EnggTree.com

Reg. No.: E N G G T R E E . C O M

Question Paper Code: 20553

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2023.

Fifth Semester

Electronics and Communication Engineering

For More Visit our Website EnggTree.com

CEC 365 - WIRELESS SENSOR NETWORK DESIGN

(Common to: Electronics and Instrumentation Engineering/ Electronics and Telecommunication Engineering and Instrumentation and Control Engineering)

(Regulations - 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- List the challenges of designing and deploying WSNs.
- 2. Compare the Adhoc networks with WSN.
- 3. Show the working principles of TDMA-based MAC protocols.
- 4. Identify the parameters required for evaluating MAC protocols.
- Discuss the security considerations in 6LoWPAN networks.
- Explain the techniques used to manage large-scale deployments and optimize network performance.
- Describe a scenario where the end-to-end paradigm is highly relevant.
- 8. Define SNMP.
- Define TinyOS, and what sets it apart from other operating systems in the context of wireless sensor networks (WSNs).
- 10. Show how Contiki handle inter-process communication.

Downloaded from EnggTree.com

EnggTree.com

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) Discuss the key challenges in the design and deployment of wireless sensor networks. Discuss considering the factors like energy efficiency, scalability, and reliability impact WSNs.

Or

- (b) WSNs often interact with external systems and applications. Describe the service interfaces used to connect WSNs with other systems, and how do they facilitate data exchange and control.
- 12. (a) Explain the key differences between MAC protocols for wired networks and wireless networks. What challenges do wireless MAC protocols address that are not present in wired networks?

Or

- (b) In the context of wireless sensor networks, what specific challenges do MAC protocols need to address, and how do protocols like S-MAC and T-MAC optimize energy consumption and data Communication?
- 13. (a) Describe the relationship between IPv6 and 6LoWPAN. How does 6LoWPAN extend IPv6 to address the unique requirements of low-power wireless networks?

www.EnggTree.com

- (b) 6LoWPAN is commonly used in mesh networks. Describe the advantages and challenges of building mesh networks with 6LoWPAN, and how it supports sell-organizing and self-healing capabilities.
- 14. (a) Explain the role of Real-time Transport Protocol (RTP) and Session Initiation Protocol (SIP) in enabling real-time communication and sessions in networks.

Or

- (b) Discuss the core components and messaging patterns used in MQTT-S, and provide examples of applications or scenarios where it is commonly deployed.
- (a) Discuss the advantages and limitations of using TOSSIM for simulating sensor network applications compared to real-world deployments.

Or

(b) Discuss the Contiki support framework to both low-power wireless technologies, like 6LoWPAN and RPL, and traditional Internet protocols, such as TCP/IP and UDP, within its communication stack in detail.

20553

EnggTree.com

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) Design a common structure of transceivers for the Radio Frequency (RF) front end and the baseband with Transceiver operational states.

Or

(b) Develop an architecture and identify a suitable method available for implementing Geographic routing without positions.

3 20553