Reg. No.: E N G G T R E E . C O M

Question Paper Code: 50956

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2024.

For More Visit our Website EnggTree.com

## Third Semester

Electrical and Electronics Engineering

EC 3301 — ELECTRON DEVICES AND CIRCUITS

(Regulations 2021)

(Common to PTEC 3301 – Electron Devices and Circuits for B.E. (Part – Time) Second Semester — Electrical and Electronics Engineering – Regulations 2023)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —  $(10 \times 2 = 20 \text{ marks})$ 

1. Determine Vo for the network shown in Fig (1).



Fig (1)

- 2. What is the condition for Laser Action?
- 3. Define  $\alpha$ ,  $\beta$  and  $\gamma$  of the transistor and mention the relationship of the terms.
- 4. Differentiate between Enhancement and Depletion MOSFET.
- 5. Why are bypass and coupling capacitors used in amplifier circuits?
- 6. Why harmonic distortion occurs in amplifier and how can it be reduced?
- State two advantages and two disadvantages of single tuned amplifiers.
- 8. What are the coupling schemes used in multistage amplifiers?

## EnggTree.com

- 9. State Barkhausen criterion for sustained oscillation. What will happen to the oscillation, if the magnitude of the loop gain is greater than unity?
- 10. What is meant by positive feedback and negative feedback?

PART B 
$$-$$
 (5 × 13 = 65 marks)

- 11. (a) (i) With necessary diagrams explain the structure and operation of PN junction diode. (8)
  - (ii) Briefly explain about the PN junction capacitances.

Or

- (b) (i) Explain the operation of Zener diode and its VI characteristics. (8)
  - (ii) Explain how Zener diode acts as a voltage regulator. (5)
- 12. (a) Explain the structure, operation and V-I characteristics of BJT.

Or

- (b) With neat diagram explain the structure, operation and V-I characteristics of UJT and IGBT.
- 13. (a) (i) Explain and derive the voltage and current gain expressions for CB configuration using hybrid models. (9)
  - (ii) Analyze and determine Ic, Is and dc voltage at the collector of the transistor amplifier circuit shown in fig. 13. a (ii) (4)



Fig. 13. a (ii)

Or

2

50956

(5)

## EnggTree.com

- (b) (i) Draw the small signal equivalent circuit of MOSFET common drain amplifier and derive the expressions for voltage gain, input impedance and output impedance. (9)
  - (ii) Consider the amplifier circuit shown in Fig 13. b (ii) The FET is specified to have  $V_t = 0.4V$ ,  $k_n' = 0.4 mA/V^2$ , W/L = 10 and  $\lambda = 0$ . Also, let  $V_{DD} = 1.8V$ ,  $R_D = 17.5 k\Omega$  and  $V_{GS} = 0.6V$ . Find  $I_D$  and  $V_{DS}$ .



Fig. 13. b (ii)

14. (a) What is a differential amplifier? Draw the circuit diagram and explain the working principle of BJT differential amplifier. Explain the circuit operation of common mode and differential mode.

Or

- (b) Explain the basic principle of tuned amplifiers using MOSFET and derive the expression for its center frequency gain. Also discuss their characteristics and losses.
- 15. (a) With neat diagram explain voltage series and current series amplifier. Derive the expression for transresistance gain, i/p resistance, o/p resistance and the voltage gain.

Or

- (b) (i) Draw the circuit diagram of RC phase shift oscillator and briefly explain its working principle. Also derive the expression for its gain.
  (8)
  - (ii) Design a phase shift oscillator, to oscillate at 1 KHz. (5)

50956

3

## EnggTree.com

PART C 
$$\rightarrow$$
 (1 × 15 = 15 marks)

- 16. (a) (i) Explain the structure, operation and V-I characteristics of JFET. (8)
  - (ii) The parameters of the transistor in the circuit in Figure 16.a (ii) are  $\beta=150$  and  $V_A=\infty$ .
    - Determine R<sub>1</sub> and R<sub>2</sub> to obtain a bias-stable circuit with the Q-point in the center of the load line.
    - (2) Determine the small-signal voltage gain  $AV = V_O/V_S$ . (7)



- Or
- (b) (i) Draw the circuit of a Colpitt oscillator and explain its working principle. (8)
  - (ii) Consider the MOSFET feedback amplifier shown in figure 16.b (ii). The transistor parameters are  $V_{TN} = 0.5 V$ ,  $K_n = 0.5 mA/V^2$  and  $\lambda = 0$ . Determine the small-signal voltage gain  $Av = V_0/V_i$ . (7)



50956