EnggTree.com

Reg. No. : E N G G T R E E . C O M

Question Paper Code: 21295

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2023.

Third/Fourth Semester

Manufacturing Engineering

For More Visit our Website EnggTree.com

ME 3392 - ENGINEERING MATERIALS AND METALLURGY

(Common to: Mechanical Engineering/Mechanical Engineering (Sandwich and Mechanical and Automation Engineering)

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A $-(10 \times 2 = 20 \text{ marks})$

- Calculate the relative amount of ferrite and cementite in steel containing 0.8%.
- 2. In the pure water pressure-temperature phase diagram, name the phases that are in equilibrium: (a) along the fusion curve, (b) along the vapourization curve and (c) at the triple point.
- 3. Why are ferritic and austenitic stainless steels not heat treatable?
- 4. Why heat treatment is done on engineering materials?
- Suggest a suitable metal or alloy for high-temperature furnace elements to be used in oxidizing atmospheres.
- 6. Write down the differences between 'Invar' and 'Elinvar'.
- 7. Enumerate the factors that affect the crystallinity of the polymers.
- PZT are considered superior to BaTiO₃ piezoelectric materials. Give reasons.
- 9. How does the dislocation influence the yield strength of a material?
- 10. What is the effect of grain size on the creep strength of a material?

EnggTree.com

PART B - (5 × 13 = 65 marks)

11. (a) Draw the steel region of the Fe- Fe₃C phase diagram and make neat sketches of the microstructures expected for 4 compositions between 0.1 % and 1.2 % C.

Or

- (b) What are solid solutions? Explain with neat sketches the types of solid solutions.
- 12. (a) Draw and explain the CCT diagram of eutectoid steel. In what way it differs from the TTT diagram of eutectoid steel?

Or

- (b) Explain the following heat treatments with neat thermal cycle diagrams:
 - (i) Austempering

(6)

(ii) Carburising

(7)

- 13. (a) Compare gray and malleable cast irons with respect to
 - (i) composition and heat treatment

(4)

(ii) microstructure www.EnggTree.com

(3)

(iii) mechanical characteristics

(3)

(iv) applications

(3)

Or

- (b) Write down the differences between phosphor bronze and aluminium bronze with respect to composition, properties and application.
- 14. (a) (i) Differentiate between addition polymerisation and condensation polymerization. (7)
 - (ii) Write the properties, structure and applications of any two polymers.(6)

Or

- (b) (i) Make comparisons of thermoplastic and thermosetting polymers on the basis of mechanical characteristics upon heating and according to possible molecular structure.
 (6)
 - (ii) Discuss the applications of composite materials.

21295

(7)

 (a) What is Creep? Describe the different stages of a Creep curve with a neat sketch.

Or

- (b) (i) What are the sources of residual stresses? Explain briefly the various ways by which the residual stresses can be eliminated. (8)
 - (ii) Distinguish between dendrite, columnar and equiaxed grains. (5)

PART C — $(1 \times 15 = 15 \text{ marks})$

- 16. (a) Construct the hypothetical phase diagram for metals A and B between room temperature (20° C) and 700° C. Given are the following information. And Explain the various invariant reactions.
 - (i) The melting temperature of metal A is 480°C.
 - (ii) The maximum solubility of B in A is 4 wt% B, which occurs at 420°C.
 - (iii) The solubility of B in A at room temperature is 0 wt% B.
 - (iv) One eutectic occurs at 420°C and 18 wt% B-82 wt% A.
 - (v) A second eutectic occurs at 475°C and 42 wt% B-58 wt% A.
 - (vi) The intermetallic compound AB exists at a composition of 30 wt% B -70 wt% A, and melts congruently at 525°C.
 - (vii) The melting temperature of metal B is 600°C.
 - (viii) The maximum solubility of A in B is 13 wt % A, which occurs at 475° C.
 - (ix) The solubility of A in B at room temperature is 3 wt % A.

Or

(b) Below is a list of metals and alloys:

 $(5 \times 3 = 15)$

Plain carbon steel, Nickel Metal Hydride, Magnesium, Duralumin, Brass, Zinc, Gray cast iron, Tool steel, Aluminum, Stainless steel, Tungsten and Titanium alloy. Select from this list any 5 metal or alloy that is best suited for each of the following applications and cite two reason for your choice:

- (i) The block of an internal combustion engine
- (ii) Condensing heat exchanger for steam
- (iii) Jet engine turbofan blades
- (iv) Drill bit
- (v) Cryogenic (i.e., very low temperature) container.

21295