Reg. No.: E N G G T R E E . C O M

Question Paper Code: 51007

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2024.

Third Semester

For More Visit our Website EnggTree.com Electrical and Electronics Engineering

EE 3301 — ELECTROMAGNETIC FIELDS

(Common to : PTEE 3301 Electromagnetic Fields for B.E (Part Time) Second Semester – Electrical and Electronics Engineering – Regulations 2023)

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A $-(10 \times 2 = 20 \text{ marks})$

- State the assumptions made while defining a Coulomb's law.
- 2. What is physical significance of curl of a vector field?
- 3. If the electric field intensity is given by $E = (X u_x + Y u_y + Z u_z)$ volt/m, Find the potential difference between X(2, 0, 0) and Y(1, 2, 3).
- 4. What is polarization of dielectrics?
- Define magnetic dipole moment.
- 6. Determine the maximum torque on 80 turn rectangular coil of $0.25 \text{ m} \times 0.4 \text{ m}$, carrying a current of 10 A in a field of 0.8 Tesla.
- 7. Examine whether the following fields satisfy Maxwell's equations or not. $E = [E_m \sin x \sin t \, a_y]$ and $H = [(E_m / \mu_0) \cos x \cos t \, a_z]$.
- 8. State faradays law.
- 9. Find the velocity of a plane wave in a lossless medium having relative permittivity of 5 and relative permeability of unity.
- 10. Define Intrinsic impedance and estimate its value for free space.

EnggTree.com

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) Find the electric field intensity at a point P located at (0, 0, h)m due to charge of surface charge density $\sigma C/m^2$ uniformly distributed over the circular dics $r \le a$, z = 0 m and correlate your result by applying Gauss's law.

Or

- (b) Evaluate the following vectors in to Cartesian coordinate systems. $A = \rho z \sin \varphi \, a_p + 3\rho \cos \varphi \, a_{\varphi} + \rho \cos \varphi \sin \varphi \, a_z.$
- 12. (a) In region 1, Z < 0 is a dielectric media for which $D_1 = \left(30\,\alpha_x + 50\,\alpha_y + 70\,\alpha_z\right)wb/m^2$ and $\varepsilon_n = 3.2$. Region 2, z > 0 is a dielectric media for which $\varepsilon_n = 2$. Determine E_2 , D_2 , θ_1 and θ_2 .

Or

- (b) Derive an expression for capacitance of co-axial cable with single dielectric medium.
- 13. (a) An electron beam at a given instant has a velocity $V = (3 \times 10^5 a_y + 4 \times 10^5 a_z) m/s$ at some position in space. The vector E & B at that point have $E = (400 a_z) v/m$, $B = (0.005) a_y$ wb/m². Estimate the total force acting on the electron.

Or

- (b) Determine the inductance of the loop of a 15 km transmission line consisting of 1.25 cm diameter conductors spaced 1.25m apart. Assume 1-ph system. Also find the inductive reactance of the loop.
- 14. (a) Develop Maxwell's equations in Integral and Differential forms. Also deduce them for harmonically varying fields.

Or

- (b) In a material for which $\sigma=4.5\,mho/m$ and $\epsilon r=1$. The electric field intensity $E=\left(300\sin 10^9 t\,u_x\right)$ V/m. Evaluate the conduction and displacement current densities. Also estimate the frequency at which they have equal magnitudes.
- 15. (a) Develop the wave equations from Maxwell's equations for lossless dielectric materials.

Or

(b) State Poynting's theorem and justify using Maxwell's equations.

2 51007

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) Derive the expression for torque developed in a rectangular closed circuit carrying current I in a uniform field.

Or

(b) A plane wave propagating through a medium with $\varepsilon_r = 8$, $\mu_r = 2$ has $E = 0.5 \sin(10^8 t - z)\beta z v/m$. Determine

(i)	β	(3)
(ii)	The loss tangent	(3)
(iii)	Wave impedance	(3)
(iv)	Wave velocity	(3)
(v)	Magnetic field.	(3)

EnggTree.com

3 51007