Reg. No.: E N G G T R E E . C O M

Question Paper Code: 50963

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2024.

Fourth Semester

Electronics and Communication Engineering

For More Visit our Website EnggTree.com

EC 3452 - ELECTROMAGNETIC FIELDS

(Common to Electronics and Telecommunication Engineering)

(Regulations 2021)

Time: Three hours Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Transform the vector $\vec{Q} = \frac{\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2 + z^2}} \vec{a}_x \frac{yz}{\sqrt{x^2 + y^2 + z^2}} \vec{a}_z$ to cylindrical and spherical coordinates.
 - Define the divergence theorem and stokes theorem.
 - 3. Two point charges with $q_1 = 2 \times 10^{-6}$ and $q_2 = -4x \times 10^{-6}C$ are located in free space at (1, 3, -1) and (-3, 1, -2) respectively, in a Cartesian Coordinate system. Find the electric field \vec{E} at (3, 1, -2) and the force of an $8 \times 10^{-6}C$ charge located at that point. All distances are in metres.
 - Justify the statement, "Total electrostatic field of any closed loop is zero".
 - Predict the direction of the magnetic field, when current is passing from point A to B (y direction).

- 6. A current loop experiences a torque in a magnetic field. Justify that the force exerted on the whole loop is zero.
- Recall the four Maxwell equations for time-varying fields.

EnggTree.com

- 8. How to overcome the inconsistency of Ampere's law in the time-varying field?
- Rearrange the Poynting vector, when the wave is propagated through a pure dielectric medium.
- 10. A plane wave propagating through a dielectric medium with $\varepsilon_r = 8$, $\mu_r = 2$ and $E = 0.5e^{-\frac{1}{3}}\sin(10^8t \beta z)a_rV/m$. Find the phase constant and skin depth.

PART B - (5 × 13 = 65 marks)

- 11. (a) (i) Analyze the Gradient of scalar and divergence and curl of the vector. (6)
 - (ii) Find the gradient of the scalar fields $U = x^2y + xyz$ and $U = e^{-z} \sin 2x \cos y$. (7)

Or

- (b) (i) Convert points P(1, 3, 5) and T(0, -4, 3) from Cartesian to cylindrical and Spherical coordinates. (6)
 - (ii) Compute the divergence and curl of the vector field $A = yz\ddot{a}_x + 4xy\ddot{a}_y + y\ddot{a}_z$ and evaluate it at the point (1, -2, 3). (7)
- 12. (a) (i) If $D = (2y^2 + z)\vec{a}_x + 4xy\vec{a}_y + x\vec{a}_zC/m^2$, find (7)
 - The volume charge density is at (-1, 0, 3).
 - (2) The flux through the cube is defined by $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$.
 - (3) The cube encloses the total charge.
 - (ii) Rearrange Gauss's law and develop Laplace's and Poisson's equations. (6)

Or

- (b) (i) Interpret the Electric Flux density for a uniformly charged sphere of radius 'a'. Construct a Gaussian surface for the case of r≥a and r≤a separately.
 (6)
 - (ii) A parallel-plate capacitor has a plate area of 200 m² and a plate separation of 3 cm. The charge density is with air dielectric. Determine
 - (1) The capacitance of the capacitor. (4)
 - (2) The voltage between the plates (3)

2 50963

13.	(a)	Prove that total magnetic field intensity (H) outside of the outer coaxial						
		conductor is zero for	infinitely long	coaxial	transmission	line using		
		Amperes law. Determine H at each Amperian path.						

Or

(b)	Determine the Magnetic field and current distributions for the follow	ving
	three conditions	

(i) Infinite line current along the z-axis (4)

(ii) Infinite sheet of current (4)

(iii) Infinitely long coaxial transmission line (5)

14. (a) (i) A thin ring of radius 5 cm is placed on plane z=1 cm so that its center is at (0, 0, 1) cm. If the ring carries 50 mA \bar{a}_{ϵ} , find H at (0, 0, -1) cm and (0, 0, 10) cm. (7)

(ii) Prove that Maxwell's equations are related to time-varying magnetic fields. (6)

www.EnggTree.com

(b) (i) Reconstruct Ampere's circuit law for time-varying situations to satisfy Faraday's law. (7)

(ii) Derive the Helmholtz's wave equations for both E and H fields. (6)

15. (a) Conclude that the tangential components of \vec{H} are discontinuous across the boundary, and the normal components of \vec{H} are continuous across the dielectric-dielectric boundary medium. Besides, determine \vec{H} 's tangential and normal components across the dielectric-conductor boundary medium.

Or

(b) (i) A uniform plane wave propagating in a lossless medium has $\vec{E} = 2\sin\left[10^8t - \beta z\right]\vec{a}_y V/m$. If $\varepsilon_r = 1$, $\mu_r = 2$ and $\sigma = -3V/m$, characterize the medium. Compute the $\eta\beta$ and H. (7)

(ii) If the wave encounters a perfectly conducting plate normal to the z-axis at z=0, find the reflected wave E_r and H_r . (6)

50963

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) Develop the transmission and reflection coefficient expression when the incident wave from medium 2 propagates to medium 1 in normal incidence. Assume Medium 2 is air and medium 1 is Polyethline with $\varepsilon_r = 2.25$; $\mu_r = 1$. (15)

Or

- (b) Discuss the variation of flux with time in the following three ways:
 - (i) A stationary loop in a time-varying magnetic field (Transformer emf) (5)
 - (ii) A time-varying loop in a static magnetic field (Motional emf) (5)
 - (iii) A time-varying loop in a time-varying magnetic field (5)

4 50963