimila, and the Duemilanove (Legacy Versions)
Legacy versions of the Arduino Uno product line consist of the NG, Diecimila, and the
Duemilanove. The important thing to note about legacy boards is that they lack particular feature
of the Arduino Uno. Some key differences:

 The Diecimila and NG use an ATMEGA168 chips (as opposed to the more powerful
ATMEGA328),

 Both the Diecimila and NG have a jumper next to the USB port and require manual selection of
either USB or battery power.

 The Arduino NG requires that you hold the rest button on the board for a few seconds prior to
uploading a program.

3.5.3.3. Arduino Mega 2560
The Arduino Mega 2560 is the second most commonly encountered version of the Arduino
family. The Arduino Mega is like the Arduino Uno's beefier older brother. It boasts 256 KB of
memory (8 times more than the Uno). It also had 54 input and output pins, 16 of which are
analog pins, and 14 of which can do PWM. However, all of the added functionality comes at the
cost of a slightly larger circuit board. It may make your project more powerful, but it will also
make your project larger. Check out the official Arduino Mega 2560 page for more details.

3.5.3.4. Arduino Mega ADK
This specialized version of the Arduino is basically an Arduino Mega that has been specifically
designed for interfacing with Android smartphones. This too is now a legacy version.

3.5.3.5. Arduino Yun
The Arduino Yun uses a ATMega32U4 chip instead of the ATmega328. However, what really
sets it apart is the addition of the Atheros AR9331 microprocessor. This extra chip allows this
board to run Linux in addition to the normal Arduino operating system. If all of that were not
enough, it also has onboard wifi capability. In other words, you can program the board to do stuff
like you would with any other Arduino, but you can also access the Linux side of the board to
connect to the internet via wifi. The Arduino-side and Linux-side can then easily communicate
back and forth with each other. This makes this board extremely powerful and versatile. I'm
barely scratching the surface of what you can do with this, but to learn more, check out the
official Arduino Yun page.

3.5.3.6. Arduino Nano
If you want to go smaller than the standard Arduino board, the Arduino Nano is for you! Based
on a surface mount ATmega328 chip, this version of the Arduino has been shrunk down to a
small footprint capable of fitting into tight spaces. It can also be inserted directly into a
breadboard, making it easy to prototype with.

3.5.3.7. Arduino LilyPad

117 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

The LilyPad was designed for wearable and e-textile applications. It is intended to be sewn to
fabric and connected to other sewable components using conductive thread. This board requires
the use of a special FTDI-USB TTL serial programming cable. For more information,
the Arduino LilyPad page is a decent starting point.

(Note that some of the links on this page are affiliate links. This does not change the cost of the
item for you. I reinvest whatever proceeds I receive into making new projects. If you would like
any suggestions for alternative suppliers, please let me know.)

Step 2: Arduino Uno Features
Some people think of the entire Arduino board as a microcontroller, but this is inaccurate. The
Arduino board actually is a specially designed circuit board for programming and prototyping
with Atmel microcontrollers.

The nice thing about the Arduino board is that it is relatively cheap, plugs straight into a
computer's USB port, and it is dead-simple to setup and use (compared to other development
boards).
Some of the key features of the Arduino Uno include:

 An open source design. The advantage of it being open source is that it has a large
community of people using and troubleshooting it. This makes it easy to find someone to help
you debug your projects.

 An easy USB interface . The chip on the board plugs straight into your USB port and registers
on your computer as a virtual serial port. This allows you to interface with it as through it were a

118 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

serial device. The benefit of this setup is that serial communication is an extremely easy (and
time-tested) protocol, and USB makes connecting it to modern computers really convenient.

 Very convenient power management and built-in voltage regulation. You can connect an
external power source of up to 12v and it will regulate it to both 5v and 3.3v. It also can be
powered directly off of a USB port without any external power.

 An easy-to-find, and dirt cheap, microcontroller "brain." The ATmega328 chip retails for about
$2.88 on Digikey. It has countless number of nice hardware features like timers, PWM pins,
external and internal interrupts, and multiple sleep modes. Check out the official datasheet for
more details.

 A 16mhz clock. This makes it not the speediest microcontroller around, but fast enough for most
applications.

 32 KB of flash memory for storing your code.
 13 digital pins and 6 analog pins. These pins allow you to connect external hardware to your

Arduino. These pins are key for extending the computing capability of the Arduino into the real
world. Simply plug your devices and sensors into the sockets that correspond to each of these
pins and you are good to go.

 An ICSP connector for bypassing the USB port and interfacing the Arduino directly as a serial
device. This port is necessary to re-bootload your chip if it corrupts and can no longer talk to
your computer.

 An on-board LED attached to digital pin 13 for fast an easy debugging of code.
 And last, but not least, a button to reset the program on the chip.

Step 3: Arduino IDE

Before you can start doing anything with the Arduino, you need to download and install
the Arduino IDE (integrated development environment). From this point on we will be referring
to the Arduino IDE as the Arduino Programmer.

The Arduino Programmer is based on the Processing IDE and uses a variation of the C and C++
programming languages.
You can find the most recent version of the Arduino Programmer on this page.

Step 4: Plug It In

119 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Connect the Arduino to your computer's USB port.
Please note that although the Arduino plugs into your computer, it is not a true USB device. The
board has a special chip that allows it to show up on your computer as a virtual serial port when
it is plugged into a USB port. This is why it is important to plug the board in. When the board is
not plugged in, the virtual serial port that the Arduino operates upon will not be present (since all
of the information about it lives on the Arduino board).

It is also good to know that every single Arduino has a unique virtual serial port address. This
means that every time you plug in a different Arduino board into your computer, you will need to
reconfigure the serial port that is in use.

The Arduino Uno requires a male USB A to male USB B cable.

Step 5: Settings

Before you can start doing anything in the Arduino programmer, you must set the board-type and
serial port.
To set the board, go to the following:

Tools --> Boards
Select the version of board that you are using. Since I have an Arduino Uno plugged in, I
obviously selected "Arduino Uno."
To set the serial port, go to the following:

Tools --> Serial Port
Select the serial port that looks like:

/dev/tty.usbmodem [random numbers]

120 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Step 6: Run a Sketch

121 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Arduino programs are called sketches. The Arduino programmer comes with a ton of example
sketches preloaded. This is great because even if you have never programmed anything in your
life, you can load one of these sketches and get the Arduino to do something.

To get the LED tied to digital pin 13 to blink on and off, let's load the blink example.
The blink example can be found here:

Files --> Examples --> Basics --> Blink
The blink example basically sets pin D13 as an output and then blinks the test LED on the
Arduino board on and off every second.

Once the blink example is open, it can be installed onto the ATMEGA328 chip by pressing the
upload button, which looks like an arrow pointing to the right.

Notice that the surface mount status LED connected to pin 13 on the Arduino will start to blink.
You can change the rate of the blinking by changing the length of the delay and pressing the
upload button again.

Step 7: Serial Monitor

122 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

The serial monitor allows your computer to connect serially with the Arduino. This is important
because it takes data that your Arduino is receiving from sensors and other devices and displays
it in real-time on your computer. Having this ability is invaluable to debug your code and
understand what number values the chip is actually receiving.

For instance, connect center sweep (middle pin) of a potentiometer to A0, and the outer pins,
respectively, to 5v and ground. Next upload the sketch shown below:

File --> Examples --> 1.Basics --> AnalogReadSerial

123 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Click the button to engage the serial monitor which looks like a magnifying glass. You can now
see the numbers being read by the analog pin in the serial monitor. When you turn the knob the
numbers will increase and decrease.
The numbers will be between the range of 0 and 1023. The reason for this is that the analog pin
is converting a voltage between 0 and 5V to a discreet number.

Step 8: Digital In

The Arduino has two different types of input pins, those being analog and digital.
To begin with, lets look at the digital input pins.

Digital input pins only have two possible states, which are on or off. These two on and off states
are also referred to as:

 HIGH or LOW
 1 or 0
 5V or 0V.

This input is commonly used to sense the presence of voltage when a switch is opened or closed.
Digital inputs can also be used as the basis for countless digital communication protocols. By
creating a 5V (HIGH) pulse or 0V (LOW) pulse, you can create a binary signal, the basis of all
computing. This is useful for talking to digital sensors like a PING ultrasonic sensor, or
communicating with other devices.

For a simple example of a digital input in use, connect a switch from digital pin 2 to 5V, a 10K
resistor** from digital pin 2 to ground, and run the following code:

File --> Examples --> 2.Digital --> Button
**The 10K resistor is called a pull-down resistor because it connects the digital pin to ground
when the switch is not pressed. When the switch is pressed, the electrical connections in the
switch has less resistance than the resistor, and the electricity no longer connects to ground.
Instead, electricity flows between 5V and the digital pin. This is because electricity always
chooses the path of least resistance. To learn more about this, visit the Digital Pins page.

124 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

https://content.instructables.com/FT9/0P7B/H142P82N/FT90P7BH142P82N.jpg?auto=webp&frame=1&width=1024&height=1024&fit=bounds&md=37211e95367d1b21a13739b0e11749b4

lOMoARcPSD|26885763

Step 9: Analog In

Aside from the digital input pins, the Arduino also boasts a number of analog input pins.
Analog input pins take an analog signal and perform a 10-bit analog-to-digital (ADC) conversion
to turn it into a number between 0 and 1023 (4.9mV steps).

This type of input is good for reading resistive sensors. These are basically sensors which
provide resistance to the circuit. They are also good for reading a varying voltage signal between
0 and 5V. This is useful when interfacing with various types of analog circuitry.

If you followed the example in Step 7 for engaging the serial monitor, you have already tried
using an analog input pin.

Step 10: Digital Out

A digital out pin can be set to be HIGH (5v) or LOW (0v). This allows you to turn things on and
off.

Aside from turning things on and off (and making LEDs blink), this form of output is convenient
for a number of applications.

125 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Most notably, it allows you to communicate digitally. By turning the pin on and off rapidly, you
are creating binary states (0 and 1), which is recognized by countless other electronic devices as
a binary signal. By using this method, you can communicate using a number of different
protocols.
Digital communication is an advanced topic, but to get a general idea of what can be done, check
out the Interfacing With Hardware page.
If you followed the example in Step 6 for getting an LED to blink, you have already tried using a
digital output pin.

Step 11: Analog Out

As mentioned earlier, the Arduino has a number of built in special functions. One of these
special functions is pulse width modulation, which is the way an Arduino is able to create an
analog-like output.

Pulse width modulation - or PWM for short - works by rapidly turning the PWM pin high (5V)
and low (0V) to simulate an analog signal. For instance, if you were to blink an LED on and off
rapidly enough (about five milliseconds each), it would seem to average the brightness and only
appear to be receiving half the power. Alternately, if it were to blink on for 1 millisecond and
then blink off for 9 millisecond, the LED would appear to be 1/10 as bright and only be receiving
1/10 the voltage.

PWM is key for a number of applications including making sound, controlling the brightness of
lights, and controlling the speed of motors.

To try out PWM yourself, connect an LED and 220 ohm resistor to digital pin 9, in series to
ground. Run the following example code:

File --> Examples --> 3.Analog --> Fading
Step 12: Write Your Own Code

126 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

To write your own code, you will need to learn some basic programming language syntax. In
other words, you have to learn how to properly form the code for the programmer to understand
it. You can think of this kind of like understanding grammar and punctuation. You can write an
entire book without proper grammar and punctuation, but no one will be abler to understand it,
even if it is in English.

Some important things to keep in mind when writing your own code:
 An Arduino program is called a sketch.
 All code in an Arduino sketch is processed from top to bottom.
 Arduino sketches are typically broken into five parts.

1. The sketch usually starts with a header that explains what the sketch is doing, and who
wrote it.

2. Next, it usually defines global variables. Often, this is where constant names are given to
the different Arduino pins.

127 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

https://content.instructables.com/FW3/MX1A/H142A629/FW3MX1AH142A629.jpg?auto=webp&frame=1&width=1024&fit=bounds&md=f945876f39a98c73bbf3166d90ba1977

lOMoARcPSD|26885763

3. After the initial variables are set, the Arduino begins the setup routine. In the setup
function, we set initial conditions of variables when necessary, and run any preliminary
code that we only want to run once. This is where serial communication is initiated, which
is required for running the serial monitor.

4. From the setup function, we go to the loop routine. This is the main routine of the sketch.
This is not only where your main code goes, but it will be executed over and over, so long
as the sketch continues to run.

5. Below the loop routine, there is often other functions listed. These functions are user-
defined and only activated when called in the setup and loop routine. When these functions
are called, the Arduino processes all of the code in the function from top to bottom and
then goes back to the next line in the sketch where it left off when the function was called.
Functions are good because they allow you to run standard routines - over and over -
without having to write the same lines of code over and over. You can simply call upon a
function multiple times, and this will free up memory on the chip because the function
routine is only written once. It also makes code easier to read.

 All of that said, the only two parts of the sketch which are mandatory are the Setup and Loop
routines.

 Code must be written in the Arduino Language, which is roughly based on C.
 Almost all statements written in the Arduino language must end with a ;
 Conditionals (such as if statements and for loops) do not need a ;
 Conditionals have their own rules and can be found under "Control Structures" on the Arduino

Language
 Variables are storage compartments for numbers. You can pass values into and out of variables.

Variables must be defined (stated in the code) before they can be used and need to have a data
type associated with it. To learn some of the basic data types, review the Language Page.

Step 13: Shields

Shields are expansion apdapter boards that plug in over top of the Arduino Uno and gives it
special functions.

Since the Arduino is open hardware, anyone who has the inclination is free to make an Arduino
shield for whatever task they wish to accomplish. On account of this, there are countless number

128 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

of Arduino shields out in the wild. You can find an ever-growing list of Arduino shields in the
Arduino playground. Keep in mind that there will be more shield in existence than you will find
on listed on that page (as always, Google is your friend).

Step 14: Building an External Circuit

As your projects get more complex, you will want to build your own circuits to interfacewith the
Arduino. While you won't learn electronics overnight, the internet is an unbelievable resource for
electronic knowledge and circuit diagrams.
To get started with electronics, visit the Basic Electronics Instructable.

Step 15: Going Beyond

3.6. Arduino ToolChain

129 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Today we’re going to talk about how the Arduino tool chain converts instructions you type into
the text editor into machine language the microcontroller can understand.

A tool chain is simply a set of software tools that work together to complete a task. for example,
if we were going to hang a picture, the tool chain might include a hammer, maybe a tape measure
and some nails.

Arduino Hardware/Software Interface
When programming the Arduino (or anything else), it is possible to write some pretty complex
instructions and get the Arduino to do some really cool things.

The problem is that a microcontroller (like the ATmega328 on the Uno) can only execute simple,
low-level instructions. These simple instructions include things like add variable a to variable
b or take variable b and put it in register x.

And, to complicate matters, microcontrollers only speak in binary. For those who don’t know,
binary numbers are long strings of 1s and 0s. If you need to brush up on binary numbers, see A
Bit of Fun with Binary Number Basics.

Arduino and other microcontrollers only understand binary.

The statement here may make total sense to you if you’ve been working with Arduino for a
while. Or, if not, it may not make any sense at all. Either way, just go with me here for a minute.
This is just an illustration which does not require complete understanding of the code.
Int Temp = analogRead(sensorPin);

If (Temp > 500)
{
//more complex instructions go here
}

A good way to think of binary numbers and digital signals is like a single pole light switch. The
light is either on or its off, there is nothing in between. Zero is off and one is on.

130 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

a good way to think about digital signals.

Going from complex instructions to simple ones the microcontroller understands requires several
layers of software that translate the high-level operations into simpler instructions.

How the Arduino Compiler Works
The compiler first transforms the code you write into assembly language. The name of the
compiler we’ll be using on our Uno is AVR-GCC. If you’re new to this, that may sound kind of
weird but try not to obsess over it. It’s just a name.

The assembler, which come with the IDE with the compiler, then translates the assembly
language program into machine language. It then creates object files, which combine machine
language, data, and information it needs to place instructions properly in memory. Often, the
assembler creates multiple files which will eventually be put together.

This is where the linker — another part of the compiler software package — shines. The linker
will take all the independently assembled machine language programs and object files and put
them together. This produces a .hex file that the microprocessor can understand and run.
The two figures below, though they apply to C/C++ programming in general, are a good
illustration of this process.

131 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

another way to visualize the Arduino code compilation process.

Another piece of software, called AVR Dude (for Downloader UploaDEr) starts when we press
the upload button. This software sends the .hex file to the ATMega328 on the Arduino board. On
the chip resides the bootloader. This bootloader was put there on purpose by the folks at Arduino
and works with AVR Dude to get the .hex into the flash memory on the chip.
All of this happens very quickly and seamlessly behind the scenes of the Arduino IDE.

how the compiled code transfers to the Arduino board.

132 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Programming in C vs Arduino
A few words are in order on this subject due to the enormous popularity of Arduino boards and
the C/C++ language in general.

Others use platforms or ecosystems such as the Arduino almost (or entirely) exclusively.
Finally, some of you may use both depending on your goals and background.

For hobbyists, the number of people who use platforms like Arduino has exceeded those who
only use naked microcontrollers.

When we talk about programming the Arduino, we’ll talk about the C/C++ languages. The truth
is, sketches are written in a language similar to C, though a sketch itself is not completely
compatible with C.

In Arduino, the main() function is hidden from view and added for you when you compile or
“verify” your sketch. Also, there are two functions which the Arduino ecosystem absolutely
requires: setup() and loop(). The only function C requires is main().

C also lacks built-in functions for using microcontroller I/O such as digitalWrite().
To make learning simple, the Arduino IDE designers hide a lot of detail and functionality behind
layers of abstraction, many of which come in the form of libraries. Note that the C programming
language also uses libraries. The linker adds them during the linking process.

3.7. Arduino program structure
Arduino program structure and we will learn more new terminologies used in the Arduino
world. The Arduino software is open-source. The source code for the Java environment is
released under the GPL and the C/C++ microcontroller libraries are under the LGPL.

Sketch: The first new terminology is the Arduino program called “sketch”.

3.7.1. Structure
Arduino programs can be divided in three main parts: Structure, Values (variables and
constants), and Functions. we will learn about the Arduino software program, step by step,
and how we can write the program without any syntax or compilation error.
Let us start with the Structure. Software structure consist of two main functions:
 Setup() function
 Loop() function

133 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

 PURPOSE: The setup() function is called when a sketch starts. Use it to
initialize the variables, pin modes, start using libraries, etc. The setup function
will only run once, after each power up or reset of the Arduino board.

 PURPOSE: After creating a setup() function, which initializes and sets the initial values,
the loop() function does precisely what its name suggests, and loops consecutively, allowing
your program to change and respond. Use it to actively control the Arduino board.

2. Arduino – Data Types
Data types in C refers to an extensive system used for declaring variables or functions

of different types. The type of a variable determines how much space it occupies in the
storage and how the bit pattern stored is interpreted.
The following table provides all the data types that you will use during Arduino
programming.

Void, Boolean , char, Unsigned, Unsigned, char , byte, int, Unsigned, int, word
String. Array, long, long, short , float , double , array, char, String, object

void

134 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

The void keyword is used only in function declarations. It indicates that the
function is expected to return no information to the function from which it was
called.

Boolean
A Boolean holds one of two values, true or false. Each Boolean variable occupies
one byte of memory.

Char
A data type that takes up one byte of memory that stores a character value.
Character literals are written in single quotes like this: 'A' and for multiple
characters, strings use double quotes: "ABC".

However, characters are stored as numbers. You can see the specific encoding in the ASCII
chart. This means that it is possible to do arithmetic operations on characters, in
which the ASCII value of the character is used. For example, 'A' + 1 has the value
66, since the ASCII value of the capital letter A is 65.

3.7.2. ASCII Char Table
unsigned char
Unsigned char is an unsigned data type that occupies one byte of memory. The unsigned char

135 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

data type encodes numbers from 0 to 255.

byte
Example
Unsigned Char chr_y = 121 ; // declaration of variable with type Unsigned char and
initialize it with character y

A byte stores an 8-bit unsigned number, from 0 to 255.

Int

136 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Example
byte m = 25 ;//declaration of variable with type byte and initialize it with
25
Integers are the primary data-type for number storage. int stores a 16-bit (2-byte) value.

This yields a range of -32,768 to 32,767 (minimum value of -2^15 and a maximum value of
(2^15) - 1).
The int size varies from board to board. On the Arduino Due, for example, an int stores a
32-bit (4-byte) value. This yields a range of -2,147,483,648 to 2,147,483,647 (minimum value of
-2^31 and a maximum value of (2^31) - 1).

Example
int counter = 32 ;// declaration of variable with type int and initialize it with
32

Unsigned int
Unsigned ints (unsigned integers) are the same as int in the way that they store a 2 byte value.
Instead of storing negative numbers, however, they only store positive values, yielding a useful
range of 0 to 65,535 (2^16) - 1). The Due stores a 4 byte (32-bit) value, ranging from 0 to
4,294,967,295 (2^32 - 1).

Example
Unsigned int counter= 60 ; // declaration of variable with type unsigned int and initialize
it with 60

Word
On the Uno and other ATMEGA based boards, a word stores a 16-bit unsigned number. On the
Due and Zero, it stores a 32-bit unsigned number.

Example
word w = 1000 ;//declaration of variable with type word and initialize it with
1000

Long
Long variables are extended size variables for number storage, and store 32 bits (4 bytes), from
2,147,483,648 to 2,147,483,647.

Example
Long velocity= 102346 ;//declaration of variable with type Long and initialize it with
102346

137 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

unsigned long
Unsigned long variables are extended size variables for number storage and store 32 bits (4
bytes). Unlike standard longs, unsigned longs will not store negative numbers, making
their range from 0 to 4,294,967,295 (2^32 - 1).

Unsigned Long velocity = 101006 ;// declaration of variable with type Unsigned
Long and initialize it with 101006

short
A short is a 16-bit data-type. On all Arduinos (ATMega and ARM based), a short stores a
16-bit (2-byte) value. This yields a range of -32,768 to 32,767 (minimum value of -2^15 and a
maximum value of (2^15) - 1).

Float
short val= 13 ;//declaration of variable with type short and initialize it with
13
Data type for floating-point number is a number that has a decimal point. Floating-point numbers
are often used to approximate the analog and continuous values because they have greater
resolution than integers.

Floating-point numbers can be as large as 3.4028235E+38 and as low as 3.4028235E+38. They
are stored as 32 bits (4 bytes) of information.

float num = 1.352;//declaration of variable with type float and initialize it with 1.352

double
On the Uno and other ATMEGA based boards, Double precision floating-point
number occupies four bytes. That is, the double implementation is exactly the same as
the float, with no gain in precision. On the Arduino Due, doubles have 8-byte (64 bit) precision.

double num = 45.352 ;// declaration of variable with type double and initialize it with
45.352

3. Arduino – Variables and Constant

Before we start explaining the variable types, a very important subject we need to make sure, you
fully understand is called the variable scope.

What is Variable Scope?
Variables in C programming language, which Arduino uses, have a property called scope. A
scope is a region of the program and there are three places where variables can be declared. They

138 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

are:

• Inside a function or a block, which is called local variables.
• In the definition of function parameters, which is called formal parameters.
• Outside of all functions, which is called global variables.

Local Variables
Variables that are declared inside a function or block are local variables. They can be used only
by the statements that are inside that function or block of code. Local variables are not known to
function outside their own. Following is the example using local variables:

Global Variables
Global variables are defined outside of all the functions, usually at the top of the program.
The global variables will hold their value throughout the life-time of your program.

A global variable can be accessed by any function. That is, a global variable is available for
use throughout your entire program after its declaration.

The following example uses global and local variables:

139 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

3.7.3. Arduino - Operators
An operator is a symbol that tells the compiler to perform specific mathematical or logical

functions. C language is rich in built-in operators and provides the following types of operators −
 Arithmetic Operators
 Comparison Operators
 Boolean Operators
 Bitwise Operators
 Compound Operators

Arithmetic Operators
Assume variable A holds 10 and variable B holds 20 then −

Operator
name

Operator
simple

Description Example

assignment
operator

=
Stores the value to the right of the equal
sign in the variable to the left of the
equal sign.

A = B

addition + Adds two operands A + B will give 30

subtraction - Subtracts second operand from the first A - B will give -10

140 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

multiplication * Multiply both operands A * B will give 200

division / Divide numerator by denominator B / A will give 2

modulo %
Modulus Operator and remainder of
after an integer division

B % A will give 0

Comparison Operators
Assume variable A holds 10 and variable B holds 20 then −

Operator
name

Operator
simple

Description Example

equal to ==
Checks if the value of two operands is equal or not,
if yes then condition becomes true.

(A == B)
is not true

not equal to !=
Checks if the value of two operands is equal or not,
if values are not equal then condition becomes true.

(A != B) is
true

less than <
Checks if the value of left operand is less than the
value of right operand, if yes then condition
becomes true.

(A < B) is
true

greater than >
Checks if the value of left operand is greater than
the value of right operand, if yes then condition
becomes true.

(A > B) is
not true

less than or
equal to

<=
Checks if the value of left operand is less than or
equal to the value of right operand, if yes then
condition becomes true.

(A <= B)
is true

greater than
or equal to

>=
Checks if the value of left operand is greater than
or equal to the value of right operand, if yes then
condition becomes true.

(A >= B)
is not true

Boolean Operators
Assume variable A holds 10 and variable B holds 20 then −

Operato
r name

Operator
simple

Description Example

141 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

and &&
Called Logical AND operator. If both the
operands are non-zero then then condition
becomes true.

(A && B) is
true

or ||
Called Logical OR Operator. If any of the two
operands is non-zero then then condition becomes
true.

(A || B) is true

not !
Called Logical NOT Operator. Use to reverses the
logical state of its operand. If a condition is true
then Logical NOT operator will make false.

!(A && B) is
false

Bitwise Operators
Assume variable A holds 60 and variable B holds 13 then −

Operato
r name

Operator
simple

Description Example

and &
Binary AND Operator copies a bit to the
result if it exists in both operands.

(A & B) will give
12 which is 0000
1100

or |
Binary OR Operator copies a bit if it exists in
either operand

(A | B) will give 61
which is 0011 1101

xor ^
Binary XOR Operator copies the bit if it is set
in one operand but not both.

(A ^ B) will give 49
which is 0011 0001

not ~
Binary Ones Complement Operator is unary
and has the effect of 'flipping' bits.

(~A) will give -60
which is 1100 0011

shift left <<
Binary Left Shift Operator. The left operands
value is moved left by the number of bits
specified by the right operand.

A << 2 will give
240 which is 1111
0000

shift right >>
Binary Right Shift Operator. The left
operands value is moved right by the number
of bits specified by the right operand.

A >> 2 will give 15
which is 0000 1111

Compound Operators
Assume variable A holds 10 and variable B holds 20 then −

142 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Operator
name

Operator
simple

Description Example

increment ++
Increment operator, increases integer value
by one

A++ will give
11

decrement --
Decrement operator, decreases integer value
by one

A-- will give 9

compound
addition

+=
Add AND assignment operator. It adds right
operand to the left operand and assign the
result to left operand

B += A is
equivalent to B
= B+ A

compound
subtraction

-=
Subtract AND assignment operator. It
subtracts right operand from the left operand
and assign the result to left operand

B -= A is
equivalent to B
= B - A

compound
multiplication

*=
Multiply AND assignment operator. It
multiplies right operand with the left operand
and assign the result to left operand

B*= A is
equivalent to B
= B* A

compound
division

/=
Divide AND assignment operator. It divides
left operand with the right operand and
assign the result to left operand

B /= A is
equivalent to B
= B / A

compound
modulo

%=
Modulus AND assignment operator. It takes
modulus using two operands and assign the
result to left operand

B %= A is
equivalent to B
= B % A

compound
bitwise or

|=
bitwise inclusive OR and assignment
operator

A |= 2 is same
as A = A | 2

compound
bitwise and

&= Bitwise AND assignment operator
A &= 2 is same
as A = A & 2

Arduino IDE
The Arduino IDE is very simple and easy to use.
Let’s see how to use it with the help of Blink example that comes in the Built-In examples with
the IDE.
1. Open the Arduino IDE from the folder you installed/unzipped it in.

143 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

2. In the File tab, go to the Examples option. Here you will find a list of all the Built-In
examples that come along with the IDE. You will also see Examples For Any Board in below the
Built-In examples.
Here, we will see the Blink example which blinks the LED on the Arduino board.

3. Once you click on Blink, a new window will open with the sketch (Arduino refers to codes
written in its IDE as sketch) for Blink.

4. Before burning this code into the Arduino board, we need to configure the IDE for the board
we need to burn this sketch into. We also need to select the appropriate communication port and
the method used for burning the code.

5. Go to the Tools tab and find the Board option in it. It will have a list of all the Arduino
Boards in it. Select the board you are using from that list. Here, we have used Arduino/Genuino
Uno Board.

144 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Arduino and Genuino are one and the same thing. Outside the USA, the Arduino boards are
called Genuino.

6. Now we need to select the appropriate communication port over which the computer/laptop
will communicate with the Arduino board. Under the Tools tab, you will find the Port option.
Select the port you have connected the Arduino board to from the Ports available in this list.

145 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

7. Now that we have selected the board and the communication port, we need to select the
appropriate programmer.
We will be using the AVR ISP mk2 programmer.

146 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

8. On the Arduino IDE, you will find 6 unique buttons. These are described below.

 This is used to verify (Arduino refers to compiling as verifying) the sketch.

 This is used to upload (Arduino refers burning a program as uploading) the sketch
onto the board.

 This is used to create a new sketch.

 This is used to open an existing sketch or built-in example.

 This is used to save the current sketch.

 This is used to open the serial monitor that comes with the Arduino IDE.
Note : You can use any other serial terminal program if you want instead of the Arduino serial
monitor. The serial monitor that comes with Arduino IDE can open only one serial port for

147 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

communication. If you need to observe multiple ports (multiple Arduino boards connected to the
same computer/laptop), you need to use other programs like Putty, RealTerm, TeraTerm, etc.
9. Now that we have selected the appropriate board, communication port, and the programmer,
we need to upload the Blink sketch on to the board.
We can either verify the sketch before the upload process or skip the verification process.
The IDE does the part of verifying the sketch before uploading as a part of the upload process.
10. Since this is a built-in example sketch, we will not get any warnings or errors upon verifying.
If there are any warnings or errors, they are displayed by the IDE in the black coloured area
below the area for writing code. This area is shown in the image in the next point, highlighted in
red.
11. Now upload the sketch onto the board. When the upload process is done, you will get a done
uploading message. You should be able to see the LED on your Arduino board blinking at 1
second intervals.

148 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

12. This process needs to be followed for all the sketches that are built-in or created by the user.
Understanding how the Arduino IDE sets up its file directory system can spare you some
confusion when it comes to saving, organizing and opening your Arduino sketches (or sketches
you have downloaded from the internet).

This week’s episode covers the following:
1. The Arduino Sketchbook folder
2. How to change the default location where your Arduino sketches get saved
3. What happens when an Arduino file does not have an enclosing sketch folder of the

same name
4. Where and how multiple tabs get saved in an Arduino sketch
5. Why the pancreas of a woodchuck is better suited than our own

The Arduino Sketchbook Folder And Changing The Default Save Location
The default location where Arduino sketches you write will be saved is called the Sketchbook.
The Sketchbook is simply a folder on your computer like any other. It acts as a handy repository
for sketches and is also where add-on code libraries get saved.

You can see the sketches in the Sketchbook folder by going to File > Sketchbook.

The default name of the Sketchbook folder is “Arduino” and the default location of the
Sketchbook folder is in the “My Documents” folder (or just “Documents” for Mac users).
If your Sketchbook does not appear to be in this default location, you can see exactly where it is
by opening the Arduino IDE and going to Arduino > Preferences.

149 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

The default file path for your sketches is listed at the top of Arduino Preferences window. Mine
is:
/Users/michaelJames/Documents/Arduino
When I save a file in the Arduino IDE, this “Arduino” folder is the default location where the
sketch will be saved, unless I choose to change that location by selecting a different folder on my
computer’s directory.

If you want to change this default location, you click the Browse button next to the file directory
path and choose a different place. Pretty simple.

3.8. Arduino Sketches
A sketch is the name that Arduino uses for a program. It's the unit of code that is

uploaded to and run on an Arduino board.

The first few lines of the Blink sketch are a comment:
/*
 * Blink
 *
 * The basic Arduino example. Turns on an LED on for one second,
 * then off for one second, and so on... We use pin 13 because,
 * depending on your Arduino board, it has either a built-in LED
 * or a built-in resistor so that you need only an LED.

150 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

https://i0.wp.com/www.programmingelectronics.com/wp-content/uploads/2015/06/Arduino-Preferences.jpg

lOMoARcPSD|26885763

 */

Everything between the
/*
 and
*/
 is ignored by the Arduino when it runs the sketch (the
*
 at the start of each line is only there to make the comment look pretty, and isn't required). It's
there for people reading the code: to explain what the program does, how it works, or why it's
written the way it is. It's a good practice to comment your sketches, and to keep the comments
up-to-date when you modify the code. This helps other people to learn from or modify your
code.

There's another style for short, single-line comments. These start with
//
 and continue to the end of the line. For example, in the line:

1int ledPin = 13; // LED connected to digital pin 13 the message "LED connected to
digital pin 13" is a comment.

Variables
A variable is a place for storing a piece of data. It has a name, a type, and a value. For
example, the line from the Blink sketch above declares a variable with the name ledPin, the
type int, and an initial value of 13. It's being used to indicate which Arduino pin the LED is
connected to. Every time the name ledPin appears in the code, its value will be retrieved. In this
case, the person writing the program could have chosen not to bother creating the ledPin variable
and instead have simply written 13 everywhere they needed to specify a pin number. The
advantage of using a variable is that it's easier to move the LED to a different pin: you only need
to edit the one line that assigns the initial value to the variable. Often, however, the value of a
variable will change while the sketch runs. For example, you could store the value read from
an input into a variable.

Functions
A function (otherwise known as a procedure or sub-routine) is a named piece of code that can
be used from elsewhere in a sketch. For example, here's the definition of the
setup()

function from the Blink example:
void setup()
{

151 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

 pinMode(ledPin, OUTPUT); // sets the digital pin as output
}
The first line provides information about the function, like its name, "setup". The text before
and after the name specify its return type and parameters: these will be explained later. The
code between the { and } is called the body of the function: what the function does.

You can call a function that's already been defined (either in your sketch or as part of
the Arduino language). For example, the line pinMode(ledPin, OUTPUT); calls the pinMode()
function, passing it two parameters: ledPin and OUTPUT. These parameters are used by the
pinMode() function to decide which pin and mode to set.

pinMode(), digitalWrite(), and delay()
The pinMode() function configures a pin as either an input or an output. To use it, you

pass it the number of the pin to configure and the constant INPUT or OUTPUT. When
configured as an input, a pin can detect the state of a sensor like a pushbutton. As an output, it
can drive an actuator like an LED.

The digitalWrite()
 functions outputs a value on a pin. For example, the line:

digitalWrite(ledPin, HIGH);
set the ledPin (pin 13) to HIGH, or 5 volts. Writing a LOW to pin connects it to ground, or 0
volts.

The delay() causes the Arduino to wait for the specified number of milliseconds before
continuing on to the next line. There are 1000 milliseconds in a second, so the line:
delay(1000);
creates a delay of one second.

setup() and loop()
There are two special functions that are a part of every Arduino sketch:
setup() and loop(). The setup() is called once, when the sketch starts. It's a good place to do setup
tasks like setting pin modes or initializing libraries. The loop() function is called over and over
and is heart of most sketches. You need to include both functions in your sketch, even if you
don't need them for anything.

3.8. Arduino Sketches using software
If you go into your file directory system and open up the Sketchbook folder (again, named
“Arduino” by default), you may see a bunch of folders that you didn’t make. This is because

152 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

every Arduino file must be inside a folder that has the same name as the file (there are some
exceptions to this that we’ll talk about in a moment).

Let me say that one more time because it is really important to understand. Every Arduino file
must be inside a folder that has the same name as the file When I write a new sketch and save it,
the Arduino IDE automatically creates a new folder that has the exact same name as the sketch
itself. The Arduino file (which has the extension .ino) is placed inside this enclosing folder,
which is called a sketch folder.

If you go into the Sketchbook folder and change the name of the enclosing folder, it will create
some issues. The first issue is that when you go to File > Sketchbook, the sketch will no longer
show up! If you want to open this sketch you need to go to the .ino file in your directory and
open it from there.

If you open a .ino file that is not inside an enclosing sketch folder of the exact same name, then
you will get a pop-up from the Arduino IDE that says:

“The file “sketch_name.ino” needs to be inside a sketch folder named “sketch_name”. Create
this folder, move the file, and continue?”

If you choose Cancel, the sketch will not open. If you choose OK, then a folder gets created (it
will have the same name as the sketch) and the .ino file is placed inside it.

153 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

This sketch folder will be created in whatever directory the .ino file was that you tried to open.
For example, if you tried to open a .ino file that was in your My Downloads folder, then the
enclosing sketch folder also will be created inside the My Downloads folder.

Saving Tabs In Arduino
The exception to the rule about the sketch folder having the same name as the .ino file is when
you create multiple tabs in an Arduino sketch.
The additional tabs do NOT need to bear the same name as the enclosing sketch folder.

Once you get a handle on some of these intricacies of the Arduino IDE file system, it can really
help to clear things up.
Arduino Shields

3.9. Arduino Pins

An Introduction to Arduino Uno Pinout
Arduino Uno is based on the ATmega328 by Atmel. The Arduino Uno pinout consists of 14
digital pins, 6 analog inputs, a power jack, USB connection and ICSP header. The versatility of
the pinout provides many different options such as driving motors, LEDs, reading sensors and
more. In this post, we’ll go over the capabilities of the Arduino Uno pinout.

Arduino Uno pinout - Power Supply

There are 3 ways to power the Arduino Uno:
 Barrel Jack - The Barrel jack, or DC Power Jack can be used to power your Arduino

board. The barrel jack is usually connected to a wall adapter. The board can be powered
by 5-20 volts but the manufacturer recommends to keep it between 7-12 volts. Above 12
volts, the regulators might overheat, and below 7 volts, might not suffice.

154 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

https://i0.wp.com/www.programmingelectronics.com/wp-content/uploads/2015/06/Tabs-e1431619489657.jpg

lOMoARcPSD|26885763

Arduino Uno Pinout – Diagram

 VIN Pin - This pin is used to power the Arduino Uno board using an external power
source. The voltage should be within the range mentioned above.

 USB cable - when connected to the computer, provides 5 volts at 500mA.

There is a polarity protection diode connecting between the positive of the barrel jack to the VIN
pin, rated at 1 Ampere.

The power source you use determines the power you have available for your circuit. For
instance, powering the circuit using the USB limits you to 500mA. Take into consideration that
this is also used for powering the MCU, its peripherals, the on-board regulators, and the

155 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

components connected to it. When powering your circuit through the barrel jack or VIN, the
maximum capacity available is determined by the 5 and 3.3 volts regulators on-board the
Arduino.

 5v and 3v3
They provide regulated 5 and 3.3v to power external components according to manufacturer
specifications.

Arduino Uno Pinout - Analog IN

The Arduino Uno has 6 analog pins, which utilize ADC (Analog to Digital converter).
These pins serve as analog inputs but can also function as digital inputs or digital outputs.

 GND
In the Arduino Uno pinout, you can find 5 GND pins, which are all interconnected.
The GND pins are used to close the electrical circuit and provide a common logic reference level
throughout your circuit. Always make sure that all GNDs (of the Arduino, peripherals and
components) are connected to one another and have a common ground.

 RESET - resets the Arduino
 IOREF - This pin is the input/output reference. It provides the voltage reference with

which the microcontroller operates.

Analog to Digital Conversion
ADC stands for Analog to Digital Converter. ADC is an electronic circuit used to convert analog
signals into digital signals. This digital representation of analog signals allows the processor
(which is a digital device) to measure the analog signal and use it through its operation.
Arduino Pins A0-A5 are capable of reading analog voltages. On Arduino the ADC has 10-bit
resolution, meaning it can represent analog voltage by 1,024 digital levels. The ADC converts
voltage into bits which the microprocessor can understand.
One common example of an ADC is Voice over IP (VoIP). Every smartphone has a microphone
that converts sound waves (voice) into analog voltage. This goes through the device’s ADC, gets
converted into digital data, which is transmitted to the receiving side over the internet.

Arduino Uno Pinout - Digital Pins

156 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

 Pins 0-13 of the Arduino Uno serve as digital input/output pins.
 Pin 13 of the Arduino Uno is connected to the built-in LED.

In the Arduino Uno - pins 3,5,6,9,10,11 have PWM capability.

It’s important to note that:
● Each pin can provide/sink up to 40 mA max. But the recommended current is 20 mA.
● The absolute max current provided (or sank) from all pins together is 200mA

What does digital mean?
Digital is a way of representing voltage in 1 bit: either 0 or 1. Digital pins on the Arduino are
pins designed to be configured as inputs or outputs according to the needs of the user. Digital
pins are either on or off. When ON they are in a HIGH voltage state of 5V and when OFF they
are in a LOW voltage state of 0V.

On the Arduino, When the digital pins are configured as output, they are set to 0 or 5 volts.
When the digital pins are configured as input, the voltage is supplied from an external device.
This voltage can vary between 0-5 volts which is converted into digital representation (0 or 1).
To determine this, there are 2 thresholds:

● Below 0.8v - considered as 0.
● Above 2v - considered as 1.

When connecting a component to a digital pin, make sure that the logic levels match. If the
voltage is in between the thresholds, the returning value will be undefined.

What is PWM?
In general, Pulse Width Modulation (PWM) is a modulation technique used to encode
a message into a pulsing signal. A PWM is comprised of two key components:
frequency and duty cycle. The PWM frequency dictates how long it takes to complete a single
cycle (period) and how quickly the signal fluctuates from high to low. The duty cycle determines
how long a signal stays high out of the total period. Duty cycle is represented in percentage.

In Arduino, the PWM enabled pins produce a constant frequency of ~ 500Hz, while the duty
cycle changes according to the parameters set by the user. See the following illustration:

157 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

PWM signals are used for speed control of DC motors, dimming LEDs and more.

Communication Protocols
Serial (TTL) - Digital pins 0 and 1 are the serial pins of the Arduino Uno.
They are used by the onboard USB module.

What is Serial Communication?
Serial communication is used to exchange data between the Arduino board and another serial
device such as computers, displays, sensors and more. Each Arduino board has at least one serial
port. Serial communication occurs on digital pins 0 (RX) and 1 (TX) as well as via USB.
Arduino supports serial communication through digital pins with the SoftwareSerial Library as

158 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

well. This allows the user to connect multiple serial-enabled devices and leave the main serial
port available for the USB.

Software serial and hardware serial - Most microcontrollers have hardware designed to
communicate with other serial devices. Software serial ports use a pin-change interrupt system to
communicate. There is a built-in library for Software Serial communication. Software serial is
used by the processor to simulate extra serial ports. The only drawback with software serial is
that it requires more processing and cannot support the same high speeds as hardware serial.

SPI - SS/SCK/MISO/MOSI pins are the dedicated pins for SPI communication. They can be
found on digital pins 10-13 of the Arduino Uno and on the ICSP headers.

What is SPI?
Serial Peripheral Interface (SPI) is a serial data protocol used by microcontrollers to
communicate with one or more external devices in a bus like connection. The SPI can also be
used to connect 2 microcontrollers. On the SPI bus, there is always one device that is denoted as
a Master device and all the rest as Slaves. In most cases, the microcontroller is the Master device.
The SS (Slave Select) pin determines which device the Master is currently communicating with.
SPI enabled devices always have the following pins:

 MISO (Master In Slave Out) - A line for sending data to the Master device
 MOSI (Master Out Slave In) - The Master line for sending data to peripheral devices
 SCK (Serial Clock) - A clock signal generated by the Master device to synchronize data

transmission.

I2C - SCL/SDA pins are the dedicated pins for I2C communication. On the Arduino Uno they
are found on Analog pins A4 and A5.

What is I2C?
I2C is a communication protocol commonly referred to as the “I2C bus”. The I2C protocol was
designed to enable communication between components on a single circuit board. With I2C there
are 2 wires referred to as SCL and SDA.

 SCL is the clock line which is designed to synchronize data transfers.
 SDA is the line used to transmit data.

Each device on the I2C bus has a unique address, up to 255 devices can be connected on the
same bus.

Aref - Reference voltage for the analog inputs.

Interrupt - INT0 and INT1. Arduino Uno has two external interrupt pins.

159 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

External Interrupt - An external interrupt is a system interrupt that occurs when outside
interference is present. Interference can come from the user or other hardware devices in the
network. Common uses for these interrupts in Arduino are reading the frequency a square wave
generated by encoders or waking up the processor upon an external event.
Arduino has two forms of interrupt:

 External
 Pin Change

There are two external interrupt pins on the ATmega168/328 called INT0 and INT1. both INT0
and INT1 are mapped to pins 2 and 3. In contrast, Pin Change interrupts can be activated on any
of the pins.

Arduino Uno Pinout - ICSP Header

ICSP stands for In-Circuit Serial Programming. The name originated from In-System
Programming headers (ISP). Manufacturers like Atmel who work with Arduino have developed
their own in-circuit serial programming headers. These pins enable the user to program the
Arduino boards’ firmware. There are six ICSP pins available on the Arduino board that can be
hooked to a programmer device via a programming cable.

3.10. Input/output pins on the Arduino

Output pins
An output pin provides VDD or 0 V, by making a connection to VDD or ground via a
transistor. You set its state to HIGH (for VDD) or LOW (for 0 V) using the digitalWrite()
function. A (simplified) schematic of an output pin is shown below. You might notice that it
looks a bit like a CMOS inverter (or rather, two).

The
transistors in the output pin have non-negligible on resistance, so aren’t suitable for driving
large loads. When talking about this resistance in relation to an output pin, we call it the output

160 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

resistance of the pin—in other words, the resistance “seen” by a device connected to the pin.
Since this resistance might depend on the state of the pin (HIGH or LOW), it actually has two
output resistances. You’ll measure both in prelab 2b.

Input pins
An input pin reads the voltage on the pin as if it were a voltmeter, and returns either HIGH (1) in
software if the voltage is close to VDD , or LOW (0) if it is close to 0 V. An input pin can be
read using the digitalRead() function.

The value returned by digitalRead() is unpredictable (i.e., could be either HIGH or LOW)
when the input voltage is not close to either VDD or 0 V. The precise meaning of “close”
varies between microcontrollers, but for the Adafruit Metro Mini1 in our circuit, the input pin
voltage needs to be at least 0.6VDD to qualify as HIGH, and at most 0.3VDD to qualify as
LOW.

Arduino - I/O Functions

The pins on the Arduino board can be configured as either inputs or outputs. We will
explain the functioning of the pins in those modes. It is important to note that a majority of
Arduino analog pins, may be configured, and used, in exactly the same manner as digital pins.

Pins Configured as INPUT

Arduino pins are by default configured as inputs, so they do not need to be explicitly declared as
inputs with pinMode() when you are using them as inputs. Pins configured this way are said to
be in a high-impedance state. Input pins make extremely small demands on the circuit that they
are sampling, equivalent to a series resistor of 100 megaohm in front of the pin.

161 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

This means that it takes very little current to switch the input pin from one state to another. This
makes the pins useful for such tasks as implementing a capacitive touch sensor or reading an
LED as a photodiode.

Pins configured as pinMode(pin, INPUT) with nothing connected to them, or with wires
connected to them that are not connected to other circuits, report seemingly random changes in
pin state, picking up electrical noise from the environment, or capacitively coupling the state of a
nearby pin.

Pull-up Resistors

Pull-up resistors are often useful to steer an input pin to a known state if no input is present. This
can be done by adding a pull-up resistor (to +5V), or a pull-down resistor (resistor to ground) on
the input. A 10K resistor is a good value for a pull-up or pull-down resistor.

Using Built-in Pull-up Resistor with Pins Configured as Input

There are 20,000 pull-up resistors built into the Atmega chip that can be accessed from software.
These built-in pull-up resistors are accessed by setting the pinMode() as INPUT_PULLUP. This
effectively inverts the behavior of the INPUT mode, where HIGH means the sensor is OFF and
LOW means the sensor is ON. The value of this pull-up depends on the microcontroller used. On
most AVR-based boards, the value is guaranteed to be between 20kΩ and 50kΩ. On the Arduino
Due, it is between 50kΩ and 150kΩ. For the exact value, consult the datasheet of the
microcontroller on your board.

When connecting a sensor to a pin configured with INPUT_PULLUP, the other end should be
connected to the ground. In case of a simple switch, this causes the pin to read HIGH when the
switch is open and LOW when the switch is pressed. The pull-up resistors provide enough
current to light an LED dimly connected to a pin configured as an input. If LEDs in a project
seem to be working, but very dimly, this is likely what is going on.

Same registers (internal chip memory locations) that control whether a pin is HIGH or LOW
control the pull-up resistors. Consequently, a pin that is configured to have pull-up resistors
turned on when the pin is in INPUTmode, will have the pin configured as HIGH if the pin is then
switched to an OUTPUT mode with pinMode(). This works in the other direction as well, and an
output pin that is left in a HIGH state will have the pull-up resistor set if switched to an input
with pinMode().

Example

pinMode(3,INPUT) ; // set pin to input without using built in pull up resistor
pinMode(5,INPUT_PULLUP) ; // set pin to input using built in pull up resistor

Pins Configured as OUTPUT

Pins configured as OUTPUT with pinMode() are said to be in a low-impedance state. This means
that they can provide a substantial amount of current to other circuits. Atmega pins can source
(provide positive current) or sink (provide negative current) up to 40 mA (milliamps) of current
to other devices/circuits. This is enough current to brightly light up an LED (do not forget the
series resistor), or run many sensors but not enough current to run relays, solenoids, or motors.

162 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Attempting to run high current devices from the output pins, can damage or destroy the output
transistors in the pin, or damage the entire Atmega chip. Often, this results in a "dead" pin in the
microcontroller but the remaining chips still function adequately. For this reason, it is a good
idea to connect the OUTPUT pins to other devices through 470Ω or 1k resistors, unless
maximum current drawn from the pins is required for a particular application.

pinMode() Function

The pinMode() function is used to configure a specific pin to behave either as an input or an
output. It is possible to enable the internal pull-up resistors with the mode INPUT_PULLUP.
Additionally, the INPUT mode explicitly disables the internal pull-ups.

pinMode() Function Syntax

Void setup ()
{
 pinMode (pin , mode);
}

 pin − the number of the pin whose mode you wish to set
 mode − INPUT, OUTPUT, or INPUT_PULLUP.

Example

int button = 5 ; // button connected to pin 5
int LED = 6; // LED connected to pin 6

void setup () {
 pinMode(button , INPUT_PULLUP);
 // set the digital pin as input with pull-up resistor
 pinMode(button , OUTPUT); // set the digital pin as output
}

void setup () {
 If (digitalRead(button) == LOW) // if button pressed {
 digitalWrite(LED,HIGH); // turn on led
 delay(500); // delay for 500 ms
 digitalWrite(LED,LOW); // turn off led
 delay(500); // delay for 500 ms
 }
}

digitalWrite() Function

The digitalWrite() function is used to write a HIGH or a LOW value to a digital pin. If the pin
has been configured as an OUTPUT with pinMode(), its voltage will be set to the corresponding
value: 5V (or 3.3V on 3.3V boards) for HIGH, 0V (ground) for LOW. If the pin is configured as
an INPUT, digitalWrite() will enable (HIGH) or disable (LOW) the internal pullup on the input

163 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

pin. It is recommended to set the pinMode() to INPUT_PULLUP to enable the internal pull-up
resistor.

If you do not set the pinMode() to OUTPUT, and connect an LED to a pin, when calling
digitalWrite(HIGH), the LED may appear dim. Without explicitly setting pinMode(),
digitalWrite() will have enabled the internal pull-up resistor, which acts like a large current-
limiting resistor.

digitalWrite() Function Syntax

Void loop()
{
 digitalWrite (pin ,value);
}

 pin − the number of the pin whose mode you wish to set
 value − HIGH, or LOW.

Example

int LED = 6; // LED connected to pin 6

void setup ()
{
 pinMode(LED, OUTPUT); // set the digital pin as output
}
void setup ()
{
 digitalWrite(LED,HIGH); // turn on led
 delay(500); // delay for 500 ms
 digitalWrite(LED,LOW); // turn off led
 delay(500); // delay for 500 ms
}

analogRead() function

Arduino is able to detect whether there is a voltage applied to one of its pins and report it through
the digitalRead() function. There is a difference between an on/off sensor (which detects the
presence of an object) and an analog sensor, whose value continuously changes. In order to read
this type of sensor, we need a different type of pin.

In the lower-right part of the Arduino board, you will see six pins marked “Analog In”. These
special pins not only tell whether there is a voltage applied to them, but also its value. By using
the analogRead() function, we can read the voltage applied to one of the pins.

This function returns a number between 0 and 1023, which represents voltages between 0 and 5
volts. For example, if there is a voltage of 2.5 V applied to pin number 0, analogRead(0) returns
512.

analogRead() function Syntax

164 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

analogRead(pin);
 pin − the number of the analog input pin to read from (0 to 5 on most boards, 0 to 7 on

the Mini and Nano, 0 to 15 on the Mega)

Example

int analogPin = 3;//potentiometer wiper (middle terminal)
 // connected to analog pin 3
int val = 0; // variable to store the value read

void setup()
{
 Serial.begin(9600); // setup serial
}
void loop()
{
 val = analogRead(analogPin); // read the input pin
 Serial.println(val); // debug value
}

3.11. Arduino Shields
Arduino shields are the boards, which are plugged over the Arduino board to expand its
functionalities. There are different varieties of shields used for various tasks, such as Arduino
motor shields, Arduino communication shields, etc.

Shield is defined as the hardware device that can be mounted over the board to increase the
capabilities of the projects. It also makes our work easy. For example, Ethernet shields are used
to connect the Arduino board to the Internet.

The pin position of the shields is similar to the Arduino boards. We can also connect the modules
and sensors to the shields with the help of the connection cable.

Arduino motor shields help us to control the motors with the Arduino board.

Why do we need Shields?
The advantages of using Arduino shields are listed below:

o It adds new functionalities to the Arduino projects.
o The shields can be attached and detached easily from the Arduino board. It does not

require any complex wiring.
o It is easy to connect the shields by mounting them over the Arduino board.
o The hardware components on the shields can be easily implemented.

165 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Types of Shields
The popular Arduino shields are listed below:

o Ethernet shield
o Xbee Shield
o Proto shield
o Relay shield
o Motor shield
o LCD shield
o Bluetooth shield
o Capacitive Touchpad Shield

Let's discuss the shields that are listed above:
Ethernet shield

o The Ethernet shields are used to connect the Arduino board to the Internet. We need to
mount the shield on the top of the specified Arduino board.

o The USB port will play the usual role to upload sketches on the board.
o The latest version of Ethernet shields consists of a micro SD card slot. The micro SD card

slot can be interfaced with the help of the SD card library.
o

The Ethernet shield is shown below:

o We can also connect another shield on the top of the Ethernet shield. It means that we can
also mount two shields on the top of the Arduino board.

Xbee Shield
o We can communicate wirelessly with the Arduino board by using the Xbee Shield with

Zigbee.
o It reduces the hassle of the cable, which makes Xbee a wireless communication model.

166 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

o The Xbee wireless module allows us to communicate outdoor upto 300 feet and indoor
upto 100 feet.

o The Xbee shield is shown below:

o It can also be used with different models of Xbee.

Proto shield
o Proto shields are designed for custom circuits.
o We can solder electronic circuits directly on the shield.
o The shield consists of two LED pads, two power lines, and SPI signal pads.
o The IOREF (Input Output voltage REFerence) and GND (Ground) are the two power

lines on the board.
The proto shield is shown below:

o We can also solder the SMD (Surface Mount Device) ICs on the prototyping area. A
maximum of 24 pins can be integrated onto the SMD area.

Relay shield

167 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

o The Arduino digital I/O pins cannot bear the high current due to its voltage and current
limits. The relay shield is used to overcome such situation. It provides a solution for
controlling the devices carrying high current and voltage.

o The shield consists of four relays and four LED indicators.
o It also provides NO/NC interfaces and a shield form factor for the simple connection to

the Arduino board.
o The LED indicators depicts the ON/OFF condition of each relay.
o The relay used in the structure is of high quality.
o The NO (Normally Open), NC (Normally Closed), and COM pins are present on each

relay.
o The relay shield is shown below:

o The applications of the Relay shield include remote control, etc.

Motor shield
o The motor shield helps us to control the motor using the Arduino board.
o It controls the direction and working speed of the motor. We can power the motor shield

either by the external power supply through the input terminal or directly by the Arduino.
o We can also measure the absorption current of each motor with the help of the motor

shield.
o The motor shield is based on the L298 chip that can drive a step motor or two DC motors.

L298 chip is a full bridge IC. It also consists of the heat sinker, which increases the
performance of the motor shield.

o It can drive inductive loads, such as solenoids, etc.
o The operating voltage is from 5V to 12V.

The Motor shield is shown below:

168 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

o The applications of the motor shield are intelligent vehicles, micro-robots, etc.

LCD shield
o The keypad of LCD (Liquid Crystal Display) shield includes five buttons called as up,

down, left, right, and select.
o There are 6 push buttons present on the shield that can be used as a custom menu control

panel.
o It consists of the 1602 white characters, which are displayed on the blue backlight LCD.
o The LED present on the board indicates the power ON.
o The five keys present on the board helps us to make the selection on menus and from

board to our project.
o

The LCD shield is shown below:

o The LCD shield is popularly designed for the classic boards such as Duemilanove, UNO,
etc.

Bluetooth shield

169 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

o The Bluetooth shield can be used as a wireless module for transparent serial
communication.

o It includes a serial Bluetooth module. D0 and D1 are the serial hardware ports in the
Bluetooth shield, which can be used to communicate with the two serial ports (from D0
to D7) of the Arduino board.

o We can install Groves through the two serial ports of the Bluetooth shield called a Grove
connector. One Grove connector is digital, while the other is analog.

The Bluetooth shield is shown below:

o The communication distance of the Bluetooth shield is upto 10m at home without any
obstacle in between.

Capacitive Touchpad shield
o It has a touchpad interface that allows to integrate the Arduino board with the touch

shield.
o The Capacitive touchpad shield consists of 12 sensitive touch buttons, which includes 3

electrode connections and 9 capacitive touch pads.
o The capacitive shield is shown below:

o The board can work with the logic level of 3.3V or 5V.

170 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

o We can establish a connection to the Arduino project by touching the shield.

3.12. Integration of Sensors and Actuators with Arduino

Sensors and Actuators in IoT | Enabling Industrial Automation

The Internet of Things is a major contributing factor of the new Data Economy. The value of an
IoT system goes beyond the original intended use case, for instance in automation. This is
because further value lies in the intelligence that an IoT system creates. Sensors are the source of
IoT data. Furthermore, sensors and actuators in IoT can work together to enable automation at
industrial scale. Finally, analysis of the data that these sensors and actuators produce can provide
valuable business insights over time.

Driven by new innovations in materials and nanotechnology, sensor technology is developing at
a never before seen pace, with a result of increased accuracy, decreased size and cost, and the
ability to measure or detect things that weren’t previously possible. In fact, sensing technology is
developing so rapidly and becoming so advanced that we will see a trillion new sensors deployed
annually within a few years.

Sensors
A better term for a sensor is a transducer. A transducer is any physical device that converts one
form of energy into another. So, in the case of a sensor, the transducer converts some physical
phenomenon into an electrical impulse that determines the reading. A microphone is a sensor
that takes vibrational energy (sound waves), and converts it to electrical energy in a useful way
for other components in the system to correlate back to the original sound.

Actuators
Another type of transducer that you will encounter in many IoT systems is an actuator. In simple
terms, an actuator operates in the reverse direction of a sensor. It takes an electrical input and

171 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

https://bridgera.com/iot-systems-overview/

lOMoARcPSD|26885763

turns it into physical action. For instance, an electric motor, a hydraulic system, and a pneumatic
system are all different types of actuators.

Controller
In a typical IoT system, a sensor may collect information and route to a control center. There,
previously defined logic dictates the decision. As a result, a corresponding command controls
an actuator in response to that sensed input. Thus, sensors and actuators in IoT work together
from opposite ends. Later, we will discuss where the control center resides in the greater IoT
system.

Integrating sensors and actuators with an Arduino microcontroller is a fundamental aspect of
creating interactive and automated projects. Arduino is a versatile platform for developing these
projects because it provides a simple and easy-to-learn programming environment along with a
wide range of compatible sensors and actuators. Here's a step-by-step guide on how to integrate
sensors and actuators with Arduino:
1. Gather the Necessary Components:
Arduino board (e.g., Arduino Uno, Arduino Nano, etc.)
Sensors (e.g., temperature sensor, light sensor, motion sensor, etc.)
Actuators (e.g., LEDs, motors, servos, relays, etc.)
Breadboard and jumper wires
Power source (e.g., USB cable or external power supply)

2. Install the Arduino IDE:
Download and install the Arduino Integrated Development Environment (IDE) on your computer
from the official Arduino website (https://www.arduino.cc/en/software).

3. Connect the Hardware:
Connect the sensor and actuator components to the Arduino using jumper wires.
Make sure to connect the sensor's output pin to a digital or analog input pin on the Arduino and
the actuator to a digital output pin.

4. Write Arduino Sketch (Code):
Open the Arduino IDE and create a new sketch.
Write the code that reads data from the sensor(s) and controls the actuator(s) based on that data.
Use the appropriate libraries for your sensors and actuators if needed.

5. Upload the Code to the Arduino:
Connect the Arduino to your computer using a USB cable.
Select the correct Arduino board and port in the Arduino IDE.
Click the "Upload" button to upload your code to the Arduino.

172 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

6. Monitor and Debug:
Open the Arduino Serial Monitor (Tools -> Serial Monitor) to view sensor readings and debug
your code.
Adjust the code as necessary to achieve the desired behavior.

7. Power Considerations:
Ensure that your power supply can handle the power requirements of your sensors and actuators.
Some components may require an external power supply.

8. Additional Components and Circuitry:
Depending on your project, you may need additional components such as resistors, capacitors,
and transistors to interface with certain sensors or drive high-power actuators.

9. Expand and Customize:
Continue to add more sensors and actuators to create complex projects.
Explore third-party libraries and online resources for additional functionality and project ideas.

10. Enclosure and Mounting:
Depending on your project's requirements, you may need to design and build an enclosure to
house the Arduino, sensors, and actuators, and mount them in the desired location.
Remember to refer to the datasheets and documentation for your specific sensors and actuators to
understand their pinouts and operation. Arduino's online community and forums are also
valuable resources for getting help and finding project inspiration.

173 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

UNIT IV

IOT COMMUNICATION AND OPEN PLATFORMS

 IoT Communication Models and APIs

 IoT Communication Protocols

 Bluetooth

 WiFi

 ZigBee

 GPS

 GSM modules

 Open Platform (like Raspberry Pi)

 Architecture

 Programming

 Interfacing

 Accessing GPIO Pins

 Sending and Receiving Signals Using GPIO Pins

 Connecting to the Cloud.

174 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

4.1. Internet of Things: Communication Models and APIs

 “The Internet of Things is not a concept; it is a network, the true technology-enabled Network
of all networks.” — Edewede Oriwoh

"Internet of Things is the network of physical objects or ‘things’ embedded with electronics,
software, sensors and connectivity to enable it to achieve greater value and service by
exchanging data with the manufacturer, operator and/or other connected devices. Each thing
is uniquely identifiable through its embedded computing system but is able to interoperate
within the existing Internet infrastructure."

 Communication Models in IoT
Understanding how the different IoT devices communicate with each
other is important and useful cause IoT devices are found almost
everywhere now. Communication models are the way to understand it.
IoTs enable people and things to be connected anytime, in any space, with
anything and anyone, through any network and service.
Now let us understand the different communication models in IoT.

Request & Response Model

The communication takes place between a client and a server.
Whenever required, the client will request information from the server. This request is usually in
the encoded format. So in this model, basically a client sends requests to the server and the
server responds to the requests. That is why it is called as Request-Response model. After
receiving the request from the client, the server decides how to respond, fetches the data from the
database and its resource representation, prepares a response and ultimately sends the response to
the client.

Publish-Subscribe Model(Pub-Sub)

175 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

In this model, you will find three main entities:- Publisher, Broker and Consumer Let us see the
roles of each of these 3 entities. Publishers, send the data to the topics that are managed by the
broker. They are the source of data. The Man in the Middle, the Broker, has the responsibility to
accept the data sent by the publisher and deliver that data to the consumers.What is the task of
the Consumers? Consumers will subscribe to the broker-managed topics. Once the data is
published on a topic, the broker sends this message to all consumers who have subscribed to the
specific topic. It works a bit like YouTube. When you subscribe to a channel and tap the Bell
icon, you'll get notifications if the YouTube channel posts a video.

Push-Pull Model

Here too, we have 3 entities:- Publisher, Queues and Consumers.
Push-Pull is a communication model where data producers push data into queues and consumers
pull data out of queues. What are Queues? They are used to separate out single producer-
consumer communication. At times, there might be some mismatch in the push-pull rates.
Queues act as a buffer which helps in situations when there is a mismatch between the rate at

176 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

which the producers push data and the rate at which the consumer pull data. So they work as a
buffer and flow control mechanisms whenever there is any mismatch in the push-pull rates.

Exclusive Pair Model

It's a bi-directional, fully duplex communication model in which a dedicated communication link
is set between the client and the server. The connection remains open until the client sends a
request to close the connection. The client and server can send messages to one another after
configuring the connection. As soon as the connection is terminated, no exchange of messages
would take place between the client and the server.

IoT Communication APIs
An API is an interface used by programs to access an application. It enables a program to send
commands to another program and receive replies from the app. IoT APIs are the interface points
between an IoT device and the Internet and/or other network components.
Here we will talk about the REST-based API and the Websocket based API.

177 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

REST-based APIs (Representational state transfer)

Representational state transfer (REST) is a set of architectural principles by which you can
design Web services the Web APIs that focus on the system's resources and how resource states
are addressed and transferred.

URIs(example:- example.com/api/tasks) are used to depict resources in the RESTful web
service.
Client tries to access these resources via URIs using commands like GET, PUT, POST, DELETE
and so on that are defined by HTTP.
In response, the server responds with a JSON object or XML file.
The REST APIs follow the request-response model.
The rest architectural constraints are as follows:

Client-server
Let me explain it to you by giving a suitable example. The client should not be concerned with
the storage of data which is a concern of the server, similarly, the server should not be concerned
about the user interface, which is the concern of the client. Separation makes it possible for the
client and server to be developed and updated independently.

178 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

http://example.com/api/tasks

lOMoARcPSD|26885763

Stateless
The status of the session remains entirely on the client.
Cache-able
This property defines whether the response to any request can be cached or not. If a response can
be cached, then a client cache is granted the right to reuse that response data for subsequent
matching requests.
Layered system
A layered system defines the boundaries of the components within each specific layer. For
example, A client is unable to tell whether it is connected to the end server or an intermediate
node. As simple as that!
Uniform interface
This specifies that the technique of communication between a client and a server must be
uniform throughout the communication period.
Code on Demand
Servers may provide executable code or scripts for execution by clients in their context.
Websocket based APIs

Websocket APIs enable bi-directional and duplex communication between customers and
servers.
Unlike REST, There is no need to set up a connection every now and then to send messages
between a client and a server.
It works on the principle of the exclusive pair model. Can you recall it? Yes. Once a connection
is set up, there is a constant exchange of messages between the client and the server. All we need

179 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

is to establish a dedicated connection to start the process. the communication goes on unless the
connection is terminated.
It is a stateful type.
Due to onetime dedicated connection setup, there is less overhead, lower traffic and less latency
and high throughput.

4.2. IoT Communication Protocols
Several Communication Protocols and Technology used in the internet of Things. Some

of the major IoT technology and protocol (IoT Communication Protocols) are Bluetooth, Wifi,
Radio Protocols, LTE-A, and WiFi-Direct.

4.2.1. Bluetooth
An important short-range IoT communications Protocols / Technology. Bluetooth, which has
become very important in computing and many consumer product markets. It is expected to be
key for wearable products in particular, again connecting to the IoT albeit probably via a
smartphone in many cases.

Iot Technology – Bluetooth
4.2.2. Zigbee
ZigBee is similar to Bluetooth and is majorly used in industrial settings. It has some significant
advantages in complex systems offering low-power operation, high security, robustness and high
and is well positioned to take advantage of wireless control and sensor networks in IoT
applications.

The latest version of ZigBee is the recently launched 3.0, which is essentially the unification of
the various ZigBee wireless standards into a single standard.

180 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Iot Technology – ZigBee

4.2.3. Z-Wave
Z-Wave is a low-power RF communications IoT technology that primarily design for home
automation for products such as lamp controllers and sensors among many other devices.
A Z-Wave uses a simpler protocol than some others, which can enable faster and simpler
development, but the only maker of chips is Sigma Designs compared to multiple sources for
other wireless technologies such as ZigBee and others.

Iot Technology – Z-Waved. Wi-Fi

WiFi connectivity is one of the most popular IoT communication protocol, often an obvious
choice for many developers, especially given the availability of WiFi within the home
environment within LANs.

181 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

There is a wide existing infrastructure as well as offering fast data transfer and the ability to
handle high quantities of data.

Currently, the most common WiFi standard used in homes and many businesses is 802.11n,
which offers range of hundreds of megabit per second, which is fine for file transfers but may be
too power-consuming for many IoT applications.

4.2.4. Cellular
Any IoT application that requires operation over longer distances can take advantage of
GSM/3G/4G cellular communication capabilities. While cellular is clearly capable of sending
high quantities of data, especially for 4G, the cost and also power consumption will be too high
for many applications.

But it can be ideal for sensor-based low-bandwidth-data projects that will send very low amounts
of data over the Internet.

IoT Communication Protocols – Cellular
4.2.5. NFC
NFC (Near Field Communication) is an IoT technology. It enables simple and safe
communications between electronic devices, and specifically for smartphones, allowing
consumers to perform transactions in which one does not have to be physically present.
It helps the user to access digital content and connect electronic devices. Essentially it extends
the capability of contactless card technology and enables devices to share information at a
distance that is less than 4cm.

182 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

IoT Communication Protocols – NFC
4.2.6. LoRaWAN
LoRaWAN is one of popular IoT Technology, targets wide-area network (WAN) applications.
The LoRaWAN design to provide low-power WANs with features specifically needed to support
low-cost mobile secure communication in IoT, smart city, and industrial applications.
Specifically meets requirements for low-power consumption and supports large networks with
millions and millions of devices, data rates range from 0.3 kbps to 50 kbps.

Iot Technology – LoRaWAN

4.3. Bluetooth
To understand the architecture of Bluetooth first lets understand what actually Bluetooth is.
Bluetooth is a radio-wave technology that is mainly designed to enable wireless communications
over short distances. The frequency of these waves ranges between 2.400 and 2.485 GHz, which
can extend a maximum of 164 feet between two devices. Every Bluetooth device has a

183 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Transmitter and a Receiver. The power of the device transmitter governs the range over which a
Bluetooth device can operate in other words transmitter decides the range of communication.

These days Bluetooth is the common technology present in most of the products. It is used in
many fields such as the health sector, sports and fitness, electronics, home automation, and
security, etc.

Some of the applications of Bluetooth:
–> Wireless control and communication between a mobile phone and a handsfreeheadset.

->Wireless communication between a smartphone and a smart lock for unlocking doors.
–> For low bandwidth applications where USB higher bandwidth is not required and cable-free
connection desired.
–> For example, Smart watches, Smart Lights.
How does it work?

4.3.1. Bluetooth Architecture.

184 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

4.3.1.1. Piconet
The Bluetooth network is called a piconet. If it contains one master and one slave then its called
a single piconet. Similarly, if it contains one master and multiple slaves are called multiple
piconets.
The Master is the one that initiates the communication with other devices and it dictates when a
slave device may transmit.
Direct Slave to Slave communication is not possible.

Maximum 7 active slaves can be present in multiple piconets, in other words, only 8 maximum
devices including the master can communicate at any one time in a piconet.

4.3.1.2. Scatternet
Its a Combination of multiple piconets.
Here Master of one piconet can be a slave in another piconet. This node can receive a message
from a master in one piconet and deliver the message to its slave into the other piconet.
Therefore, this type of node is referred to as a bridge node. Above all, a station cannot be master
in two piconets.Read More

185 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

The Architecture of a Bluetooth IoT Application
Firstly, we must first dive into the Bluetooth “stack” to understand why recent shifts in

Bluetooth standards are significant for IoT applications The evolution of Bluetooth from a
replacement for RS-232 data cables to a powerful and massive IoT connectivity solution is a
story of adding new layers to the stack. The newest Bluetooth specification for IoT—Bluetooth
mesh—must be engineered upon either the BLE 4.xx or 5.xx stack—an extension of the
Bluetooth Core (“classic”) specification. The emerging Bluetooth mesh stack, therefore,
comprises three-stack layers: Core, then BLE, and mesh on top.

Bluetooth Topologies: Pair, Broadcast, Mesh

 Pair: Bluetooth as a means of pairing two devices
 For Example, a computer paired with a wireless mouse
 Broadcasting: Bluetooth as a means of having one device broadcast information to many

devices or vice versa
 For Example: Playing music on smart speakers and simultaneously casting photos to a

projector—both using a single iPhone
 Mesh: Bluetooth as a way of connecting many devices to many others as if in a spider’s

web
 For Example: Connecting 1,278 overhead lights in a warehouse to each other to dim and

brighten lights automatically based upon activity and personal preferences.

4.3.2. Bluetooth Protocol Types
The main function of the Bluetooth is a Bluetooth protocol stack in architecture of

Bluetooth. In other words, It defines and provides different types of layers and functionalities.
Bluetooth can run the different applications over different protocol stacks, but, each one of these
protocol stacks uses the same Bluetooth link and physical layers.

186 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

The below diagram shows a complete Bluetooth protocol stack. It shows the relationship
between the protocols that use the services of other protocols when there is a payload to be
transferred in the air. Anyhow, the protocols have many other relationships between the other
protocols – for example, some protocols (L2CAP, TCS Binary) use the LMP to control the link
manager.

The complete protocol stack architecture of Bluetooth is made up of both Bluetooth specific
protocols like object exchange protocols (OBEX) and user datagram protocol (UDP).
The main principle is to minimize the reuse of current protocols for different purposes at higher
layers as if re-inventing circle once again. The protocol re-use is helpful for the legacy
applications to work with the Bluetooth technology to measure the smooth operations and
interoperability of applications. Hence, many applications are being developed to take immediate
advantage of the software and hardware.

Protocol layers Protocol in the stacks

Bluetooth Core Protocol Baseband, LMP, L2CAP, SDP

Cable Replacement Protocol RFCOMM

Telephony Control Protocol TCS Binary, AT- commands

Adopted Protocols PPP, OBEX, UDP/TCP/IP, WAP, Vcard, Vcall, IrMC, WAE

Layers of Architecture of Bluetooth :

Host Controller
Interface

A command interface for the controller and for the link manager,
which allows access to the hardware status and control registers.

187 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Logical Link Control
and Adaptation
Protocol

It is also known as the heart of the Bluetooth protocol stack. It allows
the communication between the upper and lower layers of the
Bluetooth protocol stack.

Radio (RF) layer It performs modulation/demodulation of the data into RF signals.

Baseband Link layer In short, it performs the connection establishment within a piconet.

SDP layer
It is short for Service Discovery Protocol. It allows for discovering
the services available on another Bluetooth enabled device.

WAP It is short for Wireless Access Protocol. It is used for internet access.

TCS
It is short for Telephony Control Protocol. It provides a telephony
service.

Application layer In short , it enables the user to interact with the application.

Advantages of Bluetooth Protocols
 Bluetooth offers economic wireless solutions (both data & voice) but, for short distances
 On the other hand, Mobile and stationary environment use Bluetooth protocol.
 There is no setup file to install the Bluetooth, in other words, it is an inbuilt device.
 Above all, They are up-gradable

Characteristics of Bluetooth Protocols
 In short, Up to eight devices including the master can communicate in the Piconet by using

Bluetooth.
 Bluetooth signals are Omnidirectional as a result devices don’t point at each other.
 Governments regulated worldwide because it is possible to utilize the same standard.
 In short , Signals can transmit through walls and briefcases.

188 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Bluetooth Security

Firstly, the security of any wireless technology is very important. With hackers gaining access to
an ever-increasing number of systems, as a result,Bluetooth security is increasingly important.

Bluetooth security must also address more specific Bluetooth related attacks that target known
vulnerabilities in Bluetooth implementations and specifications. In other words, these may
include attacks against improperly secured Bluetooth implementations which can provide
attackers with unauthorized access.

Many users may not believe there is an issue with Bluetooth security, but hackers may be able to
gain access to information from phone lists to more sensitive information that others may hold
on Bluetooth enabled phones and other devices.

Firstly, there are three basic means of providing Bluetooth security:
 Authentication: In this process, that is to say,the identity of the communicating devices is

verified. But ,user authentication is not part of the main Bluetooth security elements of the
specification.

 Confidentiality: In Short, this process prevents the information from being eavesdropped by
ensuring that only authorized devices can access and view the data.

 Authorization: This process prevents access by ensuring that a device is authorized to use a
service before enabling it to do so.

Common Bluetooth security issues

189 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

 Bluejacking: In short, Sending spam messages to discoverable Bluetooth enabled devices.
However, this form of hacking is harmless. In short, the best way to defend against it is to keep
Bluetooth settings to invisible or non-discoverable.

 Bluesnarfing: It is more serious than bluejacking because it can reveal private information on a
smartphone and is capable of happening even when invisible/non-discoverable mode is enabled.

 Bluebugging: In short, it’s capable of accessing all the information such as photos, apps,
contacts, etc. It’s more dangerous than bluejacking and bluesnarfing.

In Conclusion, Some prevention tips for Bluetooth hacks are to set invisible mode. Therefore,
makes it more difficult for hackers to gain access to your data. Lastly, stay awake from the open
Wi-Fi networks in busy or untrusted locations, so that you can minimize the risk of falling victim
to hackers.

4.4. Wi-Fi
A ubiquitous Internet of Things (IoT) depends upon wireless connectivity, but there are many
options for wireless and not every device is IP addressable – a requisite feature for IoT. What’s
more, RF design is inherently difficult. Few companies are equipped with the appropriate skills
to implement RF and antenna design, and even when done, keeping that design up to date with
the latest standards and getting it through FCC compliance is time consuming.

Figure: The wide range of IoT applications that use Wi-Fi modules shows the flexibility and
scalability of the interface, as well as its ubiquity. (Source: Tektronix.)

For designers, there is a very solid and proven option for wireless connectivity and the IoT. That
option is Wi-Fi and the use of modules. This feature will explain why, offer some design

190 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

solutions, discuss soon-to-arrive upgrades to IEEE 802.11 protocols, and show how to bridge
ZigBee to Wi-Fi for native IP addressability.

There are many wireless interface options, Bluetooth Low Energy (BLE), ZigBee, Z-Wave, Wi-
Fi and RFID, each with their own unique balance of power, range, data rates, mesh networking,
interference immunity, and ease of use. However, some interfaces are not yet native-IP enabled,
so cannot be addressed directly or exchange data with other devices and servers over the Internet.
These then require a separate gateway, adding expense and complexity to the final solution.

This is where Wi-Fi stands out: it is based on the IEEE 802.11 standards with native IP
addressability, is ubiquitous, well understood, and can scale well in terms of data rates to
optimize for power consumption. According to the Wi-Fi Alliance, there are more than 6.8
billion installed Wi-Fi-capable devices, so the odds are pretty high that there is a local Wi-Fi
access point available . Note too that 802.11 standards are also IPv6 compliant, so there’s almost
no limit to the number of unique addresses.

While Wi-Fi is widespread and well understood, it is still a wireless interface, with all the
vagaries of design that RF entails. Understanding next steps is critical.

Easing wireless development
After selecting Wi-Fi for an IoT application, the designer often faces the daunting challenge of
building a custom RF implementation, which requires time, money and expertise. Design
requirements for developing a wireless device include, at a minimum, direct RFIC integration
and the ability to specify components such as filters, amplifiers, clocks, capacitors, inductors,
crystal oscillators, and the antennas that need to be on the board, as well as their placement.
There also needs to be network-matching circuitry to ensure that the radio and antenna are well
matched to avoid signal loss. Other knowledge areas include system layout, software stack
development, device security, connection reliability, signal interference and degradation, and last
but surely not least, FCC certification.

How does this task get done within typical time to market parameters given that RF design
expertise is not something readily available to every electronics company? An increasingly
common way to add Wi-Fi capability is to use a pre-packaged module. This approach greatly
simplifies the process. Modules are supplied tested, calibrated and pre-certified to the required
standards by the module vendor, and therefore can provide companies with a fast, easy route to
market with what is, essentially, a plug-and-play solution, reducing the need for software
development. What is more, manufacturers who design and build the Wi-Fi modules can be your
RF consultants during the design integration stage.

The Wi-Fi module generally contains two main parts: a Wi-Fi chip and an application host
processor. The Wi-Fi subsystem includes an 802.11 radio physical layer (PHY), baseband, media

191 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

access control (MAC), and perhaps a crypto engine for fast, secure Internet connection. The
application host processor has internal or external flash, ROM, and RAM. The module generally
also comes with I/Os for timers, serial communication interfaces, analog comparators, analog-to-
digital converter (ADC), digital-to-analog converter (DAC), crystal oscillators, and a debug
interface.

The power management subsystem includes integrated DC-DC converters supporting a wide
range of supply voltages. It enables low-power consumption modes, such as hibernate with real-
time clock (RTC) mode. A module may offer an integrated antenna or provide an RF connector
for an external antenna. The software package included with a Wi-Fi module usually includes a
device driver, an integrated 802.11 security layer, and a management and monitoring utility.

In designing a Wi-Fi IoT solution, the starting point is an understanding that IEEE 802.11
represents a family of standards that until just recently operated only in the 2.4 GHz (IEEE
802.11b/g/n) and 5 GHz (IEEE 802.11a/n/ac) unlicensed bands. There are three key factors to
consider when evaluating these protocols: data rate, range, and power requirements. When you
compare the different Wi-Fi protocols, 802.11b/g has the advantage in compatibility with
installed devices and power requirements while 802.11n and 802.11ac have the advantage of
higher data throughput for multimedia applications such as video streaming (see Table).

Protocol Frequency Signal Maximum data rate

Legacy 802.11 2.4 GHz FHSS or DSSS 2 Mbps

802.11a 5 GHz OFDM 54 Mbps

802.11b 2.4 GHz HR-DSSS 11 Mbps

802.11g 2.4 GHz OFDM 54 Mbps

802.11n 2.4 or 5 GHz OFDM 600 Mbps (theoretical)

802.11ac 5 GHz 256-QAM 1.3 Gbps

Table: A summary of different Wi-Fi protocols and data rates shows the progression of IEEE
802.11 from its early days of 2 Mbps to 1.3 Gbps today. (Source: Intel Corp.)

When designing for IoT applications, however, a higher data rate protocol is not always
preferable. Even though 802.11ac can crank it up to a maximum of 1.3 Gbps, most embedded
applications (e.g., machine to machine [M2M] data and control devices) are power constrained
and can get by with a much lower data rate.

One more good reason to choose Wi-Fi is that within the next year or so technology upgrades
will make it much more capable. For example, the Wi-Fi Alliance recently announced the Wi-Fi

192 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

HaLow (pronounced "halo") designation for products incorporating IEEE 802.11ah technology.
HaLow extends Wi-Fi into the 900 MHz band and offers improved range – nearly twice that of
today’s Wi-Fi – with scalable data rates from 150 Kbps to 2.1 Mbps; IEEE 802.11ah also
promises to provide low power consumption features and its use cases are primarily for wireless
sensor networks, a classic IoT application.

In February, at the 2016 International Solid-State Circuits Conference (ISSCC) the Holst Centre
of the Netherlands, in collaboration with Belgium’s IMEC Research Institute, showed a HaLow
transmitter running Wi-Fi over sub-GHz bands. The team cited a maximum power consumption
of 7.1 mW when delivering 0 dBm output power and operating from a 1 V supply. This
represents a 10x power reduction compared to state-of-the-art 802.11 OFDM transceivers.

Also under development is IEEE 802.11ai, which will provide a fast initial link setup (achieving
a secure link setup in less than 100 ms) and IEEE 802.11aq, being developed to provide a
cellular-like automatic network-discovery experience.

Modules and dev kits
RF engineering can be a tricky business, especially for neophytes in the discipline. Recognizing
this, RF silicon suppliers are providing modules, dev kits and reference designs that make adding
wireless connectivity to a product much easier.

Microchip, for example, supplies an IoT development kit (DM990001) using a module driven by
a 32-bit controller. It employs two Microchip components, the MRF24WG0MA/B pre-certified
Wi-Fi module, which supports both 802.11b and 802.11g, and
the PIC32MX695F512H microcontroller with 128 Kbytes of RAM and 512 Kbits of flash. The
PIC MCU features an 80 MHz, 105-DMIPS 32-bit core, a USB 2.0 On-The-Go (OTG)
peripheral with integrated PHY, a 10/100 Ethernet MAC, and four dedicated direct memory
access (DMA) channels for USB OTG and Ethernet.

The starter kit is powered by Amazon Web Services (AWS), a managed cloud platform that lets
connected devices securely interact with cloud applications. With AWS IoT applications can
keep track of and communicate with all networked devices, all the time, even when they aren’t
connected.

Amazon has put together Quickstart reference deployments for its AWS IoT, which is designed
to show off some of the capabilities of the platform. AWS IoT can be especially helpful if you
plan to use Amazon as your hosting provider. It supports HTTP, WebSockets for web browsers
and web servers, and MQ Telemetry Transport (MQTT), a lightweight communication protocol
for small sensors and mobile devices specifically designed to tolerate intermittent connections,
minimize the code footprint on devices, and reduce network bandwidth requirements.

193 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Texas instruments’ CC3100MOD Wi-Fi module is a complete platform solution including
various tools and software, sample applications, user and programming guides, and reference
designs. It consists mainly of the company’s CC3100R11MRGC Wi-Fi Network Processor and
power management subsystems. Part of the company’s SimpleLink Wi-Fi family, CC3100MOD
integrates all protocols for Wi-Fi and Internet, reducing host MCU software requirements. It also
includes all required clocks, SPI flash, RF filter, crystal and passives.

Figure: TI’s CC3100MOD is designed to simplify the implementation of Internet connectivity. It
integrates all protocols for Wi-Fi and the Internet, which greatly reduces host MCU software
requirements.

The CC3100MOD Wi-Fi Network Processor subsystem incorporates an 802.11 b/g/n radio,
baseband, and MAC and has a 256-bit encryption engine for secure Internet connection. It also
contains a dedicated ARM MCU that completely off-loads the host MCU. The power
management subsystem includes an integrated DC-DC converter with support for a wide range
of supply voltages. It enables low-power consumption modes such as hibernate with RTC mode,
which requires only about 7 μA of current.

On the software side the module includes embedded TCP/IP and TLS/SSL security stacks, HTTP
server, and multiple Internet protocols. The device driver keeps the host memory footprint
requirement to less than 7 Kbytes for code and 700 bytes of RAM for data for a TCP client
application. The CC3100MOD IoT module solution is also FCC, IC, CE, and Wi-Fi certified.

194 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

The SPWF01S Wi-Fi module from STMicroelectronics is a plug-and-play 802.11b/g/n solution
It has a serial interface on one side that allows communications with MCUs like the supplier’s
STM32 and STM8. On the other side is the Wi-Fi transceiver. The module also incorporates
timing clocks and voltage regulators. It is available either configured with an embedded micro
2.45 GHz ISM band antenna (SPWF01SA), or with a U.FL coax connector for external antenna
connection (SPWF01SC), so no RF knowledge is required for integration.

Block diagram of the ST SPWF01S serial-to-Wi-Fi b/g/n module. With low power consumption
and a small form factor, it can be used for both fixed and mobile wireless applications.

The SPWF01S comes with CE, FCC and IC certification and meets industrial temperature-range
requirements.
While we have focused on Wi-Fi, the ZigBee wireless standard is a popular choice for a wide
range of applications that require low power, medium range, and flexible networking that is
relatively easy to install, configure and maintain. ZigBee, however, lacks a crucial requirement
for IoT applications: native IP connectivity. Digi International’s XBee® Wi-Fi modules bridge
this gap. To get you started, the company’s XBee Wi-Fi Cloud kit (xka2B-wft-0) includes an
XBee Wi-Fi (S6B) module, XBee USB development board with breadboard, a components
package (resistors, relay, buttons, LEDs), access to Digi’s cloud-based application and all
necessary antennas, power supplies, and cables. Digi’s XBee Wi-Fi modules share a common
footprint with other XBee modules, which allows different XBee technologies to be drop-in
replacements for each other.

IoT applications depend upon wireless connectivity, but there are numerous wireless protocol
options. RF design also is inherently difficult and few companies are equipped with the
appropriate skills to implement RF and antenna design. Even if the expertise is available,
keeping the design up to date with the latest standards and getting it through FCC compliance is

195 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

time consuming. This Wi-Fi modules and their associated kits and reference designs can
dramatically simplify the implementation challenges facing designers of new IoT devices.

4.5. Zigbee
When you are designing, planning and prototyping a wireless application, the protocol you
choose is a key component, with considerations for security, flexibility and the ability to deploy
to multiple regions.

Zigbee is a wireless technology developed as an open global standard to address the unique
needs of low-cost, low-power wireless IoT networks. The Zigbee standard operates on the IEEE
802.15.4 physical radio specification and operates in unlicensed bands including 2.4 GHz, 900
MHz and 868 MHz.

The 802.15.4 specification upon which the Zigbee stack operates gained ratification by
the Institute of Electrical and Electronics Engineers (IEEE) in 2003. The specification is a
packet-based radio protocol intended for low-cost, battery-operated devices. The protocol allows
devices to communicate in a variety of network topologies and can have battery life lasting
several years.

 The Zigbee 3.0 protocol was created and ratified by member companies of
the Zigbee Alliance. Over 300 leading semiconductor manufacturers, technology firms, OEMs
and service companies comprise the Zigbee Alliance membership. The Zigbee protocol was
designed to provide an easy-to-use wireless data solution characterized by secure, reliable
wireless network architectures.

The Zigbee Advantage
The Zigbee 3.0 protocol is designed to communicate data through noisy RF environments that
are common in commercial and industrial applications. Version 3.0 builds on the existing Zigbee
standard but unifies the market-specific application profiles to allow all devices to be wirelessly
connected in the same network, irrespective of their market designation and function.

196 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Additionally, a Zigbee 3.0 certification scheme ensures the interoperability of products from
different manufacturers. Connecting Zigbee 3.0 networks to the IP domain opens up monitoring
and control from devices such as smartphones and tablets on a LAN or WAN, including the
Internet, and brings the true Internet of Things to fruition.

Zigbee protocol features include:
 Support for multiple network topologies such as point-to-point,

point-to-multipoint and mesh networks
 Low duty cycle – provides long battery life
 Low latency
 Direct Sequence Spread Spectrum (DSSS)Up to 65,000 nodes per network
 128-bit AES encryption for secure data connections
 Collision avoidance, retries and acknowledgements

Zigbee Wireless Mesh Networking
What Is Zigbee?
Zigbee is a wireless technology developed as an open global market connectivity standard to
address the unique needs of low-cost, low-power wireless IoT data networks. The Zigbee
connectivity standard operates on the IEEE 802.15.4 physical board radio specification and
operates in unlicensed radio bands including 2.4 GHz, 900 MHz and 868 MHz.

The 802.15.4 wireless specification upon which the Zigbee stack operates gained board
ratification by the Institute of Electrical and Electronics Engineers (IEEE) in 2003. The
specification is a packet-based radio board protocol intended for low-cost, battery-operated

197 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

devices and products. The protocol allows devices to communicate data in a variety of network
topologies and can have battery life lasting several years.
The Zigbee 3.0 Protocol
The Zigbee protocol has been created and ratified by member companies of the Zigbee Board
Alliance.Over 300 market leading semiconductor manufacturers, technology firms, OEMs and
service companies comprise the Zigbee Alliance membership board. The Zigbee protocol was
designed to provide an easy-to-use wireless data solution characterized by secure, reliable
wireless network architectures.

The Zigbee Advantage

The Zigbee 3.0 protocol is designed to communicate data through noisy RF environments that
are common in commercial and industrial market applications. Version 3.0 builds on the existing
Zigbee connectivity standard but unifies the market-specific application profiles to allow all
devices to be wirelessly connected in the same network, irrespective of their market designation
and function. Furthermore, a Zigbee 3.0 certification scheme ensures the interoperability of
products from different device manufacturers. Connecting Zigbee 3.0 networks to the IP domain
opens up wireless monitoring and control from radio devices such as smartphones and tablets on
a LAN or WAN, including the Internet, and brings the true Internet of Things to fruition.
Zigbee protocol features include:

 Support for multiple network topologies such as point-to-point,
point-to-multipoint and mesh networks

 Low duty cycle – provides long battery life
 Low latency
 Direct Sequence Spread Spectrum (DSSS)
 Up to 65,000 nodes per network
 128-bit AES encryption for secure data connections
 Collision avoidance, retries and acknowledgements

The Zigbee 3.0 software stack incorporates a ‘base device’ that provides consistent behavior for
commissioning nodes and devices into a network. A common set of commissioning methods is
provided, including Touchlink, a method of proximity commissioning.

Zigbee Wireless Security
Zigbee 3.0 provides enhanced network security. There are two methods of security that give rise
to two types of network:

 Centralized security: This method employs a coordinator/trust center that forms the
network and manages the allocation of network and link security keys to joining nodes.

198 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

 Distributed security: This method has no coordinator/trust center and is formed by a
router. Any Zigbee router node can subsequently provide the network key to joining
nodes.

Nodes adopt whichever security method is used by the hub network they join. Zigbee 3.0
supports the increasing scale and complexity of wireless networks, and copes with large local
networks of greater than 250 nodes. Zigbee also handles the dynamic behavior of these networks
(with nodes appearing, disappearing and re-appearing in the network) and allows orphaned
nodes, which result from the loss of a parent, to re-join the network via a different parent. The
self-healing nature of Zigbee Mesh networks also allows nodes to drop out of the network
without any disruption to internal routing.

Zigbee Protocol Compatibility
The backward compatibility of Zigbee 3.0 means that applications and smart home devices
already developed under the Zigbee Light Link 1.0 or Home Automation 1.2 profile are ready for
Zigbee 3.0. The Zigbee Smart Energy profile is also compatible with Zigbee 3.0 at the functional
level, but Smart Energy has additional security requirements that are only addressed within the
profile.

Zigbee Device Data
Zigbee’s Over-The-Air (OTA) upgrade feature for software updates during device operation
ensures that applications on devices already deployed in the field/market can be seamlessly
migrated to Zigbee 3.0. OTA upgrade is an optional functionality that manufacturers are
encouraged to support in their Zigbee products' application layer.
Zigbee Mesh Networks

A key component of the Zigbee protocol is the ability to support mesh networking. In a mesh
network, nodes are interconnected with other nodes so that multiple pathways connect each
node. Connections between nodes are dynamically updated and optimized through sophisticated,
built-in mesh routing table.

Mesh networks are decentralized in nature; each node is capable of self-discovery on the
network. Also, as nodes leave the network, the mesh topology allows the nodes to reconfigure

199 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

routing paths based on the new network structure. The characteristics of mesh topology and ad-
hoc routing provide greater stability in changing wave conditions or failure at single nodes.

Zigbee Wireless Applications
Zigbee enables broad-based wave deployment of wireless networks with low-cost, low-power
solutions. It provides the ability to run for years on inexpensive batteries for a host of monitoring
and control applications. Smart energy/smart grid, AMR (Automatic Meter Reading), lighting
controls, building automation systems, tank monitoring, HVAC control, medical devices, dbm
radio, ghz wireless protocols, wireless sensor networks and fleet applications are just some of the
many spaces where Zigbee technology is making significant advancements.

Digi XBee 3 Zigbee Technology
Digi is a member of the Zigbee Alliance and has developed a wide range of data networking
solutions based on the Zigbee protocol. Digi XBee 3 is the latest in a long line of radio devices
that provide an easy-to-implement solution that provides functionality to connect to a wide
variety of devices with robust connectivity standards.

4.6. GPS
GPS uses satellites to monitor the movement of anything equipped with such a GPS

tracking device, including automobiles, humans, and even pets. It operates in any weather
condition and offers precise location updates in real-time. As one of the earliest ways to track
and disseminate digital information from the real environment, GPS has significantly impacted
IoT technology. The Internet of Things (IoT) may gather and measure enormous amounts of
data on anything from individual health to public transportation; GPS tracking is required to
provide location information for such objects.

A more reliable and easily accessible data set can be built using GPS and the Internet of
Things. In the same way that GPS pinpoints the precise location of a vehicle, the Internet of
Things is able to monitor moving items and collect data on their movements in real time.

How Does GPS Function?
GPS satellites complete two accurate orbits around the planet every day. An individual satellite's
signal and orbiting parameters can be decoded and used to pinpoint the satellite's location via a
GPS receiver. This data, together with triangulation, is used by GPS receivers to pinpoint the
precise location of its owners.

The uses of GPS and the Internet of Things
When applied to Internet of Things (IoT) gadgets, GPS technology might provide benefits you
might not have anticipated. In the age of the Internet of Things, it is possible to amass vast

200 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

amounts of data from a wide variety of sources. Information such as medical files and facial
mapping is included.

The Long-Term Perspective of GPS with IoT
It is possible that all of your belongings can be located using GPS. Italian firm Sherlock, for
instance, uses GPS and the Internet of Things to keep tabs on your bike. Bicycle owners can use
this kind of tracking to prevent bike theft. In addition, the owner of the vehicle will be informed
of any modifications done to it.

Internet of Things-Global Positioning System helps boost transportation quality and
safety. It was previously just possible to trace which foundation arrived, departed, etc., but now
that we can manage the precise present location, transit quality & security are also enhanced.
Since you can interact with users' questions in real-time, you may use it with complete
assurance.
Marketing a helpful transportation service. Users whose packages are too large to be
transported conventionally can be attracted

Use IoT-GPS to set yourself apart in transportation management. Differentiation from
competitors and end users can be achieved through the provision of novel approaches to
management (barcode scanning, managing of arriving at the base by RFID, etc., starting picking
up of crossing points on slips, etc.).

Cut back on the money spent on managing employees. By equipping workers with GPS
trackers, employers can gain insight into the "what? who? where?" of their operations and, using
that data, create more effective attendance and safety management systems. Can cut
administrative expenses

Some Devices that are part of the Internet of Things and use a global positioning system
LORAWAN G62: Using publicly or private LoRaWAN (Long Range Wide Area Network)
networks, the G62 LoRaWAN can keep tabs on any service, no matter how extreme the weather
becomes. It is compact, lightweight, and built to withstand the elements.

LORAWAN SENSOR DATA: The Inertial Sensor is a battery-operated data communicator
that connects to various sensors, GPS, inputs, and outputs and then uploads that data to a
LoRaWAN network. Useful for sensors and agricultural uses.

LORAWAN, OR SHELLFISH: The Oyster is a rugged GPS tracking system that can
withstand the elements and be made with the super-long battery life of LoRaWAN networks in
mind for tracking exposed, unpowered assets in mind.

NEO-6M GPS Module with Arduino

201 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

This guide shows how to use the NEO-6M GPS module with the Arduino to get GPS data. GPS
stands for Global Positioning System and can be used to determine position, time, and speed if
you’re travelling.

You’ll learn how to:
 Wire the NEO-6M GPS module to the Arduino UNO
 Get raw GPS data
 Parse raw data to obtain selected and readable GPS information
 Get location

Introducing the NEO-6M GPS Module
The NEO-6M GPS module is shown in the figure below. It comes with an external antenna, and
does’t come with header pins. So, you’ll need to get and solder some.

202 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

 This module has an external antenna and built-in EEPROM.
 Interface: RS232 TTL
 Power supply: 3V to 5V
 Default baudrate: 9600 bps
 Works with standard NMEA sentences

The NEO-6M GPS module is also compatible with other microcontroller boards..

Pin Wiring
The NEO-6M GPS module has four pins: VCC, RX, TX, and GND. The module communicates
with the Arduino via serial communication using the TX and RX pins, so the wiring couldn’t be
simpler:

NEO-6M GPS Module Wiring to Arduino UNO

VCC 5V

RX TX pin defined in the software serial

TX RX pin defined in the software serial

GND GND

Getting GPS Raw Data
To get raw GPS data you just need to start a serial communication with the GPS module using
Software Serial. Continue reading to see how to do that.

Parts Required

203 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Wire the NEO-6M GPS module to your Arduino by following the schematic below.

 The module GND pin is connected to Arduino GND pin
 The module RX pin is connected to Arduino pin 3
 The module TX pin is connected to Arduino pin 4
 The module VCC pin is connected to Arduino 5V pin

Code
Copy the following code to your Arduino IDE and upload it to your Arduino board.
#include <SoftwareSerial.h>

// The serial connection to the GPS module
SoftwareSerial ss(4, 3);

void setup(){
 Serial.begin(9600);
 ss.begin(9600);
}

void loop(){
 while (ss.available() > 0){
 // get the byte data from the GPS
 byte gpsData = ss.read();
 Serial.write(gpsData);
 }
}

4.7. GSM/GPRS Module

204 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

GSM/GPRS module is used to establish communication between a computer and
a GSM-GPRS system. Global System for Mobile communication (GSM) is an architecture
used for mobile communication in most of the countries.

Block Diagram Showing Diffrent Parts Of Typical GSM/GPRS Module
Global Packet Radio Service (GPRS) is an extension of GSM that enables higher data

transmission rate. GSM/GPRS module consists of a GSM/GPRS modem assembled together
with power supply circuit and communication interfaces (like RS-232, USB, etc) for
computer. The MODEM is the soul of such modules.

Wireless MODEMs

Flow Chart Showing Classification Of Wireless Modem Based On Network, Data Or Technology

Wireless MODEMs are the MODEM devices that generate, transmit or decode data from a
cellular network, for establishing communication between the cellular network and the computer.
These are manufactured for specific cellular network (GSM/UMTS/CDMA) or specific cellular
data standard (GSM/UMTS/GPRS/EDGE/HSDPA) or technology (GPS/SIM). Wireless
MODEMs like other MODEM devices use serial communication to interface with and

205 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

need Hayes compatible AT commands for communication with the computer (any
microprocessor or microcontroller system).

 GSM/GPRS MODEM
GSM/GPRS MODEM is a class of wireless MODEM devices that are designed for
communication of a computer with the GSM and GPRS network. It requires a SIM (Subscriber
Identity Module) card just like mobile phones to activate communication with the network.
Also they have IMEI (International Mobile Equipment Identity) number similar to mobile
phones for their identification. A GSM/GPRS MODEM can perform the following operations:

1. Receive, send or delete SMS messages in a SIM.
2. Read, add, search phonebook entries of the SIM.
3. Make, Receive, or reject a voice call.

The MODEM needs AT commands, for interacting with processor or controller, which are
communicated through serial communication. These commands are sent by the
controller/processor. The MODEM sends back a result after it receives a command. Different AT
commands supported by the MODEM can be sent by the processor/controller/computer to
interact with the GSM and GPRS cellular network.

 GSM/GPRS Module

An Image of Assembled Circuit For GSM/GPRS Module With Standard Communication
Interfaces Like RS-232 Or USB
A GSM/GPRS module assembles a GSM/GPRS modem with standard communication interfaces
like RS-232 (Serial Port), USB etc., so that it can be easily interfaced with a computer or a

206 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

microprocessor / microcontroller based system. The power supply circuit is also built in the
module that can be activated by using a suitable adaptor.

Mobile Station (Cell phones and SIM)
A mobile phone and Subscriber Identity Module (SIM) together form a mobile station. It is the
user equipment that communicates with the mobile network. A mobile phone comprises of
Mobile Termination, Terminal Equipment and Terminal Adapter.

Block Diagram Showing Diffrent Functions Of Cell Phone And SIM In Mobile Station

Mobile Termination is interfaced with the GSM mobile network and is controlled by a
baseband processor. It handles access to SIM, speech encoding and decoding, signaling and other
network related tasks. The Terminal Equipment is an application processor that deals with
handling operations related to keypad, screen, phone memory and other hardware and software
services embedded into the handset. The Terminal Adapter establishes communication between
the Terminal Equipment and the Mobile Termination using AT commands. The communication
with the network in a GSM/GPRS mobile is carried out by the baseband processor.

 GSM Technology Architecture
The main elements in the GSM architecture include the following.

The Architecture of GSM Technology
 Network and Switching Subsystem (NSS)
 Base-Station Subsystem (BSS)
 The mobile station (MS)
 Operation and Support Subsystem (OSS)

207 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Network Switching Subsystem (NSS)
In GSM system architecture, it includes different elements, which are frequently known as the
core system/network. Here, it is basically a data network including a variety of units to provide
the major control as well as interfacing of the entire mobile network system. The core network
includes the major elements which are discussed below.

Mobile Switching Centre (MSC)
The Mobile Switching Centre or MSC is the key element in the core network region of the GSM
network architecture. This mobile services switching center works like a standard switching node
in an ISDN otherwise PSTN, however, it also gives extra functionality to allow the mobile user
necessities to be supported like authentication, registration, inter-MSC handovers call location &
routing of the call to a cell phone subscriber.

And, it also provides an edge toward the public switched telephone network so that the phone
calls can be connected from the network of the mobile to a phone to a landline. Interfaces to
other mobile switching center server are provided to allow mobile calls to be made to mobiles
over dissimilar networks.

Home Location Register (HLR)
This HLR database includes the information regarding the administrative like every subscriber
with their previous identified location. Like this, the GSM network is capable to connect the calls
to the related base station for the mobile switch. Once an operator turns ON his/her phone, and
then the phone registers through the network so that it is probable to decide which base
transceiver station is communicating so that incoming calls can be connected properly.

Even once the mobile is switched on, but not active then it again registers to make sure that the
HLR network is responsive to its most recent location. There is one HLR for each network, even
though it may be dispersed across a variety of sub-centers for operational causes.

208 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Visitor Location Register (VLR)
The VLR includes preferred information that is received from the HLR network to allow the
preferred services for the separate subscriber. The visitor location register can be executed like a
separate unit; however, it is usually realized like an essential element of the MSC, before an
individual unit. Thus, access is finished quicker & more convenient.

Equipment Identity Register (EIR)
The EIR (Equipment Identity Register) is the unit that makes a decision whether specified
mobile gear may be permitted over the network. Every mobile gear includes a number identified
like the IMEI or International Mobile Equipment Identity.
So, this IMEI number is fixed within the mobile equipment & is verified through the network
while registration. It mainly depends on the information that is held within the EIR, and the
mobile device may be assigned one of 3 conditions which allowed over the network, barred
access, otherwise watched in case its problems.

Authentication Centre (AuC)
The AuC (authentication center) is a protected file that includes the secret key in the SIM card of
the user. The AuC is mainly used for verification & for coding on the radio channel.

Gateway Mobile Switching Centre (GMSC)
The GMSC/ Gateway Mobile Switching Centre is the end to which a ME finishing call is
primarily connected without any information about the MS’s place. The GMSC obtains the
Mobile Station Roaming Number (MSRN) from the MSISDN based on HLR & connecting the
call toward the exact visited MSC. The “MSC” division of the name GMSC is confusing as the
gateway process does not need any linking toward an MSC.

SMS Gateway (SMS-G)
The SMS gateway or SMS-G is used jointly to explain two SMS-Gateways in the GSM
standards. These gateways control messages which are directed in dissimilar ways.

The Short Message Service Gateway Mobile Switching Centre (SMS-GMSC) is used for short
messages which are being transmitted to an ME. The Short Message Service Inter-Working
Mobile Switching Centre (SMS-IWMSC) is used for short messages created through a mobile
network. The main role of SMS-GMSC is related to GMSC, but the SMS-IWMSC offers a
permanent access end to the SMS Centre.

These units were the major ones that are used in the network of GSM technology. They were
normally co-located, however frequently the overall middle network was transmitted around the
country wherever the network was situated. In case of malfunction, it will give some flexibility.

Base Station Subsystem (BSS)

209 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

It acts as an interface between the mobile station and the network subsystem. It consists of the
Base Transceiver Station which contains the radio transceivers and handles the protocols for
communication with mobiles. It also consists of the Base Station Controller which controls the
Base Transceiver station and acts as an interface between the mobile station and mobile
switching center.

The network subsystem provides the basic network connection to the mobile stations. The basic
part of the Network Subsystem is the Mobile Service Switching Centre which provides access to
different networks like ISDN, PSTN, etc. It also consists of the Home Location Register and the
Visitor Location Register which provides the call routing and roaming capabilities of GSM.
It also contains the Equipment Identity Register which maintains an account of all the mobile
equipment wherein each mobile is identified by its own IMEI number. IMEI stands for
International Mobile Equipment Identity.

The BSS or Base Station Subsystem section of the second generation GSM network architecture
is basically connected with the mobiles over the network. This subsystem includes two elements
which are discussed below.

Base Transceiver Station (BTS)
The BTS (Base Transceiver Station) which is utilized within a GSM network includes the radio
Tx, Rx & their related antennas to transmit, receive & directly converse through the mobiles.
This station is the important element for every cell and it converses with the mobiles & the
interface among the two is identified like the Um interface with related protocols.

Base Station Controller (BSC)
The BSC (base station controller) is used to form the next phase reverse into the GSM
technology. This controller is used to control a collection of base transceiver stations & it is
frequently co-located through one of the transceiver stations within the group. This controller
manages the resources of radio to control different items like handover in the collection of BTSs,
assigns channels. It converses with the Base Transceiver Stations over Abis interface.
The subsystem element in the base station of the GSM network uses the radio allowable
technology to allow a number of operators to right to use the system concurrently. Every channel
supports up to 8 operators by allowing a base station to include different channels; a huge
number of operators could be accommodated through every base station.
These are located carefully through the provider of the network to allow whole area coverage.
This area can be enclosed with a base station that is often being called a cell. Because it is not
achievable to stop the signals from overlapping into the nearby cells and channels which are used
in single-cell are not utilized in the next.

Mobile Station

210 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

It is the mobile phone which consists of the transceiver, the display, and the processor and is
controlled by a SIM card operating over the network.

The MS (Mobile stations) or ME (mobile equipment) are most generally identified
through cell otherwise mobile phones which are the part of a GSM mobile communications n/w
that the operator observes & operates. At present, their dimension has reduced radically whereas
the functionality level has very much increased. And one more benefit is that the time among
charges has drastically enlarged. There are different elements to the mobile phone, though the
two essential elements are the hardware & the SIM.

The hardware includes the major elements of the mobile phone like the case, display,
battery, & the electronics utilized to produce the signal & process the data receiver to be
broadcasted.
The mobile station includes a number called the IMEI. This can be set up on the mobile phone
while manufacturing & it cannot be modified.
It is accessed by the network during registration to check whether the equipment has been
reported as stolen.

The SIM (Subscriber Identity Module) card includes the data which gives the user
identity toward the network. And also, it includes different information like a number called the
IMSI (International Mobile Subscriber Identity). When this IMSI is used in the SIM card, the
mobile user could simply change mobiles by moving the SIM from one mobile to another.
So mobile changing is easy without changing the same mobile number means that people would
frequently improve, thus making a further income stream for the providers of network & serving
to enhance the total financial victory of GSM.

Operation and Support Subsystem (OSS)
The operation support subsystem (OSS) is a part of the complete GSM network

architecture. This is connected to the NSS & the BSC components. This OSS is mainly used to
control the GSM network & the BSS traffic load. It should be noted down that when the number
of BS enhances through the subscriber population scaling then some of the preservation tasks are
moved to the base transceiver stations so that the ownership cost of the system can be reduced.

The GSM network architecture of 2G mainly follows a logical technique of operation.
This is very simple as compared with present architectures of mobile phone network which
utilize software-defined units to allow extremely supple operation. But the architecture of 2G
GSM will demonstrate the voice & operational fundamental functions that are required & how
they arranged together. When the GSM system is digital, then the network is a data network.

Features of GSM Module
The features of the GSM module include the following.

211 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

 Improved spectrum efficiency
 International roaming
 Compatibility with integrated services digital network (ISDN)
 Support for new services.
 SIM phonebook management
 Fixed dialing number (FDN)
 Real-time clock with alarm management
 High-quality speech
 Uses encryption to make phone calls more secure
 Short message service (SMS)
The security strategies standardized for the GSM system make it the most secure
telecommunications standard currently accessible. Although the confidentiality of a call and
secrecy of the GSM subscriber is just ensured on the radio channel, this is a major step in
achieving end-to-end security.

GSM Modem
A GSM modem is a device that can be either a mobile phone or a modem device that can

be used to make a computer or any other processor communicate over a network. A GSM
modem requires a SIM card to be operated and operates over a network range subscribed by the
network operator. It can be connected to a computer through serial, USB, or Bluetooth
connection.

A GSM modem can also be a standard GSM mobile phone with the appropriate cable and
software driver to connect to a serial port or USB port on your computer. GSM modem is usually
preferable to a GSM mobile phone. The GSM modem has a wide range of applications in
transaction terminals, supply chain management, security applications, weather stations, and
GPRS mode remote data logging.

Working of GSM Module
From the below circuit, a GSM modem duly interfaced to the MC through the level

shifter IC Max232. The SIM card mounted GSM modem upon receiving digit command by SMS
from any cell phone sends that data to the MC through serial communication. While the program
is executed, the GSM modem receives the command ‘STOP’ to develop an output at the MC, the
contact point of which are used to disable the ignition switch.

The command so sent by the user is based on an intimation received by him through the GSM
modem ‘ALERT’ a programmed message only if the input is driven low. The complete operation
is displayed over a 16×2 LCD display.

212 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

GMS Modem Circuit

Difference between GSM mobile and GSM/GPRS module
A GSM mobile is a complete system in itself with embedded processors that are

dedicated to provide an interface between the user and the mobile network. The AT commands
are served between the processors of the mobile termination and the terminal equipment. The
mobile handset can also be equipped with a USB interface to connect with a computer, but it
may or may not support AT commands from the computer or an external processor/controller.

The GSM/GPRS module, on the other hand, always needs a computer or external
processor/controller to receive AT commands from. GSM/GPRS module itself does not provide
any interface between the user and the network, but the computer to which module is connected
is the interface between user and network.

An advantage that GSM/GPRS modules offer is that they support concatenated SMS which may
not be supported in some GSM mobile handsets. Also some mobile handsets can’t receive MMS
when connected to a computer.

213 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Applications of GSM/GPRS module
The GSM/GPRS module demonstrates the use of AT commands. They can feature all the
functionalities of a mobile phone through computer like making and receiving calls, SMS, MMS
etc. These are mainly employed for computer based SMS and MMS services.

4.8. Raspberry Pi Operating Systems
Raspberry Pi is a low-cost pocket computer that is very economical to own. It is about the

size of an ATM Card and can work as a fully functional computer in certain normal use cases,
like working with simple applications, playing low-end games, etc. It was first released in 2012
by the Raspberry Pi foundation with the aim to provide easy access to computing education to
everyone. It can cost as less as 5$ to a maximum price of 100$ (which is rare).

Scope
we will be understanding Operating systems that can be installed on a Raspberry Pi.

 We'll learn about What an operating system in general is.
 We'll go through a Variety of Operating Systems that a Raspberry Pi can run.

Introduction
As read above, Raspberry Pi is a very low-cost computer that comes along with the advantage of
portability. However, being in such a small form factor, it gets bounded by the type of hardware
to use in making it; hence, it will be significantly tough to run regular operating systems on it.

Due to this, specific operating systems were designed to power a Raspberry Pi; some of them
were entirely new, while some originated from existing popular operating systems. Most of the
Raspberry Pi OS is Linux based, but it also has windows 10-based Raspberry Pi OS (Windows
10 IoT core) built explicitly for low-powered devices like this.

What is an Operating System?
The technical definition is An operating system is an interface between the hardware of a
machine and the user who is using it, but what does this really mean? It means it is basically
the medium using which we communicate with our computer machine. It does not matter if we
have the fastest system in the world; at the end of the day, that is just hardware, an object; and
we do not know how to work with it, so we need some medium that works as an intermediate
between us and the computer, i.e., when we press ctrl on our keyboard, it should instruct the
computer what to react based on that; when we want to open some application, it should provide
us a way to do so, by listing all the available applications on the system.

Meaning an operating system is a software program that helps us to use and to connect with the
computer hardware. For example, if we want to use our mouse or keyboard, only with the help of
an OS we can do that; if we want to install some program on our computer, we would be needing
an OS; if we want to create a file, we need an OS; we want to delete a file, we would again be

214 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

needing an OS, i.e., without an operating system we cannot use the computer hardware, we
would be needing some underlying software, i.e., some operating system, using which we would
do so.

What is a Raspberry Pi Operating System?
Now, what is Raspberry Pi operating system? Before that, let's first try to understand what
Raspberry Pi is. Raspberry Pi is a small, low-cost computer, and its size is about the size of an
ATM card, which is developed by the Raspberry Pi foundation. The organization's mission is to
educate people in computing and to provide easier access to computer education.

The above image is a picture of a Raspberry Pi; we can see that there are various ports available
in it on which different devices can be mounted and used.

215 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

It was first launched in 2012, and from then onwards, various variations of it have been
launched. The original Raspberry Pi had a single-core 700mhz CPU and a 256MB of RAM, but
it has evolved a lot since then; today, we have a quad-core Raspberry Pi with a clock speed of
around 1.5Ghz and up to 4GB of RAM. Surprisingly the cost of Raspberry Pi has always been
less than 100 USD. In fact, the Raspberry Pi Zero (an even low-cost version of regular Raspberry
Pi) costs as less as 5 USD. A full-fledged general-purpose CPU under 5$, that's what the
organization's mission is "Aiming to provide people easier and low-cost access to the
computers."

Raspberry Pi is used by people all around the world in learning how to program, build hardware
projects, do home automation, and implement Kubernetes clusters, and it is even getting used in
some industrial applications. Raspberry Pi is a very economical computer that runs Linux
Operating System.

Now, let's talk about which specific distribution of Linux Raspberry Pi uses. Raspberry Pi
officially recommends the use of the Raspbian Operating System. It is a Debian-based OS,
explicitly made for Raspberry Pi and hence its name Raspbian.
Explore free courses by our top instructorsView All

TARUN LUTHRA
Java Course - Mastering the Fundamentals
56k+ enrolled

RAHUL JANGHU
Python Certification Course: Master the essentials
42k+ enrolled

PRATEEK NARANG
C++ Course: Learn the Essentials
29k+ enrolled
35,262+ learners have attended these Courses.

Raspbian
Raspbian or Raspberry Pi OS is a Linux-based operating system built specifically for Raspberry
Pi. It is packed with all the necessary tools and features that are required for day-to-day use. It
will possibly run on every kind of Raspberry Pi board with a few exceptions, like the Raspberry
Pi's pico edition, because of its far smaller form factor and computing power.

216 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

NOOBS
New Out Of the Box Software, or simply NOOBS is an operating system installer for
Raspberry Pi, delivered primarily on an SD card, which contains a variety of operating systems,
out of which we can choose which one we want to install on our Raspberry Pi. It is made for
people who are absolutely new to the Raspberry Pi and do not want to deal with the complex
setting up process of burning an OS image on an SD card. NOOBS is provided along with every
new Raspberry Pi at the time of its purchase.

With NOOBS, the user only needs to connect their Raspberry Pi to a display screen and a
keyboard and then power it up; the NOOBs will boot. There we can select which operating
system we want to install, and NOOBS will install the respective OS on the same SD card within
a few minutes.

Other Operating Systems
Let's now look at some of the other Operating systems apart from the Raspbian OS, which can be
booted on the Raspberry Pi.

Minibian

217 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

While Raspbian OS is very lightweight as far as we talk about operating systems, but if we want
something even more straightforward, then we can go for Minibian OS. It is a minimal version of
Raspbian for Raspberry Pi machines. The now-going version of minibian is based on the recent
Raspbian build and will run on all the versions of Raspberry Pi. Minibian differs from Raspbian
in a number of ways, but the main difference is it is built more for electronics people instead of
those who are interested in making a full-fledged computer. Minibian includes the core system
and some fundamental utilities like web servers, some electronics applications, etc. Notably, it
does not include a Graphical interface for interaction, which makes it an excellent choice for
embedded projects. The result then is, we have a capable and working operating system in less
than 500MB which merely uses 30MB of RAM.

Raspbian Lite
It is also a lightweight operating system for Raspberry Pi with a minimal set of packages. It is
advised only for experienced users who are able to establish ssh connections and remote
management using the command line, as it does not includes the GUI interface. It is more like a
command line-based operating system where we would be needing to type commands to control
our Raspberry Pi computer. One advantage of this is that it can run on a very low amount of CPU
and RAM. It should be noted that Raspbiain lite OS can also be converted into a complete
desktop environment with a GUI interface by installing the necessary packages.

RISC OS
RISC OS is an open-source OS initially developed in Cambridge in the 1980s and was the first
operating system for ARM processors. It is neither related to Linux, Windows, or any other
operating system; hence, diving into it will ignore our previous operating system experiences.
Understanding the RISC OS will be a completely different thing, and it will take time for us to
get used to it.

Windows IoT Core
It is a version of Windows OS, specifically windows 10, built explicitly for Raspberry Pi. It is
helpful for windows enthusiasts who wish to utilize the Raspberry Pi environment to develop
their projects. It is mostly used to construct and build IoT prototype requirements based on
windows 10. This version of Raspberry Pi OS lays emphasis on the device mainly on
connectivity, security, cloud integration, etc., regions.

Ubuntu Mate
Ubuntu Mate is a free and open-source operating system of raspberry pi that specifies low-
performance devices as its design requirements, meaning it works seamlessly on low-power or
old appliances. It is a flavor of Ubuntu that uses the Mate desktop environment. It prioritizes pre-
packaging the apt package manager into its software deployment and talking about the
communication to remote workstations; ubuntu MATE is dependable. To run it on a Raspberry
Pi device, a 4GB sd card is all that is required. It should also be noted that ubuntu mate OS is

218 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

consistently maintained and updated by its developers. It can be downloaded from the official
website of Ubuntu MATE.

Gentoo Linux
Gentoo Linux is an open-source Linux-based lightweight operating system of the raspberry pi.
Its built-in portage package manager makes the package installation straightforward and easy
using emerge instead of apt installer. Moreover, it offers unique adaptability, which makes it an
ideal Linux distribution for these low-powered devices. A 4GB SD Card will be enough to fulfill
the device requirements of Gentoo OS on Raspberry Pi.

SARPI
Slackware ARM, or SARPI, is a well-known operating system in the Raspberry Pi community. It
is often regarded as one of the substantial operating systems to run on the Raspberry Pi. This is
because it has a very simple-to-implement software architecture. The boot time of SARPI OS is
really less, making it live in less than 30 seconds of time.

FreeBSD
FreeBSD is an open-source Unix-like operating system derived from the Berkeley Software
Distribution or BSD, which was based on the research of Unix (early versions of the Unix
operating system). It works seamlessly with powerful hardware. Its software design makes it a
significantly great OS to interact with servers, desktop PCs, IoT devices, cloud computing, etc.
The FreeBSD OS can run on as less as a Raspberry Pi with 512MB of RAM; it can also be a
perfect choice for one's Raspberry Pi system.

Lakka
A free, open-source, and lightweight operating system that can turn any PC into a full-fledged
gaming console without the keyboard and mouse. It is basically used to set up emulators on
systems like Raspberry Pi.

OpenELEC
Open Embedded Linux Entertainment Center or OpenELEC. It is a minimal-sized OS, often
referred to as Just Enough Operating System or JeOS. If one is aware of the Kodi Media Center,
which is a tool for managing media files. The primary purpose of this OS is to transform the
running system into Kodi.

OSMC
OSMC is a free and open-source operating system of raspberry pi that stands for Open Source
Media Center. It is simple and easy to work with the program that can independently
supply Kodi Operating System functions like media file format management. Its user-friendly
interface is simple and sophisticated, and its built-in image library contributes to its extensive

219 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

customization possibilities. Therefore, it is an excellent choice if we majorly want to handle
media materials on the Raspberry Pi system.

RaspBSD
RaspBSD is a special kind of FreeBSD operating system of raspberry pi and similar systems. It
is an open-source OS software that contains the FreeBSD 11 image. The live image of RaspBSD
features FreeBSD with the pre-installed Openbox window manager and the LXDE desktop
environment. RaspBSD is based on FreeBSD's current tree.

Linutop
Linutop is a Raspbian OS-based Linux operating system of the raspberry pi. It's software security
makes it the ideal choice for web kiosks and digital signage players. Moreover, it obligates its
features and performance specifications to business users who wish for Raspberry Pi's digital
signage and internet stall solutions.

Kali Linux
Kali is a Debian-based operating system particularly made for penetration testing. It comes with
both the 32bit and 64bit architecture and is also one of the most feature-rich OS we have talked
about so far. It has all the necessary tools needed for penetration testing installed by default. In
addition, Kali's community is very effective and helpful. With Kali Linux, a Raspberry Pi device
can become a toolset for penetration inside one's pocket.

Domoticz
Domoticz is a free and open-source home automation system that allows users to design and
monitor various devices like switches, sensors, and meters for temperature, power, etc.
Domoticz's main user interface is an expandable and scalable HTML5 frontend. Some of its
outstanding features are its interactiveness with any browser, extensive logging, support for
external devices, and auto-learning for sensors and switches.

OpenSUSE
The openSUSE project is a global initiative based on the RPM-based Linux distribution, which
promotes the adoption of Linux OS everywhere by developing desktop and server operating
systems. OpenSUSE operating system for Raspberry Pi is a part of the openSUSE project. The
initiative's primary goal is to educate people about Linux. The openSUSE OS is developed,
distributed, and maintained by an open-source community.

RetroPie
RetroPie is an emulator which can be used to play some low-end games on one's Raspberry Pi. It
is a Debian-based open-source software library. It is elementary to set up and has broad
community support. RetroPie uses the Emulation Station frontend RetroArch etc., which makes
it possible to play old-school console games, nostalgic arcade games, and classic pc games. To

220 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

add more to it, RetroPie sits on the top of the Raspberry Pi Lite Operating System, which omits
the PIXEL (Pi improved XWindows Environment Lightweight) environment. And along with
that, it can also be installed on top of a fully working Raspberry Pi OS. RetroPie is a popular
emulation platform for playing retro games on the Raspberry Pi.

Arch Linux ARM
Arch Linux ARM is an easy-to-operate and lightweight Linux distribution, which is the official
port of the Arch Linux OS. Arch Linux ARM maintains the initial philosophy of Arch
developers, which is emphasizing simplicity, ownership, and use. It is built explicitly for the
processors which support ARM architecture. Using this, the users will have complete control of
the system and can modify and customize it as per their needs. It could be an ideal choice for
low-powered systems like Raspberry Pi.

Ubuntu Core
Ubuntu core is essentially designed to meet the needs of IoT devices. It is a minimal version of
Ubuntu which requires less storage and memory to function. As Ubuntu is one of the most
popular Linux distributions, hence its community has plenty of support and resources for users
who are interested in ubuntu core. It is simple to set up and can be installed using the ubuntu
snappy core installer.

Batocera.Linux
Batocera is a widespread open-source Linux distribution built primarily for retro gaming. While
it could run on some standard computer systems, but is designed explicitly for microcomputers
like Raspberry Pi. People who want to transform their Raspberry Pi computer into a gaming
console are recommended to download Batocera.Linux

BMC64
BMC64 is a free and open-source system that is a bare metal version of VICE's C64 emulator.
BMC64 proves to be an appropriate operating system for devices like Raspberry Pi. The reasons
are it has the GIPO pins to connect simple keyboards and joysticks, it offers PCB scanning, real
50Hz/60Hz scrolling, low audio and video latency, an optimal startup time, etc., helpful features.

Notes:-
 Raspberry Pi is a low-cost, economical pocket-sized computer, the size of an ATM Card.
 It was developed by Raspberry Pi Foundation in 2012with the aim of providing people

easy access to computing and computer education.
 Due to its small form factor, it is bounded by certain hardware limitations, and hence

running regular operating systems on it will be comparatively effortful.
 Therefore, specific operating systems were designed to power devices like Raspberry Pi.
 Most of the operating systems for Raspberry Pi are Linux-based, but certain are not. For

example - Windows 10 IoT core (windows 10-based Raspberry Pi Operating

221 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

System), RISC OS (a completely different OS model, which is neither Linux nor
windows), etc.

 Raspberry Pi devices are mainly used as portable computers used for building hardware
projects, IoT applications, home automation, etc.

 Along with all these, we can also use a Raspberry Pi to play games, listen to music, do
regular programming, etc.

 Raspberry Pi could be a great tool if one wants the power of an on-the-go computer along
with the advantage of great portability.

4.9. Raspberry-Pi Architecture
What is a Raspberry Pi? Raspberry pi is the name of the “credit card-sized computer

board” developed by the Raspberry pi foundation, based in the U.K. It gets plugged in a TV or
monitor and provides a fully functional computer capability. It is aimed at imparting knowledge
about computing to even younger students at the cheapest possible price. Although it is aimed at
teaching computing to kids, but can be used by everyone willing to learn programming, the
basics of computing, and building different projects by utilizing its versatility.

Raspberry Pi is developed by Raspberry Pi Foundation in the United Kingdom. The Raspberry Pi
is a series of powerful, small single-board computers.

Raspberry Pi is launched in 2012 and there have been several iterations and variations
released since then.

Various versions of Raspberry Pi have been out till date. All versions consist of a Broadcom
system on a chip (SoC) with an integrated ARM-compatible CPU and on-chip graphics
processing unit (GPU).

The original device had a single-core Processor speed of device ranges from 700 MHz to 1.2
GHz and a memory range from 256 MB to 1 GB RAM.

To store the operating system and program memory Secure Digital (SD) cards are used.
Raspbian OS which is a Linux operating system is recommended OS by Raspberry Pi
Foundation. Some other third party operating systems like RISC OS Pi. Diet Pi, Kali, Linux can
also be run on Raspberry Pi.

Used:
It also provides a set of general purpose input/output pins allowing you to control electronic
components for physical computing and explore the Internet of Things (IOT).
Raspberry pi Diagram:

222 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

 Raspberry Pi model –
There have been many generations of raspberry Pi from Pi 1 to Pi 4. There is generally a model
A and model B. Model A is a less expensive variant and it trends to have reduced RAM and dual
cores such as USB and Ethernet.

List of Raspberry pi models and releases year:
1. pi 1 model B – 2012
2. pi 1 model A – 2013
3. pi 1 model B+ -2014
4. pi 1 model A+ – 2014
5. Pi 2 Model B – 2015
6. Pi 3 Model B- 2016
7. Pi 3 Model B+ -2018
8. Pi 3 Model A+ -2019
9. Pi 4 Model A – 2019
10. Pi Model B – 2020
11. Pi 400 – 2021

223 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Specs of the Computer: – The computer has a quad-core ARM processor that doesn’t support
the same instruction as an X86 desktop CPU. It has 1GB of RAM, One HDMI port, four USB
ports, one Ethernet connection, Micro SD slot for storage, one combined 3.5mm audio/video
port, and a Bluetooth connection. It has got a series of input and output pins that are used for
making projects like – home security cameras, Encrypted Door lock, etc.

Versatility of Raspberry Pi: – It is indeed a versatile computer and can be utilized by people
from all age groups, it can be used for watching videos on YouTube, watching movies, and
programming in languages like Python, Scratch, and many more. As mentioned above it has a
series of I/O pins that give this board the ability to interact with its environment and hence can be
utilized to build really cool and interactive projects.
Examples of projects: – It can be turned into a weather station by connecting some instruments
to it for check the temperature, wind speed, humidity etc… It can be turned into a home
surveillance system due to its small size; by adding some cameras to it the security network will
be ready. If you love reading books it can also become a storage device for storing thousands of
eBooks and also you can access them through the internet by using this device.

Build Physical Projects With Python on the Raspberry Pi
The Raspberry Pi is one of the leading physical computing boards on the market. From hobbyists
building DIY projects to students learning to program for the first time, people use the Raspberry
Pi every day to interact with the world around them. Python comes built in on the Raspberry Pi,
so you can take your skills and start building your own Raspberry Pi projects today.

Getting to Know the Raspberry Pi

224 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

The Raspberry Pi is a single-board computer developed by the Raspberry Pi Foundation, a UK-
based charity organization. Originally designed to provide young people with an affordable
computing option to learn how to program, it has developed a massive following in the maker
and DIY communities because of its compact size, full Linux environment, and general-purpose
input–output (GPIO) pins.

With all the features and capabilities that are packed into this small board, there’s no shortage of
projects and use cases for the Raspberry Pi.

If you can think of a project that would benefit from having a credit card–sized computer
attached to it, then someone has probably used a Raspberry Pi to do it. The Raspberry Pi is a
fantastic way to bring your Python project ideas to life.
Raspberry Pi Board Overview

Below is the board layout of the Raspberry Pi 4. While this layout is slightly different from
previous models of the Raspberry Pi, most of the connections are the same. The setup described
in the next section should be the same for both a Raspberry Pi 3 and a Raspberry Pi 4:

The Raspberry Pi 4 board contains the following components:
 General-purpose input–output pins: These pins are used to connect the Raspberry Pi to

electronic components.

225 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

https://files.realpython.com/media/python-raspberry-pi-board-components.130884cd8ee7.jpg

lOMoARcPSD|26885763

 Ethernet port: This port connects the Raspberry Pi to a wired network. The Raspberry
Pi also has Wi-Fi and Bluetooth built in for wireless connections.

 Two USB 3.0 and two USB 2.0 ports: These USB ports are used to connect peripherals
like a keyboard or mouse. The two black ports are USB 2.0 and the two blue ports are
USB 3.0.

 AV jack: This AV jack allows you to connect speakers or headphones to the Raspberry
Pi.

 Camera Module port: This port is used to connect the official Raspberry Pi Camera
Module, which enables the Raspberry Pi to capture images.

 HDMI ports: These HDMI ports connect the Raspberry Pi to external monitors. The
Raspberry Pi 4 features two micro HDMI ports, allowing it to drive two separate
monitors at the same time.

 USB power port: This USB port powers the Raspberry Pi. The Raspberry Pi 4 has
a USB Type-C port, while older versions of the Pi have a micro-USB port.

 External display port: This port is used to connect the official seven-inch Raspberry
Pi touch display for touch-based input on the Raspberry Pi.

 microSD card slot (underside of the board): This card slot is for the microSD card that
contains the Raspberry Pi operating system and files.

People often wonder what the difference is between a Raspberry Pi and an Arduino. The Arduino
is another device that is widely used in physical computing. While there is some overlap in the
capabilities of the Arduino and the Raspberry Pi, there are some distinct differences.

The Arduino platform provides a hardware and software interface for
programming microcontrollers. A microcontroller is an integrated circuit that allows you to read
input from and send output to electronic components. Arduino boards generally have limited
memory, so they’re often used to repeatedly run a single program that interacts with electronics.

The Raspberry Pi is a general-purpose, Linux-based computer. It has a full operating system with
a GUI interface that is capable of running many different programs at the same time.
The Raspberry Pi comes with a variety of software preinstalled, including a web browser, an
office suite, a terminal, and even Minecraft. The Raspberry Pi also has built-in Wi-Fi and
Bluetooth to connect to the Internet and external peripherals.

For running Python, the Raspberry Pi is often the better choice, as you get a full-fledged Python
installation out of the box without any configuration.

4.10. Raspberry Pi Programming
"Hello world" is the beginning of everything when it comes to computing and

programming. It's the first thing you learn in a new programming language, and it's the way you

226 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

https://www.raspberrypi.org/products/raspberry-pi-touch-display/

lOMoARcPSD|26885763

test something out or check to see if something's working because it's usually the simplest way of
testing simple functionality.

Warriors of programming language wars often cite their own language's "hello world" against
that of another, saying theirs is shorter or more concise or more explicit or something. Having a
nice simple readable "hello world" program makes for a good intro for beginners learning your
language, library, framework, or tool.

I thought it would be cool to create a list of as many different "hello world" programs as possible
that can be run on the Raspberry Pi using its Raspbian operating system, but without installing
any additional software than what comes bundled when you download it from the Raspberry Pi
website. I've created a GitHub repository of these programs, and I've explained 10 of them for
you here.

1. Scratch

Scratch is a graphical block-based programming environment designed for kids to learn
programming skills without having to type or learn the synax of a programming language. The
"hello world" for Scratch is simple—and very visual!

1. Open Scratch 2 from the main menu.

2. Click Looks.

3. Drag a say Hello! block into the workspace on the right.

4. Change the text to Hello world.

5. Click on the block to run the code.

2. Python

227 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Python is a powerful and professional language that's also great for beginners— and it's lots of
fun to learn. Because one of Python's main objectives was to be readable and stick to simple
English, its "hello world" program is as simple as possible.

1. Open Thonny Python IDE from the main menu.
2. Enter the following code:

print("Hello world")

3. Save the file as hello3.py.
4. Click the Run button.

opensource.com

3. Ruby/Sonic Pi

Ruby is another powerful language that's friendly for beginners. Sonic Pi, the live coding music
synth, is built on top of Ruby, so what users actually type is a form of Ruby.

1. Open Sonic Pi from the main menu.
2. Enter the following code:

puts "Hello world"

3. Press Run.

228 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Unfortunately, "hello world" does not do Sonic Pi justice in the slightest

Alternatively, to using the Sonic Pi application for this example, you can write Ruby code in a
text editor and run it in the terminal:

1. Open Text Editor from the main menu.
2. Enter the following code:

puts "Hello world"

3. Save the file as hello.rb in the home directory.
4. Open Terminal from the main menu.
5. Run the following command:

ruby hello.rb

4. JavaScript

This is a bit of a cheat as I just make use of client-side JavaScript within the web browser using
the Web Inspector console, but it still counts!

1. Open Chromium Web Browser from the main menu.
2. Right-click the empty web page and select Inspect from the context menu.
3. Click the Console tab.
4. Enter the following code:

229 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

console.log("Hello world")

5. Press Enter to run.

You can also install NodeJS on the Raspberry Pi, and write server-side JavaScript, but that's not
available in the standard Raspbian image.

5. Bash

Bash (Bourne Again Shell) is the default Unix shell command language in most Linux
distributions, including Raspbian. You can enter Bash commands directly into a terminal
window, or script them into a file and execute the file like a programming script.

1. Open Text Editor from the main menu.
2. Enter the following code:

echo "Hello world"

3. Save the file as hello.sh in the home directory.
4. Open Terminal from the main menu.
5. Run the following command:

6. ash hello.sh

Note you'd usually see a "hashbang" at the top of the script (#!/bin/bash), but because I'm calling
this script directly using the bash command, it's not necessary (and I'm trying to keep all these
examples as short as possible).

230 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

You'd also usually make the file executable with chmod +x, but again, this is not necessary as
I'm executing with bash.

6. Java

Java is a popular language in industry, and is commonly taught to undergraduates studying
computer science. I learned it at university and have tried to avoid touching it since then.
Apparently, now I do (very small amounts of) it for fun...

1. Open Text Editor from the main menu.
2. Enter the following code:

3. public class Hello {

4. public static void main(String[] args) {

5. System.out.println("Hello world");

6. }

7. }

8.

9. Save the file as Hello.java in the home directory.
10. Open Terminal from the main menu.
11. Run the following commands:

12. javac Hello.java

java Hello

231 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

I could almost remember the "hello world" for Java off the top of my head, but not quite. I
always forget where the String[] args bit goes, but it's obvious when you think about it...

7. C

C is a fundamental low-level programming language. It's what many programming languages are
written in. It's what operating systems are written in. See for yourself&mdash:take a look at the
source for Python and the Linux kernel. If that looks a bit hazy, get started with "hello world":

1. Open Text Editor from the main menu.
2. Enter the following code:
3. #include <stdio.h>

4. int main() {

5. printf("Hello world\n");

}

6. Save the file as hello.c in the home directory.
7. Open Terminal from the main menu.
8. Run the following commands:

9. gcc -o hello hello.c

./hello

Note that in the previous examples, only one command was required to run the code
(e.g., python3 hello.py or ruby hello.rb) because these languages are interpreted rather than
compiled. (Actually Python is compiled at runtime but that's a minor detail.) C code is compiled
into byte code and the byte code is executed.

If you're interested in learning C, the Raspberry Pi Foundation publishes a book Learning to code
with C written by one of its engineers. You can buy it in print or download for free.

232 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

8. C++

C's younger bother, C++ (that's C incremented by one...) is another fundamental low-level
language, with more advanced language features included, such as classes. It's popular in a range
of uses, including game development, and chunks of your operating system will be written in C+
+ too.

Open Text Editor from the main menu.
Enter the following code:

#include <iostream>
using namespace std;
int main() {
 cout << "Hello world\n";
}

Save the file as hello.cpp in the home directory.

Open Terminal from the main menu.

Run the following commands:

1. g++ -o hellopp hello.cpp

./hellocpp

Readers familiar with C/C++ will notice I have not included the main function return values in
my examples. This is intentional as to remove boilerplate, which is not strictly necessary.

9. Perl

Perl gets a lot of stick for being hard to read, but nothing much gets in the way of understanding
its "hello world" program. So far, so good!

1. Open Text Editor from the main menu.
2. Enter the following code:

print "Hello world\n"

233 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

3. Save the file as hello.pl in the home directory.
4. Open Terminal from the main menu.
5. Run the following command:

perl hello.pl

Again, I learned Perl at university, but unlike Java, I have managed to successfully avoid using it.

10. Python extras: Minecraft and the Sense HAT emulator

So that's nine different programming languages covered, but let's finish with a bit more Python.
The popular computer game Minecraft is available for Raspberry Pi, and comes bundled with
Raspbian. A Python library allows you to communicate with your Minecraft world, so open
Minecraft and a Python editor side-by-side for some fun hacking your virtual world with code.

1. Open Minecraft Pi from the main menu.
2. Create and enter a Minecraft world.
3. Press Tab to release your focus from the Minecraft window.
4. Open Thonny Python IDE from the main menu.
5. Enter the following code:

6. from mcpi.minecraft import Minecraft

7.

8. mc = Minecraft.create()

9.

mc.postToChat("Hello world")

10. Save the file as hellomc.py.
11. Click the Run button.

234 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Finally, let's look at the Sense HAT Emulator. This tool provides a graphical representation of
the Sense HAT.

The sense_emu Python library is identical to the sense_hat library except that its commands get
executed in the emulator rather than on a physical piece of hardware. Because the Sense HAT
includes an 8x8 LED display, we can use its show_message function to write "hello world".

1. Open another tab in Thonny and enter the following code:

2. from sense_emu import SenseHat

3.

4. sense = SenseHat()

5.

sense.show_message("Hello world")

6. Save the file as sense.py.
7. Click the Run button.

235 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Example:
Pi Camera Module Interface with Raspberry Pi using Python

Pi Camera Module (v1.3)
The pi Camera module is a camera that can be used to take pictures and high definition video.

Raspberry Pi Board has CSI (Camera Serial Interface) interface to which we can attach the
PiCamera module directly.

This Pi Camera module can attach to the Raspberry Pi’s CSI port using a 15-pin ribbon cable.

Features of Pi Camera

Here, we have used Pi camera v1.3. Its features are listed below,

236 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

 Resolution – 5 MP
 HD Video recording – 1080p @30fps, 720p @60fps, 960p @45fps and so on.
 It Can capture wide, still (motionless) images of a resolution 2592x1944 pixels
 CSI Interface enabled.

 How to attach Pi Camera to Raspberry Pi?

Connect Pi Camera to the CSI interface of the Raspberry Pi board as shown below,

237 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Now, we can use Pi Camera for capturing images and videos using Raspberry Pi.

Before using Pi Camera, we need to enable camera for its working.

How to Enable Camera functionality on Raspberry Pi

For enabling the camera in Raspberry Pi, open the raspberry pi configuration using the following
command,

sudo raspi-config

then select Interfacing options in which select the camera option to enable its functionality.

reboot Raspberry Pi.

Now we can access the camera on Raspberry Pi.

Now we can capture images and videos using Pi Camera on Raspberry Pi.

Example

Capture images and save it to the specified directory.

We can capture images using Python. Here, we will write a Python program to capture images
using Pi Camera on Raspberry Pi.

Here, we have used picamera package(library) which provides different classes for Raspberry Pi.
Out of which we are mainly interested in PiCamera class which is for camera module.

Pi Camera Python Program for Image Capture

238 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Camera

import picamera

from time import sleep

#create object for PiCamera class

camera = picamera.PiCamera()

#set resolution

camera.resolution = (1024, 768)

camera.brightness = 60

camera.start_preview()

#add text on image

camera.annotate_text = 'Hi Pi User'

sleep(5)

#store image

camera.capture('image1.jpeg')

camera.stop_preview()

 Functions Used

To use picamera python based library we have to include it in our program as given below

import picamera

This picamera library has PiCamera class for the camera module. So, we have to create an object
for PiCamera class.

 PiCamera Class

To use Pi Camera in Python on Raspberry Pi, we can use PiCamera class which has different
APIs for camera functionality. We need to create object for PiCamera class.

E.g.

Camera = picamera.PiCamera()

The above PiCamera class has different member variables and functions which we can access by
simply inserting a dot (.) in between object name and member name.

E.g.

Camera.resolution = (1080, 648)

239 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

capture()

It is used to capture images using Pi Camera.

E.g.

Camera.capture(“/home/pi/image.jpeg”)

The capture() function has different parameters which we can pass for different operations like
resize, format, use_video_port, etc.

E.g.

Camera.capture(“/home/pi/image.jpeg”, resize=(720, 480))

 resolution= (width,height)

It sets the resolution of the camera at which image captures, video records, and previews will
display. The resolution can be specified as (width, height) tuple, as a string
formatted WIDTHxHEIGHT, or as a string containing commonly recognized display resolution
names e.g. “HD”, “VGA”, “1080p”, etc.

E.g.

Camera.resolution = (720, 480)

Camera.resolution = “720 x 480”

Camera.resolution = “720p”

Camera.resolution = “HD”

 Annotate_text = “Text”

It is used to add text on images, videos, etc.

E.g.

Camera.annotate_text = “Hi Pi User”

 start_preview()

It displays the preview overlay of the default or specified resolution.

E.g.

Camera.start_preview()

stop_preview()

240 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

It is used to close the preview overlay.

E.g.

Camera.stop_preview()

 Note: There are various APIs of PiCamera class. So, to know more API in detail you can refer

PiCamera APIs.

Pi Camera Python Program for Video Recording

import picamera

from time import sleep

camera = picamera.PiCamera()

camera.resolution = (640, 480)

print()

#start recording using pi camera

camera.start_recording("/home/pi/demo.h264")

#wait for video to record

camera.wait_recording(20)

#stop recording

camera.stop_recording()

camera.close()

print("video recording stopped")

Functions used

We have to create an object for PiCamera class. Here, we have create objects as camera.

start_recording()

It is used to start video recording and store it.

E.g.

Camera.start_recording(‘demo.h264’)

It records video named demo of h264 format.

wait_recording(timeout)

241 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Wait on the video encoder for specified timeout seconds.

E.g.

Camera.wait_recording(60)

 stop_recording()

It is used to stop video recording.

E.g.

Camera.stop_recording()

Play Recorded Video

To open a video, we can use omxplayer by using the following command,

 omxplayer video_name

4.11. Interface a Raspberry Pi with an Arduino

Interface a Raspberry Pi with an Arduino so the two boards can communicate with one another.

Sometimes you may need to connect an Arduino to a Raspberry Pi. For example, if you have
sensors, motors, and actuators, you can connect these to the Arduino and make the Arduino send
values to and from the Raspberry Pi. This way, we can separate the computing intensive tasks
(done by the Raspberry Pi) and controlling tasks (done by the Arduino).

242 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

we will connect an Arduino to a Raspberry Pi and have the Arduino send “Hello from Arduino”
to the Raspberry Pi, and the Raspberry Pi will blink an LED upon receiving the command from
the Arduino.

For communication, we will use simple serial communication over USB cable.
So, let’s get started!

Connect the LED to pin number 11 as shown in the picture below.

Turn on the Raspberry Pi and open Python 3 in a new window.

Write the following code in the new window and save it. (Save to your desktop so you don't lose
it.)

import serial
import RPi.GPIO as GPIO
import time

ser=serial.Serial("/dev/ttyACM0",9600) #change ACM number as found from ls /dev/tty/ACM*
ser.baudrate=9600
def blink(pin):

GPIO.output(pin,GPIO.HIGH)
time.sleep(1)

243 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

GPIO.output(pin,GPIO.LOW)
time.sleep(1)
return

GPIO.setmode(GPIO.BOARD)
GPIO.setup(11, GPIO.OUT)
while True:

read_ser=ser.readline()
print(read_ser)
if(read_ser=="Hello From Arduino!"):
blink(11)
Now open Arduino IDE and upload the following code to your Arduino.
String data="Hello From Arduino!";
void setup()
{
// put your setup code here, to run once:
Serial.begin(9600);
}
void loop()
{
// put your main code here, to run repeatedly:
Serial.println(data);//data that is being Sent
delay(200);
}

Make sure the code is uploaded to Arduino.

In your Raspberry Pi interface, be sure to enable Serial and I2C in PiConfig.

244 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Next, you'll need to restart your Raspberry Pi. Open the Terminal and execute these commands:

sudo apt-get install python-serial

sudo pip install pyserial
Connect your Arduino to your Raspberry Pi.
Execute.
ls /dev/tty*

Then find a line with /dev/ttyACM0 or something like /dev/ttyACM1 etc. (check for an ACM
with any number 0,1,2 etc.)

245 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Open Python again and change ser=serial.Serial(“dev/ttyACM1”,9600) to the ACM number you
found. So, if in your case you got ACM0, the line should look like this:
ser=serial.Serial(“dev/ttyACM0”,9600). Now run the program you just created in Python3. You
will see “Hello From Arduino!” in the Python terminal, and your LED should be blinking as
well!

4.12. Raspberry Pi GPIO Access

GPIO (General Purpose Input Output) pins can be used as input or output and allows raspberry pi
to connect with general purpose I/O devices.

 Raspberry pi 3 model B took out 26 GPIO pins on board.
 Raspberry pi can control many external I/O devices using these GPIO’s.
 These pins are a physical interface between the Pi and the outside world.
 We can program these pins according to our needs to interact with external devices. For

example, if we want to read the state of a physical switch, we can configure any of the
available GPIO pins as input and read the switch status to make decisions. We can also
configure any GPIO pin as an output to control LED ON/OFF.

 Raspberry Pi can connect to the Internet using on-board Wi-Fi or Wi-Fi USB adapter.
Once the Raspberry Pi is connected to the Internet then we can control devices, which are
connected to the Raspberry Pi, remotely.

GPIO Pins of Raspberry Pi 3 are shown in below figure:

246 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Raspberry Pi 3 Model B GPIO Pin Mapping

Some of the GPIO pins are multiplexed with alternate functions like I2C, SPI, UART etc.

We can use any of the GPIO pins for our application.

 Pin Numbering

We should define GPIO pin which we want to use as an output or input. But Raspberry Pi has
two ways of defining pin number which are as follows:

 GPIO Numbering
 Physical Numbering

In GPIO Numbering, pin number refers to number on Broadcom SoC (System on Chip). So, we
should always consider the pin mapping for using GPIO pin.

While in Physical Numbering, pin number refers to the pin of 40-pin P1 header on Raspberry Pi
Board. The above physical numbering is simple as we can count pin number on P1 header and
assign it as GPIO.

But, still we should consider the pin configuration diagram shown above to know which are
GPIO pins and which are VCC and GND.

Control LED with Push Button using Raspberry Pi

247 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Control LED using Raspberry Pi Interfacing Diagram

Example

Now, let’s control LED using a switch connected to the Raspberry Pi. Here, we are using Python
and C (WiringPi) for LED ON-OFF control.

Control LED using Python

Now, let’s turn an ON and OFF LED using Python on Raspberry Pi. The switch is used to
control the LED ON-OFF.

Python Program for Raspberry Pi to control LED using Push Button

import RPi.GPIO as GPIO #import RPi.GPIO module

LED = 32 #pin no. as per BOARD, GPIO18 as per BCM

Switch_input = 29 #pin no. as per BOARD, GPIO27 as per BCM

GPIO.setwarnings(False) #disable warnings

GPIO.setmode(GPIO.BOARD) #set pin numbering format

GPIO.setup(LED, GPIO.OUT) #set GPIO as output

GPIO.setup(Switch_input, GPIO.IN, pull_up_down=GPIO.PUD_UP)

248 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

while True:

 if(GPIO.input(Switch_input)):

 GPIO.output(LED,GPIO.LOW)

 else:

 GPIO.output(LED,GPIO.HIGH)

Functions Used:

RPi.GPIO

To use Raspberry Pi GPIO pins in Python, we need to import RPi.GPIO package which has class
to control GPIO. This RPi.GPIO Python package is already installed on Raspbian OS. So, we
don’t need to install it externally. Just, we should include library in our program to use functions
for GPIO access using Python. This is given as follows.

 import RPi.GPIO as GPIO

 GPIO.setmode (Pin Numbering System)

This function is used to define Pin numbering system i.e. GPIO numbering or Physical
numbering.

In RiPi.GPIO GPIO numbering is identified by BCM whereas Physical numbering is identified
by BOARD

Pin Numbering System = BOARD/BCM

E.g. If we use pin number 40 of P1 header as a GPIO pin which we have to configure as output
then,

 In BCM,

 GPIO.setmode(GPIO.BCM)

 GPIO.setup(21, GPIO.OUT)

 In BOARD,

 GPIO.setmode(GPIO.BOARD)

 GPIO.setup(40, GPIO.OUT)

 GPIO.setup (channel, direction, initial value, pull up/pull down)

This function is used to set the direction of GPIO pin as an input/output.

 channel – GPIO pin number as per numbering system.

 direction – set direction of GPIO pin as either Input or Output.

249 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

 initial value – can provide initial value

 pull up/pull down – enable pull up or pull down if required

Few examples are given as follows,

 GPIO as Output

 GPIO.setup(channel, GPIO.OUT)

 GPIO as Input

 GPIO.setup(channel, GPIO.IN)

 GPIO as Output with initial value

 GPIO.setup(channel, GPIO.OUT, initial=GPIO.HIGH)

 GPIO as Input with Pull up resistor

 GPIO.setup(channel, GPIO.IN, pull_up_down = GPIO.PUD_UP)

 GPIO.output(channel, state)

This function is used to set the output state of GPIO pin.

 channel – GPIO pin number as per numbering system.

 state – Output state i.e. HIGH or LOW of GPIO pin

e.g.

GPIO.output(7, GPIO.HIGH)

GPIO.input(channel)

This function is used to read the value of GPIO pin.

e.g.

GPIO.input(9)

Control LED using C (WiringPi)

We can access Raspberry Pi GPIO using C. Here, we are using WiringPi library for accessing
Raspberry Pi GPIO using C.

Before implementing LED blinking using wiringPi, you can refer How to use WiringPi library.

C (WiringPi) Program for Raspberry Pi to control LED using Push Button

#include <wiringPi.h>

250 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

#include <stdio.h>

int LED = 26; /* GPIO26 as per wiringPi, GPIO12 as per BCM, pin no.32 */

int switch_input = 21; /* GPIO21 as per WiringPi, GPIO5 as per BCM, pin no.29 */

int main(){

wiringPiSetup(); /* initialize wiringPi setup */

pinMode(LED,OUTPUT); /* set GPIO as output */

pullUpDnControl(switch_input, PUD_UP);

while (1){

if(digitalRead(switch_input))

digitalWrite(LED,LOW); /* write LOW on GPIO */

else

digitalWrite(LED, HIGH); /* write HIGH on GPIO */

}

}

4.13. Sending and Receiving Signals Using GPIO Pins

In recent years, the Raspberry Pi has become popular largely as an inexpensive, compact Linux
box for media and retro video games, as well as a network device. Some hobbyists go on to use
their Pi these ways for years, all without knowing what the pins on the side of their device really
do.

It’s these pins that hold the true power of the Pi. They can control homes, machines, new
inventions, and even robots, so why is it so many people don’t know what they really are?

What Do These Pins Actually Do?
These 40 (or 26, depending on your Pi model) pins are part of what’s known as the “GPIO
Header”. Within this header, there are four main kinds of pin;

 Power: These provide DC power at 3.3 and 5 volts
 Ground (GND): These connect to ground, to close your circuit
 DNC: This stands for “do not connect”, so don’t worry about them
 GPIO: These can be set to either send, or receive control voltages

251 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

GPIO stands for ‘General Purpose Input/Output’, and it’s these pins that let the Raspberry Pi do
its magic. This is because the pins have no specific function, and can be set to a dedicated
purpose, such as controlling a signal.

A GPIO pin set to output can provide either 3.3 volts, known as a HIGH signal, or 0 volts,
known as a LOW signal. When set to input, it can read these same voltages.

 GPIO Pins Don’t Provide Much Power

It’s important to remember that GPIO pins (and the 3.3-volt power pins) are meant to control and
communicate with other components.

You can get about 51mA from all 3.3 volt pins combined, but you’ll want to take care when
connecting; if your circuit tries to pull too much current through these 3.3 volt pins, you can fry
the whole board.

The 5-volt power pins, on the other hand, give you all the power available from the power
supply, minus the bit used by the Raspberry Pi itself.

4.13.1. Connecting Your GPIO Pins to a Breadboard

When you first start using these GPIO pins, it’s wise to use a breadboard. This makes it easy to
build circuits without solder and to modify them.

If you’ve never used a breadboard before, familiarize yourself with the basics here:

A GPIO extension board also helps immensely. This connects the GPIO header via a ribbon and
places the pins directly on the breadboard, in a clearly labeled manner.

It requires some real estate though: 20 rows each side of the breadboard. On a small board, that’s
nearly the whole thing! A breadboard with 40 rows or so leftover gives plenty of space for
beginner projects.

252 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

4.13.2. GPIO Pins With Special Uses

Every GPIO pin can be set to send and receive HIGH and LOW signals. Some have special uses
too.

 Hardware PWM

GPIO pins output either 3.3 or 0 volts: a HIGH or LOW signal. Pulse width modulation, or
PWM, is a way of simulating the range of voltages in between by flickering the pin on and off
rapidly.

This isn’t a true analog signal, but it’s fine for something like dimming an LED. It will flicker
faster than you can see and simply appear dimmer.

You can also use a low pass filter to smooth a PWM into an analog signal. This can be used for
analogue audio, if you aren’t fussy about quality. It’s fine for a doorbell or toy.

You can generate a PWM signal from any GPIO pin using software, but the operating system
juggles this with other tasks, so this signal can jitter.

Hardware PWM is available on GPIO pins 18 and 19. Hardware PWM and the headphone jack
use the same circuits, so shouldn’t be used simultaneously.

4.13.3. Serial Bus Pins

If you take a look below at the diagram (known as a Raspberry Pi ‘Pinout’) you’ll see that some
pins are I2C, SPI, and UART serial. These are serial bus protocols that can be used to send and
receive data from other components.

253 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

You can combine these with a digital-analogue converter, or DAC, to output an analogue signal.
This can be preferable to PWM for high quality audio, or to control many components.

4.13.4. Pull Up and Pull Down Resistors

Often you will want your Raspberry Pi GPIO pin to read the position of a button or a switch.
That’s easy to do by wiring it so that it closes a circuit attached to the control voltage to read
HIGH, or to ground to read LOW.

The problem is that when this circuit is open and nothing else is attached to the pin, it might
return any value. This is known as “floating,” and it’s extremely unhelpful.

You can prevent floating with “pull up” or “pull down” resistors.

A pull up resistor is wired to your control voltage; when nothing else is attached, the pin will
read HIGH. A pull down resistor is wired to ground; the pin will read LOW. Use whichever
provides the opposite value to your switch or button.

You don’t need to wire these resistors into your circuit. They’re inside the Raspberry Pi already
and you can control them from software.

254 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

4.13.5. Using Software to Control GPIO Pins

Among the easiest ways to control GPIO pins is by using the GPIO Zero library in Python. If
you’ve written any Python before, you’ll pick this up easy.
If this is your first time using Python, If you don’t, the commands below will still work; you’ll
just be less able to follow along. The web version of ‘Automate the Boring Stuff With Python’ is
excellent and costs nothing.

GPIO Zero is installed by default on Raspbian Desktop images. If you are using Raspbian Lite or
a different operating system, you may need to install it.

 Let’s Use All This to Switch a Light On

Let’s have a go at turning on an LED! A job this simple doesn’t really require a computer, but
we’ll involve the Raspberry Pi in the GPIO pins.

For this, you’ll need….

A Raspberry Pi with
power supply and an SD
card with
Raspbian installed

A breadboard

255 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

A GPIO extension
board (optional, but
recommended)

An LED

You’ll also need some more general equipment, such as;

 A resistor with a value somewhere between 220 and 1000 Ohms

 A USB keyboard, or an SSH connection: something that lets you type commands

 Jumper cables or wires

 A pushdown button

Connecting the Power Rails
If you’re using the extension board, connect it to the Raspberry Pi and to the breadboard. Then
attach the 3.3-volt power pin to the positive power rail running across the bottom of the
breadboard, and the ground pin to the negative power rail.

Connecting and Testing the Button
Now add your button to the middle of the breadboard. Connect one pin of the button to a
Raspberry Pi GPIO pin. I’m using 13, because it’s my lucky number.

Then, connect the diagonally opposite pin of the button to the negative power rail. When you
push this button down, the circuit closes.

Finally, we need to tell the Pi to pay attention to this pin, so let’s open the Python interpreter. At
the command prompt, type:

python3
Now at the interpreter, type:

256 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

from gpiozero import Button
If you get a message saying ‘ImportError’, make sure you capitalized it correctly. If it says
‘ModuleNotFoundError’, you need to install GPIO Zero. Otherwise, it’s time to assign our pin to
the button:

button = Button(13)
This Button class takes care of assigning the pull up resistor. Now let’s test that it works by
typing the following lines:

while True:
 if button.is_pressed:
 print(‘Sweet, the button works!’)
 break

Python is fussy about indentation, so be sure to copy the spaces too. Then press Enter again to
run the loop.

This loop will run until someone presses the button, so press it. It should produce a message
saying the button works. This means you’ve successfully built a simple circuit that sends a
message to your Raspberry Pi. If this doesn’t work, check that everything is connected properly
and try again.

4.13.6. Connecting and Testing the LED
The D in LED stands for “diode”, which means electricity only runs in one direction through it.
You will notice that one leg of the LED is slightly longer: this connects to positive. Here, that
means connecting to the GPIO pin. I’m using pin 26, for no particular reason.
Place the LED in the breadboard, making sure that the legs are spaced horizontally so that you
aren’t shorting the connection out. Now connect this positive leg to your GPIO pin.
An LED should be wired in series with a resistor, so attach one end of your resistor to the short
leg of the LED, and the other end to the negative power rail. Resistors can go in either way
around.

257 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Now let’s go tell the Raspberry Pi what’s going on. Type: Image: Pi & Breadboard

from gpiozero import LED
led = LED(26)
If everything’s wired correctly, you can switch it on and off with these commands:

led.on()
led.off()
Controlling the LED With the Button
Now that everything’s connected and you’ve checked they work, type:

button.when_pressed = led.on
Now press the button. The LED should switch on and stay on. Now type:

button.when_released = led.off
Press the button again; the LED should switch off when the button is released.

4.14. Connecting IOT devices to the cloud

With the development of smart things, sensors and telecommunication, IoT (Internet of Things)
technology has greatly developed and become more and more standardized. But fragmented
device-side communication connection problems often impede the project implementation
process.

There are four best practices to connect different types of devices to the cloud:

 Directly integrate IoT SDK (Software Development Kit) for resource-rich devices
 Rely on a communication module for resource-constrained devices
 Use a local gateway for non-network devices
 Use a cloud gateway for private-protocol devices with network capabilities

First, we should introduce the IoT Device SDK.

IoT Device SDK is used to help us quickly connect hardware devices to the IoT platform. We
can download the IoT Device SDK from the corresponding cloud platform, e.g. AWS IoT
Device SDK.

258 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

https://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html

lOMoARcPSD|26885763

There are 4 layers of the IoT SDK. From bottom to top:

1. The HAL (hardware abstraction layer) abstracts the support function interface of different OS
(operating systems) to the SDK. This enables the SDK to be ported to different hardware
environments, different OS, and even bare chip environments.

2. The core layer completes the function encapsulation of MQTT/CoAP communication based on
the HAL layer interface, including MQTT connection establishment, message sending and
receiving; CoAP connection establishment, message sending and receiving; shadow device
operation; OTA firmware status query, download and upgrade.

3. Interface layer, providing API and callback function definitions, isolating the core layer and the
application.

4. Provide sample programs so that developers can quickly learn how to use the SDK.

When developing applications on a device, we can always choose higher-level SDKs such as
Android IoT SDK on an Android device. That’s because the hardware environment porting work
has already been done by the SDK itself.

259 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

However, when developing applications for an MCU (Micro Controller Unit) which has Linux or
RTOS (Real Time Operating System), we should choose Embedded C SDK and port the code to
a specific hardware environment.

With the knowledge of IoT SDK, we can discuss how to connect an IoT device to the cloud.

Directly integrate IoT SDK for resource-rich devices

With the development of high-performance hardware, many smart devices have complete OS
such as Linux, Android etc. These devices also have a Wi-Fi or cellular network.

At the operating system level, network communication problems have already been resolved. We
only need to develop applications which integrate the IoT SDK of the cloud platform and the
communication link with the cloud will have been established.

Examples of smart devices include smart phones, tablets, smart wearables, smart POS,
computers, industrial gateways and development boards like the Raspberry Pi and ESP32.

Rely on a communication module for resource-constrained devices

In the IoT scenario, a large number of devices are resource-constrained, with RTOS, or even
without an operating system, using MCU + communication modules to establish their link to the
cloud.

There are many suppliers of cellular modules (NB-IoT/2G/3G/4G) on the market. The AT
commands of each company are different, which makes developing device-side applications very
difficult.

When we need to connect MCU to an IoT Platform, we should always carefully select the
cellular modules and check whether they are suitable for a specific IoT platform.

260 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Difference between DTU and industrial gateway:
DTU is a wireless terminal device used to convert serial data into IP data or IP data into

serial data and transmit it through a wireless communication network. It has fast and flexible
networking, a short construction period and low cost.

The industrial gateway has the functions of collecting data from field devices through
serial port or network port. Data collection, protocol analysis, data standardization and uploading
to the IoT platform through edge computing functions. Which is more flexible, powerful and
customizable than DTU, but it is more expensive and needs more resources to maintain.

Examples of sensors / devices which can be connected to DTU or industrial gateway include
sensors, industrial equipment PLCs (Programmable Logic Controller), Bluetooth bracelets

Use a cloud gateway for private-protocol devices with network capabilities

Devices that directly connect to the cloud gateway

For some devices, they already have the ability to connect to the internet, but the protocols vary
according to device manufacturers. We don’t want the IoT platform layer to handle the parsing
of these protocols directly;an intermediate layer should satisfy the protocol conversion work to
make the data meet the unified format of the IoT platform.

This intermediate layer is the cloud gateway. The cloud gateway is at the front of the platform. It
receives data from the device side, completes message parsing, and then sends a message to the
IoT platform with IoT device SDK.

261 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

Examples of devices that connect to the internet through private protocol include vehicle GPS.

Devices that connect to the cloud gateway indirectly

Some device vendors already provide a mature system which manages the devices and provides
API. In this case, we can have another form of cloud gateway: Cloud to cloud connection.
Making full use of the existing system will make the overall system more stable and give clear
rights and responsibilities.

Using a mature system will bring us higher development efficiency, but it’ll also introduce
another midware, which will increase communication time.

Examples of devices with mature systems include cameras/NVR systems.

262 | P a g e

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

1 | P a g e

UNIT V

APPLICATIONS DEVELOPMENT

• Complete Design of Embedded Systems

• Development of IoT Applications

• Home Automation

• Smart Agriculture

• Smart Cities

• Smart Healthcare.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

2 | P a g e

5.1. Complete Design of Embedded Systems

An Embedded system is a controller, which controls many other electronic devices. It

is a combination of embedded hardware and software. There are two types of embedded

systems microprocessors and micro-controller. Micro-processor is based on von Neumann

model/architecture (where program + data resides in the same memory location), it is an

important part of the computer system, where external processors and peripherals are

interfaced to it. It occupies more area and has more power consumption. The application of

the microprocessor is personal computers.

5.1.1. What is an Embedded System Design?

Definition: A system designed with the embedding of hardware and software

together for a specific function with a larger area is embedded system design. In embedded

system design, a microcontroller plays a vital role. Micro-controller is based on Harvard

architecture, it is an important component of an embedded system. External processor,

internal memory and i/o components are interfaced with the microcontroller. It occupies less

area, less power consumption. The application of microcontrollers is MP3, washing

machines.

5.2. Embedded Design

5.2.1. Types of Embedded Systems

• Stand-Alone Embedded System

• Real-Time Embedded System

• Networked Appliances

• Mobile devices

5.2.2. Elements of Embedded Systems

• Processor

• Microprocessor

• Microcontroller

• Digital signal processor.

5.2.3. Steps in the Embedded System Design Process

The different steps in the embedded system design flow/flow diagram include the following.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

https://en.wikipedia.org/wiki/Embedded_system
https://www.elprocus.com/important-of-network-in-embedded-systems-for-beginners/

lOMoARcPSD|26885763

3 | P a g e

Embedded design – process – steps

Abstraction

In this stage the problem related to the system is abstracted.

Hardware – Software Architecture

Proper knowledge of hardware and software to be known before starting any design process.

Extra Functional Properties

Extra functions to be implemented are to be understood completely from the main design.

System Related Family of Design

When designing a system, one should refer to a previous system-related family of design.

Modular Design

Separate module designs must be made so that they can be used later on when required.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

4 | P a g e

Mapping

Based on software mapping is done. For example, data flow and program flow are mapped

into one.

User Interface Design

In user interface design it depends on user requirements, environment analysis and function

of the system. For example, on a mobile phone if we want to reduce the power consumption

of mobile phones we take care of other parameters, so that power consumption can be

reduced.

Refinement

Every component and module must be refined appropriately so that the software team can

understand.

Architectural description language is used to describe the software design.

• Control Hierarchy

• Partition of structure

• Data structure and hierarchy

• Software Procedure.

5.2.4. Embedded Software Development Process Activities

Embedded software development process activities mainly include the following.

Specifications

Proper specifications are to be made so that the customer who uses the product can go

through the specification of the product and use it without any confusion. Designers mainly

focus on specifications like hardware, design constraints, life cycle period, resultant system

behavior.

Architecture

Hardware and Software architecture layers are specified.

Components

In this layer, components design is done. Components like single process processor,

memories- RAM/ROM, peripheral devices, buses..etc.

System Integration

In this layer, all the components are integrated into the system and tested whether its meeting

designers, expectations.

Challenges in Embedded System Design

While designing any embedded system, designers face lots of challenges like as follows,

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

5 | P a g e

• Environment adaptability

• Power consumption

• Area occupied

• Packaging and integration

• Updating in hardware and software

• Security

• There are various challenges the designers face while testing the design like Embedded

hardware testing, Verification stage, Validation Maintainability.

Embedded System Design Examples

• Automatic chocolate vending machine (ACVM)

• Digital camera

• Smart card

• Mobile phone

• Mobile computer..etc.

Automatic Chocolate Vending Machine (ACVM)

The design function of ACVM is to provide chocolate to the child whenever the child inserts

a coin into ACVM.

Design Steps

The design steps mainly include the following.

1. Requirements

2. Specifications

3. Hardware and software functioning.

Requirements

When a child inserts a coin into the machine and selects the particular chocolate that he

wants to purchase.

Inputs

• Coins, user selection.

• An interrupt is generated at each port whenever a coin is inserted.

• A separate notification is sent to each port.

Outputs

• Chocolate

• Refund

• A message is displayed on LCD like date, time, welcome message.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

https://www.elprocus.com/types-of-electronic-testing-equipments/

lOMoARcPSD|26885763

6 | P a g e

System Function

• Using a graphical user interface, the child commands to the system which chocolate the

child wants to purchase.

• Where the graphical user interface has an LCD, keypad, touch screen.

• The machine delivers the chocolate when the child inserts the coin if the coins inserted are

excess than the actual cost of selected chocolate. The ACVM machine refunds the money

back.

• Using a Universal synchronous bus, the owner of the ACVM can keep track of client

location.

5.2.5. Designing of an embedded system

Basic Structure of an Embedded System

Let's see the block diagram shows the basic structure of an embedded system.

o Sensor: Sensor used for sensing the change in environment condition and it generate

the electric signal on the basis of change in environment condition. Therefore it is

also called as transducers for providing electric input signal on the basis of change in

environment condition.

o A-D Converter: An analog-to-digital converter is a device that converts analog

electric input signal into its equivalent digital signal for further processing in an

embedded system.

o Processor & ASICs: Processor used for processing the signal and data to execute

desired set of instructions with high-speed of operation.

Application specific integrated circuit (ASIC) is an integrated circuit designed to

perform task specific operation inside an embedded system.

o D-A Converter: A digital-to-analog converter is a device that converts digital electric

input signal into its equivalent analog signal for further processing in an embedded

system.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

7 | P a g e

o Actuators: Actuators is a comparator used for comparing the analog input signal level

to desired output signal level for providing the error free output from the system.

Design steps required for the development of Embedded System

Designing steps required for embedded system are different from the design process of

another electronic system.

Let's see a flow chart represent the design steps required in the development of an embedded

system:

Embedded System processors

Processors are the major part in embedded systems that take response from sensors in digital

form and processing of this response to produce output in real-time processing environment

is performed using processors.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

8 | P a g e

For an embedded system developer it is essential to have the knowledge of both

microprocessors and micro controllers.

Processors inside a system:

Processors inside a system have two essential units:

o Control unit: This unit in processors performed the program flow control operation

inside an embedded system. The control unit also acts as a fetching unit for fetching

the set of instructions stored inside a memory.

o Execution unit: This unit is used for execution the various tasks inside a processors. It

mainly comprises of arithmetic and logical unit (ALU) and it also include a circuit

that executes the instruction sets used to perform program control operation inside

processors.

Types of processors:

Processors inside an embedded system are of the following categories:

o Application Specific System Processor(ASSP): ASSP is application dependent

system processor used for processing signal of embedded system. Therefore for

different application performing task a unique set of system processors is required.

o Application Specific Instruction Processor(ASIP): ASIP is application dependent

instruction processors. It is used for processing the various instruction set inside a

combinational circuit of an embedded system.

o General Purpose Processor (GPP): GPP is used for processing signal from input to

output by controlling the operation of system bus, address bus and data bus inside an

embedded system.

Types of general purpose processor are:

o Microprocessor

o Microcontroller

o Digital signal processor

o Analog signal processor

Embedded Systems

Before going to the overview of Embedded Systems, Let’s first know the two basic

things i.e embedded and system, and what actually do they mean.

System is a set of interrelated parts/components which are designed/developed to perform

common tasks or to do some specific work for which it has been created.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

9 | P a g e

Embedded means including something with anything for a reason. Or simply we can say

something which is integrated or attached to another thing. Now after getting what actual

systems and embedded mean we can easily understand what are Embedded Systems.

Embedded System is an integrated system that is formed as a combination of computer

hardware and software for a specific function. It can be said as a dedicated computer system

has been developed for some particular reason. But it is not our traditional computer system

or general-purpose computers, these are the Embedded systems that may work independently

or attached to a larger system to work on a few specific functions. These embedded systems

can work without human intervention or with little human intervention.

Three main components of Embedded systems are:

1. Hardware

2. Software

3. Firmware

Some examples of embedded systems:

• Digital watches

• Washing Machine

• Toys

• Televisions

• Digital phones

• Laser Printer

• Cameras

• Industrial machines

• Electronic Calculators

• Automobiles

• Medical Equipment

Application areas of Embedded System:

Mostly Embedded systems are present everywhere. We use it in our everyday life

unknowingly as in most cases it is integrated into the larger systems. So, here are some of the

application areas of Embedded systems:

• Home appliances

• Transportation

• Health care

• Business sector & offices

• Defense sector

• Aerospace

• Agricultural Sector

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

10 | P a g e

Important Characteristics of an Embedded System:

1. Performs specific task: Embedded systems perform some specific function or tasks.

2. Low Cost: The price of an embedded system is not so expensive.

3. Time Specific: It performs the tasks within a certain time frame.

4. Low Power: Embedded Systems don’t require much power to operate.

5. High Efficiency: The efficiency level of embedded systems is so high.

6. Minimal User interface: These systems require less user interface and are easy to use.

7. Less Human intervention: Embedded systems require no human intervention or very

less human intervention.

8. Highly Stable: Embedded systems do not change frequently mostly fixed maintaining

stability.

9. High Reliability: Embedded systems are reliable they perform tasks consistently well.

10. Use microprocessors or microcontrollers: Embedded systems use microprocessors or

microcontrollers to design and use limited memory.

11. Manufacturable: The majority of embedded systems are compact and affordable to

manufacture. They are based on the size and low complexity of the hardware.

5.2.6. Block Structure Diagram of Embedded System

Advantages of Embedded System:

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

11 | P a g e

• Small size.

• Enhanced real-time performance.

• Easily customizable for a specific application.

Disadvantages of Embedded System:

• High development cost.

• Time-consuming design process.

• As it is application-specific less market available.

Top Embedded Programming Languages: Embedded systems can be programmed using

different programming languages like Embedded C, Embedded C++, Embedded Java, and

Embedded Python. However, it entirely depends on the developer to use which programming

language for the development of the embedded systems.

5.3. Internet of Things Applications

The Internet of Things (IoT) provides the ability to interconnect computing devices,

mechanical machines, objects, animals or unique identifiers and people to transfer data

across a network without the need for human-to-human or human-to-computer is a system of

conversation. IoT applications bring a lot of value in our lives. The Internet of Things

provides objects, computing devices, or unique identifiers and people's ability to transfer

data across a network without the human-to-human or human-to-computer interaction.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

https://www.geeksforgeeks.org/top-10-best-embedded-systems-programming-languages/
https://www.geeksforgeeks.org/top-10-best-embedded-systems-programming-languages/

lOMoARcPSD|26885763

12 | P a g e

A traffic camera is an intelligent device. The camera monitors traffic congestion,

accidents and weather conditions and can access it to a common entrance.

This gateway receives data from such cameras and transmits information to the city's traffic

monitoring system.

For example, the municipal corporation has decided to repair a road that is connected to the

national highway. It may cause traffic congestion to the national highway. The insight is sent

to the traffic monitoring system.

The intelligent system analyzes the situation, estimate their impact, and relay information to

other cities connected to the same highway. It generates live instructions to drivers by smart

devices and radio channels.

It creates a network of self-dependent systems that take advantage of real-time control.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

13 | P a g e

What is IoT?

IoT is a platform where embedded devices are connected to the Internet

to collect and exchange data. It enables machines to interact, collaborate and learn from

experiences like humans. IoT applications equipped billions of objects

with connectivity and intelligence.

5.3.1. Wearable

Wearable technology is the hallmark of IoT applications and one of the earliest industries to

deploy IoT. We have fit bits, heart rate monitors and smartwatches these days.

Guardian glucose monitoring device has been developed to help people with diabetes. It

detects glucose levels in our body, uses a small electrode called the glucose sensor under the

skin, and relates it to a radiofrequency monitoring device.

5.3.2. Smart Home Applications

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

https://www.javatpoint.com/iot-internet-of-things

lOMoARcPSD|26885763

14 | P a g e

The smart home is probably the first thing when we talk about the IoT application. The

example we see the AI home automation is employed by Mark Zuckerberg. Alan

Pan's home automation system, where a string of musical notes uses in-house functions.

5.3.3. Health care

IoT applications can transform reactive medical-based systems into active wellness-based

systems. Resources that are used in current medical research lack important real-world

information. It uses controlled environments, leftover data, and volunteers for clinical trials.

The Internet of Things improves the device's power, precision and availability. IoT

focuses on building systems rather than just tools. Here's how the IoT-enabled care device

works.

5.3.4. Smart Cities

Most of you have heard about the term smart city. Smart city uses technology to

provide services. The smart city includes improving transportation and social services,

promoting stability and giving voice to their citizens.

The problems faced by Mumbai are very different from Delhi. Even global issues, such as

clean drinking water, declining air quality, and increasing urban density, occur in varying

intensity cities. Therefore, they affect every city.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

15 | P a g e

Governments and engineers use the Internet of Things to analyze the complex factors of

town and each city. IoT applications help in the area of water management, waste control and

emergencies.

Example of a smart city - Palo Alto.

Palo Alto, San Francisco, is the first city to acquire the traffic approach. He realized that

most cars roam around the same block on the streets in search of parking spots. It is the

primary cause of traffic congestion in the city. Thus, the sensors were installed at all parking

areas in the city. These sensors pass occupancy status to the cloud of each spot. This solution

involves the use of sensor arrays that collects data and uses it for many purposes.

5.3.5. Agriculture

By the year 2050, the world's growing population is estimated to have reached about 10

billion. To feed such a large population, agriculture needs to marry technology and get the

best results. There are many possibilities in this area. One of them is Smart Greenhouse.

Farming techniques grow crops by environmental parameters. However, manual handling

results in production losses, energy losses and labor costs, making it less effective.

The greenhouse makes it easy to monitor and enables to control the climate inside it.

5.3.6. Industrial Automation

It is one of the areas where the quality of products is an essential factor for a more significant

investment return. Anyone can re-engineer products and their packaging to provide superior

performance in cost and customer experience with IoT applications. IoT will prove as a

game-changer. In industrial automation, IoT is used in the following areas:

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

16 | P a g e

o Product flow monitoring

o Factory digitization

o Inventory management

o Safety and security

o Logistics and Supply Chain Optimization

o Quality control

o Packaging customization

5.3.7. Hacked Car

A connected car is a technology-driven car with Internet access and a WAN network. The

technology offers the user some benefits such as in-car infotainment, advanced navigation

and fuel efficiency.

5.3.8. Healthcare

Healthcare do real-time monitoring with the help of smart devices. It gathers and transfers

health data such as blood pressure, blood sugar levels, weight, oxygen, and ECG. The patient

can contact the doctor by the smart mobile application in case of any emergency.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

17 | P a g e

5.3.9. Smart Retail

IoT applications in retail give shoppers a new experience. Customers do not have to stand in

long queues as the checkout system can read the tags of the products and deduct the total

amount from the customer's payment app with IoT applications' help.

5.3.10. Smart Supply Chain

Customers automate the delivery and shipping with a smart supply chain. It also provides

details of real-time conditions and supply networks.

5.3.11. Smart Farming

Farmers can minimize waste and increase productivity. The system allows the monitoring of

fields with the help of sensors. Farmers can monitor the status of the area.

Internet-connected devices go from 5 million to billions in just one year. Business Insider

Intelligence estimates 24 billion IoT devices will install and generate more than 300 billion

in revenue in the future.

 5.3.12. Smart Grid

The smart grid is the IoT that attends to energy systems. Utility companies use smart grid

technologies to find energy efficiencies through various means, including monitoring energy

consumption, predicting energy shortages and power outages, and gathering data on how

different individuals and companies use energy. The average individual can also use insights

from the smart grid to assess their own energy use and find efficiencies in their household.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

18 | P a g e

5.4. IOT Projects

5.4.1. Home Automation

IoT based Web controlled Home Automation using PIC Microcontroller and Adafruit IO

IoT based Web controlled Home Automation using PIC Microcontroller and Adafruit IO

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

19 | P a g e

Home Automation has always been inspiring projects for most of us. Toggling an AC

load from the comfort of our chairs or bed of any room without reaching for the switch in

another room sounds cool doesn’t it!!. And now in the era of IoT, thanks to the ESP8266

module which made it easy to control anything from anywhere in the world.

In this IoT based project, we will use Adafuit IO to control Home appliaces from a webpage

using ESP8266 and PIC microcontroller. We have connected three AC light as loads and

they can be controlled remotely using either your phone or computer. Here ESP8266 is used

with PIC microcontroller.

Component Required

ESP8266

PIC microcontroller(PIC16f877A)

12V 5A Electromagnetic Relay Module -1

12v Power supply (12V/1A or above) -1

LM7805 Voltage Regulator -1

LM317 Regulator -1

10k ohm Resistor -1

1k Resistor – 3

10k Pot – 1

1k Pot -1

16x2 LCD

1000uF capacitor -1

10uF capacitor -2

Wires for connection

18.432 MHz Crystal oscillator -1

LED -2

22pF capacitor -2

BreadBoard or PCB (optional)

Circuit Diagram

In Web controlled Home Automation project, we have used PIC microcontroller

PIC16F877A for performing all the operations. It will communicate with ESP8266 Wi-Fi

module to send and receive data from the Adafruit server and take action accordingly to turn

ON/OFF relay or load and displaying the status of loads over LCD. We have used 16x2 LCD

display for displaying the status of connected AC appliances.

In this project we have three power supplies:

As we have used a 12v relay module we need 12v so we have used a 12v adaptor to power

the relay.

We needed 5v for powering the PIC microcontroller, LCD and some of the relay module

circuit. So we have used a 7805 voltage regulator connected with a 12v supply. This voltage

regulator provides 5v output.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

http://circuitdigest.com/internet-of-things-iot-projects

lOMoARcPSD|26885763

20 | P a g e

A 3.3v power supply is used for powering the ESP8266 as it works on 3.3v. This supply is

made by using LM317 voltage regulator which can be configurable to 3.3v by using some

voltage divider circuitry with this. Learn more about creating a LM317 based variable power

supply.

All the connections for this project have been shown in the circuit diagram. The final setup

will look like this:

Setup Adafruit IO for IoT Home Automation

In this project, we are going to control some home AC appliance via a web page crated using

Adafruit IO. Adafruit IO is a simple to use internet service that easily enables IoT devices to

GET and POST data. Additionally, it can be used to create GUI interfaces for viewing data,

controlling devices, and triggers for alerts/warnings.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

21 | P a g e

Follow below steps to setup Adafruit IO for IoT Home Automation

Step 1: in this step, we have to create an account on adafruit.io or if you already have an

account just login into it.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

22 | P a g e

Step 2: Create a dashboard by clicking on ‘Dashboards’ at the left side of the page and then

click on ‘Action’ and then on ‘Create a New Dashboard’.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

23 | P a g e

Now a pop-up window form will open, fill in any name like Home Automation and click

on Create. You can also add some description related to project.

Step 3: Now click on the newly created dashboard

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

24 | P a g e

Now we need to click on + size at the right side of the page under blue squire and red circle.

Now another pop-up window open to select desired new block item like ON/OFF switch.

After selecting the Block (On/Off button) a new pop-up window will open. Enter here the

name of your new feed like Light1 or and click on create.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

25 | P a g e

Now click on a newly created feed and fill some details and click over create a block.

You can create more feeds and blocks according to requirement. Here we have created three

for controlling three lights from this web interface

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

26 | P a g e

Step 4: Now click on ‘KEY’ symbol on the same page and copy username and the active

key given there.

Step 5: Now open the code and replace the username with your username everywhere in the

code, also replace the MQTTPassword with the active key in the code. Complete code is

given at the end of this project.

const char MQTTHost[] = "io.adafruit.com";

const char MQTTPort[] = "1883";

const char MQTTClientID[] = "ABCDEF";

const char MQTTTopicRelay1[] = "saddam4201/feeds/Light1";

const char MQTTTopicRelay2[] = "saddam4201/feeds/Light2";

const char MQTTTopicRelay3[] = "saddam4201/feeds/Light3";

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

27 | P a g e

const char MQTTTopicRelay4[] = "saddam4201/feeds/Light4";

const char MQTTProtocolName[] = "MQTT";

const char MQTTLVL = 0x03;

const char MQTTFlags = 0xC2;

const unsigned int MQTTKeepAlive = 60;

const char MQTTUsername[] = "saddam4201"; // put your Username

const char MQTTPassword[] = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"; // Put Your

Password

const char MQTTQOS = 0x00;

const char MQTTPacketID = 0x0001;

Step 6: Now compile and upload the code into PIC microcontroller, if you are new with PIC

microcontroller.

MQTT Protocol

This IoT based Home Automation Project uses MQTT protocol for exchanging data between

server and client. This protocol is very fast compared to the TCP/IP protocol. And the

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

28 | P a g e

working concept is also different from the TCP/IP protocol. This protocol has three main

components.

Publish

Broker

Subscriber

According to MQTT.org (official website), “MQTT stands for MQ Telemetry Transport. It is

a publish/subscribe, extremely simple and lightweight messaging protocol, designed for

constrained devices and low-bandwidth, high-latency or unreliable networks. The design

principles are to minimize network bandwidth and device resource requirements whilst also

attempting to ensure reliability and some degree of assurance of delivery. These principles

also turn out to make the protocol ideal of the emerging “machine-to-machine” (M2M) or

“Internet of Things” world of connected devices, and for mobile applications where

bandwidth and battery power are at a premium.”

Programming Explanation

Programming part of this Adafruit.io Home Automation is a little bit difficult because of

MQTT protocol and its frame format. But if you don’t want to go into this then you can

directly try the code given at the end. Here we have explained few parts of code below:

First of all, include all the required libraries and set configuration bits for PIC

Microcontroller.

#define _XTAL_FREQ 18432000

#include <xc.h>

#include<pic.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

// BEGIN CONFIG

#pragma config FOSC = HS // Oscillator Selection bits (HS oscillator)

#pragma config WDTE = OFF // Watchdog Timer Enable bit (WDT enabled)

#pragma config PWRTE = OFF // Power-up Timer Enable bit (PWRT disabled)

#pragma config BOREN = ON // Brown-out Reset Enable bit (BOR enabled)

#pragma config LVP = OFF // Low-Voltage (Single-Supply) In-Circuit Serial Programming

Enable bit (RB3 is digital I/O, HV on MCLR must be used for programming)

#pragma config CPD = OFF // Data EEPROM Memory Code Protection bit (Data EEPROM

code protection off)

#pragma config WRT = OFF // Flash Program Memory Write Enable bits (Write protection

off; all program memory may be written to by EECON control)

#pragma config CP = OFF // Flash Program Memory Code Protection bit (Code protection

off)

//END CONFIG

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

29 | P a g e

After this, we have defined some macros that are used to declare pins for LCD and other

GPIOs.

#define uchar unsigned char

#define uint unsigned int

#define LCDPORTDIR TRISA

#define LCDPORT PORTA

#define RS RE1

#define EN RE0

#define relay1dir TRISC0

#define relay2dir TRISC1

#define relay3dir TRISC2

#define relay4dir TRISC4

#define relay1 RC0

#define relay2 RC1

#define relay3 RC2

#define relay4 RC4

#define leddir TRISC3

#define led RC3

#define txDir TRISD0

#define tx RD0

Now in giving part of the code, we have some variables that we have sued in this project

volatile char buf[95];

uchar buf1[70];

uchar buf2[15];

int retry;

int restartFlag=0;

volatile char index=0;

volatile char flag=0;

volatile int msCount=0;

volatile char g_timerflag=1;

volatile int counter=0;

volatile char sec=0;

unsigned int topiclength;

unsigned char topic[25];

unsigned char encodedByte;

int X;

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

30 | P a g e

Below function is used for Wi-Fi initialization which is responsible for initializing wifi

module and connect ESP8266 with Wi-Fi hotspot or Wi-Fi router.

void espInitize()

{

 lcdwrite(0x01, CMD);

 lcdprint("ESP Initilizing");

 serialprintln("AT+RST");

 __delay_ms(5000);

 espInit("AT","OK",2);

 espInit("ATE1","OK",2);

 espInit("AT+CWMODE=3","OK",2);

 espInit("AT+CWQAP","OK",2);

 espInit("AT+CWJAP=\"wifi_name\",\"password\"","OK",3);

 serialprintln("AT+CIFSR");

 serialFlush();

 __delay_ms(500);

}

Below code is used to configure MQTT and adafrut.io.

const char MQTTHost[] = "io.adafruit.com";

const char MQTTPort[] = "1883";

const char MQTTClientID[] = "ABCDEF";

const char MQTTTopicRelay1[] = "saddam4201/feeds/Light1";

const char MQTTTopicRelay2[] = "saddam4201/feeds/Light2";

const char MQTTTopicRelay3[] = "saddam4201/feeds/Light3";

const char MQTTTopicRelay4[] = "saddam4201/feeds/Light4";

const char MQTTProtocolName[] = "MQTT";

const char MQTTLVL = 0x03;

const char MQTTFlags = 0xC2;

const unsigned int MQTTKeepAlive = 60;

const char MQTTUsername[] = "saddam4201"; // put your Username

const char MQTTPassword[] = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"; // Put Your

Password

const char MQTTQOS = 0x00;

const char MQTTPacketID = 0x0001;

Given function is used to connect with Adafruit IO broker and subscribing the topics that we

have used in this project.

void restartESP()

{

 espInitize();

 espInit("AT+CIPSTART=\"TCP\",\"io.adafruit.com\",1883","CONNECT",5)

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

31 | P a g e

 SendConnectPacket()

SendSubscribePacket(&MQTTTopicRelay1[0],strlen(MQTTTopicRelay1))

SendSubscribePacket(&MQTTTopicRelay2[0],strlen(MQTTTopicRelay2))

SendSubscribePacket(&MQTTTopicRelay3[0],strlen(MQTTTopicRelay3))

 lcdwrite(1,CMD);

 led=1;

}

Given function is for connecting with Adafruit IO MQTT broker

int SendConnectPacket(void)

{

 int txIndex=0;

 unsigned int MQTTProtocolNameLength = strlen(MQTTProtocolName);

 unsigned int MQTTClientIDLength = strlen(MQTTClientID);

 unsigned int MQTTUsernameLength = strlen(MQTTUsername);

 unsigned int MQTTPasswordLength = strlen(MQTTPassword);

 X = MQTTProtocolNameLength + 2 + 4 + MQTTClientIDLength + 2 +

MQTTUsernameLength + 2 + MQTTPasswordLength + 2;

 do

 {

 encodedByte = X % 128;

 X = X / 128;

 if (X > 0)

 {

 encodedByte |= 128;

 }

 } while (X > 0);

 buf1[txIndex++]=0x10;

 buf1[txIndex++]=encodedByte;

 buf1[txIndex++]=MQTTProtocolNameLength<<8;

 buf1[txIndex++]=MQTTProtocolNameLength;

 memcpy((unsigned char *)&buf1[txIndex],(unsigned char

*)&MQTTProtocolName,MQTTProtocolNameLength);

Given function is used to send subscribe packet to MQTT broker

int SendSubscribePacket(char topic[], int topiclength)

{

 X = 2 + 2 + topiclength + 1;

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

32 | P a g e

 do

 {

 encodedByte = X % 128;

 X = X / 128;

 if (X > 0)

 {

 encodedByte |= 128;

 }

 //serialwrite(encodedByte);

 } while (X > 0);

 int txIndex=0;

 buf1[txIndex++]=0x82;

 buf1[txIndex++]=encodedByte;

 buf1[txIndex++]=MQTTPacketID<<8;

 buf1[txIndex++]=MQTTPacketID;

 buf1[txIndex++]=topiclength<<8;

 buf1[txIndex++]=topiclength;

 memcpy(&buf1[txIndex],(char *)&topic[0],topiclength);

 txIndex+=topiclength;

5.4.2. Smart Agriculture

This is smart farming using IoT in this project we will use the server to store the sensor data

this is similar to our recent smart agriculture using IoT project.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

33 | P a g e

What is Smart farming using IoT?

Smart farming project is in trend nowadays. everyone wants their farm and land to be

smart because it is attractive and techy and also it reduces the manpower they needed to

make the system work.

Here, you need a circuit diagram, code, and thingspeak instruction. so we are going to give

you all the things below. follow all the steps and make your circuit as we have given.

Here we are going to use two nodemcu.

because we have here 5 analog sensors and 1 DHT.

so we will use 4 soil moisture sensors with the Nodemcu 1 and dht11 and 1 soil moisture

sensor with the second node MCU.

and there we need two codes for these two nodemcu.

So, make this project carefully. upload first code with the first nodemcu as we have given

below.

Components Required:-

• NodeMcu-2

• General-purpose PCB

• 4 channel ADC multiplexer

• 5 soil moisture sensor

• DHT11

• Breadboard

• Jumper wires

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

34 | P a g e

• connecting cables

• Smart farming using IoT Circuit Diagram (1st nodemcu)

Connection Diagram

Nodemcu esp8266 4 Channel ADC

VV, Vin VCC

G, GND GND

D1 Pin SCL Pin

D2 Pin SDA Pin

Soil 1 Sensor Soil 2 Sensor Soil 3 Sensor Soil 4 Sensor 4 Channel ADC

VCC VCC VCC VCC VCC

GND GND GND GND GND

A0 A0

 A0 A1

 A0 A2

 A0 A3

After making all the connections You need to upload the Code.

Connect all the Soil moisture sensor Vcc to the Nodemcu Vin

Connect Multiplexer Vcc to the Nodemcu Vin

Connect all the Soil moisture sensor Gnd to the Nodemcuo Gnd

Connect Multiplexer Gnd to the Nodemcu Gnd

Soil moisture sensor Output connects to the Multiplexer as given in the above image

After complete, the connection Upload the given code to the Nodemcu. This code is for the

First nodemcu.

Smart farming using IoT Code(first nodemcu)

 // TECHATRONIC.COM

 // library

 // https://github.com/adafruit/Adafruit_ADS1X15

 // https://github.com/manrueda/ESP8266HttpClient

 // https://github.com/ekstrand/ESP8266wifi

 #include <ESP8266WiFi.h>

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

35 | P a g e

 #include <ESP8266HTTPClient.h>

 #include <Adafruit_ADS1015.h>

 WiFiClient client;

 String thingSpeakAddress= "http://api.thingspeak.com/update?";

 String writeAPIKey;

 String tsfield1Name;

 String request_string;

 HTTPClient http;

 Adafruit_ADS1115 ads;

 void setup()

 {

 Serial.begin(115200);

 delay(3000);

 WiFi.disconnect();

 Serial.println("START");

 WiFi.begin("DESKTOP","asdfghjkl"); // Wifi ("ID","Password")

 while ((!(WiFi.status() == WL_CONNECTED))){

 delay(300);

 Serial.println("...");

 }

 Serial.println("I AM CONNECTED");

 Serial.println("Hello!");

 Serial.println("Getting single-ended readings from AIN0..3");

 Serial.println("ADC Range: +/- 6.144V (1 bit = 3mV/ADS1015, 0.1875mV/ADS1115)");

 ads.begin();

 }

 void loop()

 {

 int16_t adc0, adc1, adc2, adc3;

 Serial.println(" ");

 adc0 = ads.readADC_SingleEnded(0);

 adc0 = adc0 / 25;

 adc1 = ads.readADC_SingleEnded(1);

 adc1 = adc1 / 25;

 adc2 = ads.readADC_SingleEnded(2);

 adc2 = adc2 / 25;

 adc3 = ads.readADC_SingleEnded(3);

 adc3 = adc3 / 25;

 Serial.print("SOIL MOISTURE in persent 1% : "); Serial.println(adc0);

 Serial.print("SOIL MOISTURE in persent 2% : "); Serial.println(adc1);

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

36 | P a g e

 Serial.print("SOIL MOISTURE in persent 3% : "); Serial.println(adc2);

 Serial.print("SOIL MOISTURE in persent 4% : "); Serial.println(adc3);

 Serial.println(" ");

 if (client.connect("api.thingspeak.com",80))

 {

 request_string = thingSpeakAddress;

 request_string += "key=";

 request_string += "2YGO2FHN3XI3GFE7";

 request_string += "&";

 request_string += "field1";

 request_string += "=";

 request_string += adc0;

 http.begin(request_string);

 http.GET();

 http.end();

 }

 delay(10);

 if (client.connect("api.thingspeak.com",80))

 {

 request_string = thingSpeakAddress;

 request_string += "key=";

 request_string += "2YGO2FHN3XI3GFE7";

 request_string += "&";

 request_string += "field2";

 request_string += "=";

 request_string += adc1;

 http.begin(request_string);

 http.GET();

 http.end();

 }

 delay(10);

 if (client.connect("api.thingspeak.com",80))

 {

 request_string = thingSpeakAddress;

 request_string += "key=";

 request_string += "2YGO2FHN3XI3GFE7";

 request_string += "&";

 request_string += "field3";

 request_string += "=";

 request_string += adc2;

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

37 | P a g e

 http.begin(request_string);

 http.GET();

 http.end();

 }

 delay(10);

 if (client.connect("api.thingspeak.com",80))

 {

 request_string = thingSpeakAddress;

 request_string += "key=";

 request_string += "2YGO2FHN3XI3GFE7";

 request_string += "&";

 request_string += "field4";

 request_string += "=";

 request_string += adc3;

 http.begin(request_string);

 http.GET();

 http.end();

 }

 delay(10);

 }

For the second NodMCU

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

38 | P a g e

Connection table 2

Nodemcu esp8266 Dht11 Sensor

VV, Vin (V) VCC

G, GND (G) GND

D3 Pin (S) OUT Pin

Nodemcu esp8266 Soil Moisture Sensor

VV, Vin VCC

G, GND GND

A0 Pin (A0) OUT Pin

Connect DHT 11 output pin to the Nodemcu d3

Soil moisture sensor output to be connected to the A0

Connect DHT 11 VCC to the Nodemcu Vin

Connect DHT 11 Gnd to the Nodemcu Gnd

After complete, the connection Upload the given code to the Nodemcu. This code is for the

second nodemcu.

For Second NodeMCU:-

 // TECHATRONIC.COM

 // library

 // https://github.com/adafruit/DHT-sensor-library

 // https://github.com/manrueda/ESP8266HttpClient

 // https://github.com/ekstrand/ESP8266wifi

 #include <ESP8266WiFi.h>

 #include <ESP8266HTTPClient.h>

 String thingSpeakAddress= "http://api.thingspeak.com/update?";

 String writeAPIKey;

 String tsfield1Name;

 String request_string,request_string1;

 HTTPClient http;

 #include <DHT.h> // Including library for dht

 // library

 // https://github.com/adafruit/DHT-sensor-library

 #include <ESP8266WiFi.h>

 String apiKey = "77921LPMGM2OAGQE"; // Enter your Write API key from ThingSpeak

 const char *ssid = "DESKTOP"; // replace with your wifi ssid and wpa2 key

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

39 | P a g e

 const char *pass = "asdfghjkl"; // WIFI Password

 const char* server = "api.thingspeak.com";

 #define DHTPIN 0 //pin D3 where the dht11 is connected

 DHT dht(DHTPIN, DHT11);

 WiFiClient client;

 void setup()

 { dht.begin();

 Serial.begin(115200);

 delay(3000);

 WiFi.disconnect();

 Serial.println("START");

 WiFi.begin("DESKTOP","asdfghjkl");

 while ((!(WiFi.status() == WL_CONNECTED))){

 delay(300);

 Serial.println("...");

 }

 Serial.println("I AM CONNECTED");

 }

 void loop()

 {

 if (client.connect("api.thingspeak.com",80))

 {

 request_string = thingSpeakAddress;

 request_string += "key=";

 request_string += "77921LPMGM2OAGQE";

 request_string += "&";

 request_string += "field3";

 request_string += "=";

 request_string += analogRead(A0);

 http.begin(request_string);

 http.GET();

 http.end();

 }

 delay(10);

 float h = dht.readHumidity();

 float t = dht.readTemperature();

 if (isnan(h) || isnan(t))

 {

 Serial.println("Failed to read from DHT sensor!");

 return;

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

40 | P a g e

 }

 if (client.connect(server,80)) // "184.106.153.149" or api.thingspeak.com

 {

 String postStr = apiKey;

 postStr +="&field1=";

 postStr += String(t);

 postStr +="&field2=";

 postStr += String(h);

 postStr += "\r\n\r\n";

 client.print("POST /update HTTP/1.1\n");

 client.print("Host: api.thingspeak.com\n");

 client.print("Connection: close\n");

 client.print("X-THINGSPEAKAPIKEY: "+apiKey+"\n");

 client.print("Content-Type: application/x-www-form-urlencoded\n");

 client.print("Content-Length: ");

 client.print(postStr.length());

 client.print("\n\n");

 client.print(postStr);

 Serial.print("Temperature: ");

 Serial.print(t);

 Serial.print(" degrees Celcius, Humidity: ");

 Serial.print(h);

 Serial.print(" Soil Sensor ");

 Serial.print(A0);

 Serial.println("%. Send to Thingspeak.");

 }

 client.stop();

 Serial.println("Waiting...");

 // thingspeak needs minimum 15 sec delay between updates

 delay(10);

 }

So, here we have given data for both setups now follow the given instruction to make the

thingspeak server.

Thingspeak Setup

Step 1

Open Thingspeak website

Step 2

Register or login on the website

Login in Thingspeak

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

41 | P a g e

Step 3

Create a new channel here

Step 4

Tick mark in front of the channel and rename as you want

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

42 | P a g e

Step 6

Save this Channel

Step 7

Now, you can see your channel here

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

43 | P a g e

Step 8

Add Api

Copy your api key from here and paste in your code.

Step 9

Now you can see my channel

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

44 | P a g e

Now you can See your project data on the server. All the best for your project. and if you are

unable to make this you can buy this project from us. link is given here.

5.4.3. Smart Cities

A smart city uses information and communication technology to improve the utility, share

knowledge with the public, and provide a strong sense of community support and local

government assistance. Shrewd urban communities are those that make use of brilliant ideas

and information as the required resources to address the maintainability issues that urban

communities face. Many metropolitan areas are currently becoming more intelligent,

utilizing information and innovation to advance transportation, energy consumption,

wellness, and air quality, as well as to spur economic growth. A great city's main objective

is to streamline municipal operations, promote economic development, and address resident

happiness through clever developments and data analysis. We intended to spend a great

amount of time reading up on several shrewd urban groups in this post. As a result, some of

the key boundaries that can be built include clever management, clever energy, clever

building, clever flexibility, clever structure, clever invention, clever medical care, and clever

residence. Urban areas collect and analyze information using IoT devices such as connected

sensors, lighting, and meters. The foundation, public usage, and administrations, to name just

a few, are all progressively developed in urban areas using this knowledge. Smart urban

communities focus on improving the lives of their residents in such fundamental areas as

strategy effectiveness, reducing waste and everyday problems, improving friendly and

financial quality, and enhancing the social consideration of their residents.

Introduction

The Internet of Things (IoT) is a fresh perspective on computerized connectivity that envisions

a not-too-distant future in which everyday things will be fitted with microcontrollers and

smartphones. Intelligent display stacks will equip them to communicate with one another and

the clients, evolving into an essential component of the Internet. Smart, self-designing

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

45 | P a g e

objects that are connected to one another through a global organizational framework are

anticipated to be produced under the IoT model. IoT is typically thought about as real,

widely distributed, low capacity, and managing products with the aim of advancing

the unwavering quality,

performance, and security of the brilliant city and its frameworks. Due to the ongoing

population growth, development is necessary. The Internet of Things (IoT) is a novel

approach to computerized networking that predicts the fitting of everyday objects with

microcontrollers and smartphones in the not-too-distant future. Intelligent display stacks will

enable them to interact with clients and one another, developing into a crucial element of the

Internet. Under the IoT concept, it is envisaged that intelligent, self-designing items would be

created and connected to one another through a global organizational framework. IoT is often

viewed as actual, widely dispersed, low capacity, and controlling items with the objective of

enhancing the bright city's and its systems' unwavering quality, performance, and security.

Development is required because of the population expansion that is happening. The Internet

of Things (IoT) is a novel approach to computerized networking that predicts the fitting of

everyday objects with microcontrollers and smartphones in the not-too-distant future.

Intelligent display stacks will enable them to interact with clients and one another,

developing into a crucial element of the Internet. Under the IoT concept, it is envisaged that

intelligent, self-designing items would be created and connected to one another through a

global organizational framework. IoT is often viewed as actual, widely dispersed, low

capacity, and controlling items with the objective of enhancing the bright city's and its

systems' unwavering quality, performance, and security. Development is required because of

the population expansion that is happening. These are some challenges of a smart city are

following:

Lack of funds: As urban communities try to work on their foundation with brilliant

innovations, paying for such undertakings presents a significant test while presenting savvy

advancements for an enormous scope.

Governance: The implementation of these large-scale projects involves a long series of

legislative and policy agreements.

Lack of infrastructure and labor: Metropolitan foundation assumes an essential part in savvy

city projects. Contingent upon the current foundation in energy, water, and transportation

frameworks, among others, a task might be figured out requiring pretty much speculation

time.

Digital Security: In intelligent cities, the interrelationship between public and private is

possible thanks to the flow of data.

Infrastructure and services are needed to meet the needs of city dwellers due to the rapid

increase in population density in metropolitan areas. Due to the ability of all devices to

connect to the Internet and communicate with one another, there has been considerable

growth in the use of digital devices, such as sensors, actuators, and smartphones.

Advantages of Smart City:

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

46 | P a g e

• Automatic Switching of Street lights.

• Maintenance Cost Reduction.

• Reduction of light pollution.

• Keep the city clean.

• Improve traffic and reduce parking times.

• Reduction of manpower.

The objectives of this paper are as follows:

1. To study smart cities of overall countries.

2. This review is focused on the last decades of smart cities.

3. Smart parking system using IoT.

4. A smart street lighting system using IoT.

5. Garbage monitoring system using IoT.

IoT-based smart city

The following Figure provides and illustration of an IoT-based smart city.

An illustration of an IoT-based smart city

The IR sensors, LDR, PIC16F877A microcontroller, relay, UART, and Wi-Fi module make

up the ingenious street lamp's construction. LDRs are light-dependent devices, and their

blockage grows in the dark and shrinks when exposed to light. A light-dependent resistor has

a high resistance when maintained dull. The vehicle that is passing the streetlight is

recognized by an IR sensor. The streetlight bulb can be turned on and off during the transfer.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

47 | P a g e

The Universal Asynchronous Receiver/Transmitter (UART) software on a microcontroller

manages the PC's connection to the associated streetlight framework.

Block diagram of smart street lighting system [5]

The clever street lamp's structure is made up of IR sensors, LDR, PIC16F877A

microcontroller, relay, UART, and Wi-Fi module. LDRs are light-dependent devices whose

blockage expands in darkness and decreases when light shines on them. When a light-

dependent resistor is kept dull, its resistance is quite high. An IR

sensor identifies the car that is driving past the streetlight. During the transfer, the streetlight

bulb can be turned on and off. A microcontroller with software known as a UART (Universal

Asynchronous Receiver/Transmitter) controls a PC's connection point to its connected

streetlight framework.

Block diagram of smart parking system [8]

It is divided into three areas. The parking area is the first, and it includes an IR sensor and

Arduino devices. With the aid of these devices, the client establishes a connection with the

halting location. Without the aid of an RFID card, the user is unable to enter the parking

space. The cloud-based web administrations, which serve as a go-between for the client and

the stopping region, are covered in the following section. Depending on whether a parking

space is available, the cloud is updated. The user can view the admin to see if the cloud

services are available, and the admin manages the cloud services. The user side is the third

section.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

48 | P a g e

IoT potential application [9]

A few administrations that work with the climate may emerge as a result of the IoT's successful

implementation. It can then open up a variety of contextualization and geo-mindfulness

options. Heterogeneous hardware permits the mechanization of comparative and customary

workouts using the IoT stage in homes and buildings. The execution of administrations via

web interfaces is undoubtedly possible when transforming items into the information of

apparatuses that are completely connected via the Internet. Huge numbers of sophisticated

home applications use sensor networks [9]. The government (at the municipal, state, and

federal levels) should deploy IoT services in all crucial issue areas to enhance government

information systems and administration.

IoT based interconnections

The latest developments in computerized innovations have made shrewd urban regions even

more shrewd than previously. A smart city has sensors for transportation systems, road

cameras for perception systems, and other electronic components that are used in numerous

applications. Additionally, this may increase the use of personal cell phones. This way,

different concepts like article highlights, givers, inspirations, and security standards should

be investigated while accounting for the diverse climate.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

49 | P a g e

IoT Architecture

We need to create a schematic architecture that allows us to quickly and easily depict the

complete process in order to demonstrate the plausibility and suitability of this framework, as

illustrated in fig. We can infer from the architecture that the system as a whole is a

combination of essentially just two different components. The first is a traffic control system,

while the second is a street lighting operation

Block diagram of parking system

The parking devices and sensors are then installed in their parking zones by a team of parking

installation workers who then travel to the parking place. Things and personality-specific

gadgets were where the Internet of Things (IoT) concept first emerged.

The devices might be monitored, controlled, or tested using distant Internet-connected PCs.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

50 | P a g e

The architecture of wireless sensor node

WSNs make diverse genuine information available and can be used for many things,

including government and natural administrations, healthcare, and many other things.

Additionally, WSNs and RFIDs can be combined to achieve a variety of goals, such as

gathering data about the whereabouts of people and objects, developments, temperatures, and

other things. A WSN is made up of distant sensor hubs that have a radio point of contact, an

analogue to digital converter (ADC), a number of sensors, memory, and a power source. .

The architecture of smart city planning

The IoT-based smart technologies are integrated for city data creation for developing the next-

generation Super City, as depicted in Figure. Data from those smart systems are kept in big

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

51 | P a g e

storage facilities so that they may be later examined for Super City planning. Government

officials can assess last year's electricity consumption and estimate the demand for electricity

in the upcoming year using data supplied by smart homes. Municipalities can therefore

implement the required action to meet future needs and develop a long-term plan for creating

new dams to increase energy production.

Conceptual representation of an urban IoT network based on the web service approach

We briefly go over the connection layer innovations that can be used to connect the various

components of the IoT before we start outlining the web administration approach for the

design of IoT administrations, which requires the organization of reasonable convention

layers in the various components of the organization, as displayed in the convention stacks

portrayed in Fig. Last but not least, we show the varied configuration of devices that consent

to an urban IoT.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

52 | P a g e

Proposed flow of energy efficient smart and intelligent street road lighting system

The information and energy flow of the proposed sustainable energy efficient smart street

road lighting system (EESSRLS) is depicted in Figure 1. It consists of a smart electric pole

that transmits light and motion information via sensors and actuators to the Master control

unit (MCU), which computes intensity based on this information and tunes the LED lamps

using a PWM-based dimming system via a smart electric pole-mounted LED light controller

(LLC). We utilize a separate sustainable power system for energy made up of a PV solar

panel, battery storage system, and intelligent electric utility grid.

Results and discussion

The following table shows the comparative study of the different methods used for IoT-based

smart cities:

Sr.No.

Methods

Components

Advantages

Disadvantages

1.

Smart street lighting

System using IoT.

LDR, LED, Smart

Sensors, Arduino nano,

Lightning pole.

Automatic Switching

of

Street lights.

More

Energy

Consumption.

2.
An illustration of an

IoT-based smart city.

Arduino Nano, LDR,

IR Sensors, LED,

Buzzer, Ultrasonic

Sensor, Dustbins.

Less crime.

Security and data

privacy concerns.

3.

System Architecture

of smart parking

system using IoT.

Arduino Nano, Cloud,

IR Sensors, Parking

Slot, LED, Lamp.

Decreased

management costs

and reduced

pollution.

It very well might be a

piece mistaking for

new clients.

4.
IoT Potential

Applications for

Smart Cities.

Arduino Nano, LDR,

IR Sensors, LED,

Buzzer, Ultrasonic

Sensor, Dustbins,

Cloud.

Better transportation

service and safer

communication.

Security concerns and

data privacy concerns.

5.
IoT based

interconnections.

Smart Sensors,

Arduino nano,

Lightning pole.

Minimize the human

work and effort.

Highly dependent on

the Internet.

6.

Internet of

things Schematic

showing of the system

architecture.

LCD, LDR,

Signal

Generator, Internet,

Database,

Server, Street light.

Smart cities are

technology-driven,

and most decision

making

It starts in homes

where you may suffer

from a lack of privacy.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

53 | P a g e

7.
Smart parking system

using IoT technology.

Arduino Nano, IR

Senso.rs, LED, Parking

Slots.

Cost and time

efficient solution.

Availability of the

space could be found

only after the car

enters the parking slot.

8.
The architecture of a

wireless sensor node

Power Supply,

Sensors,

Transceiver,
Microcontroller, ADC.

Reduced cost of in-

house IT

management.

Increased costs for

data or service

migration and

integration.

9.

Sensor's deployment

and smart systems

data

generation

Aggregator, Water

System, Vehicular

Traffic,

Front

Screen, Sensors,

Temperature.

Creation of

safer

communication.

Significant

capital investment in

technology is required.

10.

Conceptual

representation of an

urban IoT network

based on the web

service approach

WAN, Control

Center, Gateway, Web

Fronted, Database

Manager.

Automatic and

efficient urban

management.

Considerable increase

in electronic waste.

The method of IoT based smart cities are displayed in the above table. In smart street

lightning system using IoT streetlights are automatic switching of. More energy consumption

in this method. An illustration of an IoT based smart city method help for less crime. To

decreased management costs and reduced pollution system architecture of smart parking

system using IoT method developed. There are several applications of an IoT based smart

city that are explained in IoT potential applications for smart cities.

IoT based interconnections minimize human work and effort. Internet of things schematic

showing of the system architecture method are technology driven and most decision making.

To reduce the cost of in-house IT management the architecture of a wireless sensor node

method is used. Smart parking systems using IoT technology method is solution to reduce

time and humans’ effort as well as the overall cost of the fuel burnt in search of the parking

space. The main idea is the creation of smart parking using the internet of things and

ultrasonic sensors, where available parking places display in web application.

5.4.4. Smart Healthcare

The healthcare monitoring systems has emerged as one of the most vital system and

became technology oriented from the past decade. Humans are facing a problem of

unexpected death due to various illness which is because of lack of medical care to the

patients at right time. The primary goal was to develop a reliable patient monitoring system

using IoT so that the healthcare professionals can monitor their patients, who are either

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

54 | P a g e

hospitalized or at home using an IoT based integrated healthcare system with the view of

ensuring patients are cared for better. A mobile device based wireless healthcare monitoring

system was developed which can provide real time online information about physiological

conditions of a patient mainly consists of sensors, the data acquisition unit, microcontroller

(i.e., Arduino), and programmed with a software (i.e., JAVA). The patient’s temperature,

heart beat rate, EEG data are monitored, displayed and stored by the system and sent to the

doctor’s mobile containing the application. Thus, IoT based patient monitoring system

effectively monitor patient’s health status and save life on time.

INTRODUCTION

The increased use of mobile technologies and smart devices in the area of health has caused

great impact on the world. Health experts are increasingly taking advantage of the

benefits these technologies bring, thus generating a significant improvement in health care in

clinical settings. Likewise, countless ordinary users are being served from the advantages of

the M-Health (Mobile Health) applications and E-Health (health care supported by ICT) to

improve, help and assist their health.

According to the constitutions of World Health Organization (WHO) the highest attainable

standard of health is a fundamental right for an individual. As we are truly inspired by this,

we attempt to propose an innovative system that puts forward a smart patient health tracking

system that uses sensors to track patient vital parameters and uses internet to update the

doctors so that they can help in case of any issues at the earliest preventing death rates.

Patient Health monitoring using IoT is a technology to enable monitoring of patients

outside of conventional clinical settings (e.g. in the home), which may increase access to

care and decrease healthcare delivery costs. This can significantly improve an individual's

quality of life. It allows patients to maintain independence, prevent complications, and

minimize personal costs. This system facilitates these goals by delivering care right to

the home. In addition, patients and their family members feel comfort knowing that they

are being monitored and will be supported if a problem arises.

Signal Conditioning Unit

This sensor is a cost-effective board used to measure the electrical activity of the heart.

This electrical activity can be charted as an ECG or Electrocardiogram and output as an

analog reading. ECGs can be extremely noisy, the AD8232 Single Lead Heart Rate

Monitor acts as an

op amp to help obtain a clear signal from the PR and QT Intervals easily.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

55 | P a g e

Position of Sensor Pads Input

Block Diagram

Block diagram of sensors connected with the PC

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

56 | P a g e

Block diagram of Health monitoring system

RESULTS AND DISCUSSION

Operating Mechanism

STEP 1: The Heartbeat sensor is fixed to the patient’s finger. This contains an IR sensor in it

.Every pumping we get pulse from that sensor. This sensor output is given to the arduino via

Signal conditioning unit for amplification

Heart beat sensor

STEP 2

NTC type thermistor is used as a temperature sensor. This temperature sensor output varies

based on the temperature, this output is also given to arduino.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

57 | P a g e

Temperature sensor

STEP 3

EEG sensor is a cost-effective board used to measure the electrical activity of the heart. This

electrical activity can be charted as an ECG or Electrocardiogram output as an analog

reading. ECGs can be extremely noisy, the AD8232 Single Lead Heart Rate Monitor acts as

an op-amp to help obtain a clear signal from the PR and QT Intervals easily and connected

to arduino.

EEG sensor

STEP 4

All these values are transferred to PC via RS 232 and by using the URL,it is transferred to

the mobile app created.

Output in LCD

Output in the Mobile Application:

The output is displayed in the form of string in a particular interval of time. The application

is very simple as it just displays the analog values followed by a statement describing the

kind of value displayed.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

58 | P a g e

Output displayed in the mobile application device

Testing and findings health care unit

The Patient Health Monitoring System developed is tested using various persons with

normal to abnormal health conditions. The various testing and findings producing

results with minimal error rate and the observations are listed below.

Temperature Findings

The NC type thermistor used is programmed to display the value at room temperature for

demo purposes with minimal error of + or – 5.

temperature sensor

Testings Normal value Observed value Error rate

Person 1 24 28 +4

Person 2 24 30 +6

Observed temperature readings

ECG Findings

The IR sensor is used to measure the pulse rate in the error range of + or – 6.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

59 | P a g e

ECG measurement sensor

Testings Normal value Observed value Error rate

Person 1 74-78 72 -2

Person 2 74-78 84 +6

ECG values observed from different person

 EEG Findings

The EEG sensor is used with electrodes with error rate indicating the status as active or

inactive.

EEG measurement sensor

Testings Normal value Observed valued Status

Person 1 100-300 131 Active

Person 2 100-300 165 Active

Table 4.3 EEG values observed from different person

Data display in the mobile application unit

The day to day vital parameters such as heart beat, body temperature, EEG signals can be

displayed in the mobile phone and the same can be send to the doctor during emergency

situations.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

lOMoARcPSD|26885763

60 | P a g e

Output displayed in the mobile application unit

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

